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Abstract. In 1991, Bendersky and Davis used the BP -based
unstable Novikov spectral sequence to study the 2-primary v1-
periodic homotopy groups of SU(n). Here we use a K-theoretic
approach to add more detail to those results. In particular, whereas
only the order of the groups v−1

1 π2k−1(SU(n)) was determined in
the 1991 paper, here we determine the number of summands in
these groups and much information about the orders of those sum-
mands. In addition, we give explicit conditions for certain differen-
tials and extensions in a spectral sequence, which affect the homo-
topy groups. Finally, we give complete results for v−1

1 π∗(SU(n))
for n ≤ 13.

1. Statement of results

The 2-primary v1-periodic homotopy groups v−1
1 π∗(X) of a space X are a localiza-

tion of the portion of the actual homotopy groups of X detected by 2-local K-theory.

They form a good first approximation to π∗(X); if X is a sphere or compact Lie

group, every group v−1
1 πi(X) is a direct summand of some group πi+2k(X).([16])

In a 1991 paper ([2]), Bendersky and the first author used the BP -based unsta-

ble Novikov spectral sequence (UNSS) to study the 2-primary v1-periodic homotopy

groups v−1
1 π∗(SU(n)) of the special unitary groups. During the subsequent 14 years,

K-theoretic approaches to v1-periodic homotopy groups have been developed by Ben-

dersky, Bousfield, Davis, and Thompson ([4, 6, 9, 8]. In this paper, we apply these

methods to obtain some refinements of the results of [2].

The principal accomplishments of this paper are:
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• In [2], only the order of the groups v−1
1 π2k−1(SU(n)) was deter-

mined. Here we determine the exact number of summands of

these groups and establish how many of those summands have

order 2 and order 4. We also present tabulations of the sum-

mands which present tantalizing patterns. (Theorems 1.2 and

1.4 and Section 2)

• The spectral sequence for v−1
1 π∗(SU(n)) which we compute here

is isomorphic to that of [2]. When n is even, there are differen-

tials in the spectral sequence for which the determination in [2]

was rather intractable. Here we give some more explicit infor-

mation about these differentials. (Theorem 6.7 and Conjecture

6.6)

• Because [2] dealt primarily with orders of groups and not their

summands, it did not give careful attention to extensions in the

spectral sequence. We do that here. (Proposition 6.2, Theorem

7.1, and Conjecture 7.7)

• We give complete explicit results for v−1
1 π∗(SU(n)) for n ≤ 13,

both to illustrate our methods and to confirm their efficacy.

(Section 8)

• We extend results of [5] and [7] about relationships between

v−1
1 π∗(SU(n)) and v−1

1 π∗(Sp([n/2])) and v−1
1 π∗(SU(n)/Sp([n/2])).

(Section 4)

• The proof in [2] that, when n is odd, the spectral sequence is

0 for s > 2 involves a complicated comparison of the UNSS

with a more homotopy-theoretic approach, involving, for exam-

ple, Toda brackets and Whitehead products. This was deemed

there to be “the most delicate part” of the paper, and occupied

well over half of the paper. Here we show how it is a routine

computation using our current methods. (Theorem 3.4)

• We demonstrate the applicability of the Small Complex for cal-

culating certain Ext groups introduced in [6, §11]. (Section 3

and most of Section 7)



PERIODIC HOMOTOPY REVISITED 3

• We present two combinatorial conjectures which will have im-

portant implications for v−1
1 π∗(SU(n)). (Section 9)

We begin describing our results with those for SU(n) when n is odd, since this is by

far the simpler situation. All our results involve the numbers e(k, n) in the following

definition. Throughout the paper, ν(−) denotes the exponent of 2 in an integer.

Definition 1.1. 1 Let a(k, j) =
∑

i odd

(
j
i

)
ik. Then

e(k, n) = min{ν(a(k, j)) : j ≥ n}.
Theorem 1.2. Let n = 2m + 1 be odd.

(1) v−1
1 π2k(SU(n)) ≈ Z/2e(k,n), while v−1

1 π2k−1(SU(n)) has order

2e(k,n) and has exactly [log2(4m/3)] summands.

(2) The summands of the groups v−1
1 π2k−1(SU(n)) of order 2 or 4

are 



Lm k odd

L′m k even,

where Lm and L′m are as in the following definition.

Throughout the paper, we use Zn and Z/n interchangeably.

Definition 1.3. For all positive integers m, abelian groups Lm and L′m are defined

inductively by

L1 = Z2, L2 = 0, L5 = Z4, L6 = Z2 ⊕ Z4, L9 = Z4,

L′1 = Z4, L′2 = 0, L′4 = Z2, L′6 = Z2, L′10 = Z4,

and for all other values of m,

Lm = L[m/2] and L′m = L′[m/2].

1Our definition of a(k, j) differs from that in [2], but agrees with [9, 9.8]. This is
the definition that makes e(k, n) periodic in k for all integers k. The two definitions
give the same value of e(k, n) if k ≥ n.
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The groups Lm with m ≥ 5 and L′m with m ≥ 6 can be written explicitly as, for e ≥ 0,

Lm =





Z4 5 · 2e ≤ m < 6 · 2e

Z2 ⊕ Z4 6 · 2e ≤ m < 7 · 2e

Z2 7 · 2e ≤ m < 8 · 2e

0 8 · 2e ≤ m < 9 · 2e

Z4 9 · 2e ≤ m < 10 · 2e,

L′m =





Z2 6 · 2e ≤ m < 7 · 2e

Z4 7 · 2e ≤ m < 8 · 2e

Z2 8 · 2e ≤ m < 10 · 2e

Z4 10 · 2e ≤ m < 11 · 2e

0 11 · 2e ≤ m < 12 · 2e.

The portion of Theorem 1.2 regarding the groups v−1
1 π2k(SU(n)) and the order of

v−1
1 π2k−1(SU(n)) was proved in [2, 1.1a], but we will give a different proof. That the

number of summands in v−1
1 π2k−1(SU(2m + 1)) is ≥ [log2(4m/3)] was proved in [7,

1.17]. A result similar to Theorem 1.2(1) is true for all SU(n) localized at an odd

prime p; the result for the number of summands in those cases was proved by the

second author in [17].

In Section 2, we list calculations of the summand sizes of v−1
1 π2k−1(SU(2m + 1))

for several small values of k and all m < 96. The pattern of these groups is quite

tantalizing. Exact formulation of these patterns and proof that they persist remains

for the future.

As we will show in Theorem 3.4, the reason that the description of v−1
1 π∗(SU(n)) is

so simple when n is odd is that the spectral sequence used to compute it (the UNSS

in [2] and the BTSS (see Section 3) here) is nonzero only in filtrations 1 and 2, and

hence necessarily collapses. When n is even, the situation is no longer this simple.

The results for v−1
1 π∗(SU(2m)) in [2] were presented by listing groups in various

cases. We feel that the following depiction of the spectral sequence which yields these

groups is more enlightening.

Theorem 1.4. • The E∞-term and part of the E3-term of the

spectral sequence converging to v−1
1 π∗(SU(2m)) is as in Dia-

grams 1.5 and 1.6. Here Ck = Z/2e(k,2m) and |Gk| = 2e(k,2m).
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• Each group Gk has exactly [log2(4m/3)] summands. If k is odd,

Gk ≈ v−1
1 π2k−1(SU(2m + 1)).

• Dotted differentials may or may not occur depending upon com-

putable numerical conditions described in 6.5, 6.6, and 6.7.

• If m = 2e, the smallest summand of G4a+1 is Z/8, and it sup-

ports a nontrivial extension and a nonzero differential. If m =

3 · 2e, e > 0, the smallest summands of G4a+1 are Z/2 ⊕ Z/4,

and the Z/4 summand supports a nontrivial extension. The

differential from G4a+1 does not emanate from a Z/2 or Z/4

summand.

• G4a±2 has a Z/2 summand iff m = 3 or 4 · 2e < m < 5 · 2e or

6 · 2e ≤ m < 7 · 2e for some e ≥ 0. The differential is nonzero

on the Z/2 summand iff m = 3 · 2e for e ≥ 0.

Diagram 1.5. Spectral sequence converging to v−1
1 π∗(SU(2m)), m > 3 odd
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Diagram 1.6. Spectral sequence converging to v−1
1 π∗(SU(2m)), m even

t− s = 8a+ −2 0 2 4
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These charts employ the usual Adams spectral sequence conventions. Dots are

Z/2, lines of slope 1 indicate the action of the Hopf map η, and lines of slope −3 are

differentials. Vertical lines are exotic multiplications by 2. The dotted extension in

8a+1 in Diagram 1.6 is nontrivial if m = 2e or 3 · 2e (7.1) and conjectured (in 7.7) to

be trivial for other values of m. If an extension hits an element which is in the image

of a differential, then of course the extension is trivial. We have not drawn in a dotted

extension in 8a + 1 in Diagram 1.5 because we conjecture in 7.7 that such extension

does not exist unless m = 3. Similarly, in 6.6 we conjecture that for odd m > 3, there

is no differential from C4a+1, and so have not drawn them in. The explicit chart for

SU(6) is given in 8.4.

In our diagrams, we have not pictured most of the elements which are involved

in d3-differentials, since they do not survive to homotopy classes, and their inclusion

leads to a more cluttered diagram. For example, in the box in (x, y) = (8a + 1, 2)

in Diagram 1.5, the E2-term contains an additional (unpictured) Z/2 summand, and

an unpictured eta-tower (line of slope 1 with a dot in each box) rises from it. This

eta tower supports a differential which hits the (unpictured) remainder of the second

eta tower passing through (8a, 5). The complete E2-term in s > 2 consists of two eta

towers passing through each box (x, y) with x + y odd.
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Some of Theorem 1.4 was proved in [2], but not presented this way; we shall discuss

its proof in Section 6. The reason for the attention to Z/2 summands in Theorem 1.4

is that differentials on them affect the number of summands in v−1
1 π∗(SU(2m)). We

will not write it out explicitly, but the information in 1.4 determines the number of

summands in these groups, modulo the only-conjectural non-extensions from G4a+1

and the only-conjectural non-differential on C4a+1 when m is odd.

2. Sizes of summands of v−1
1 π2k−1(SU(2m + 1)) and E2,2k+1

2 (SU(2m))

In this section we list calculations of the summand sizes of v−1
1 π2k−1(SU(2m + 1))

for k = 0, 6, 1, and 13, and all m < 96. The results are presented in Tables 1, 2, 3,

and 4. The pattern of these groups is quite tantalizing. Exact formulation of these

patterns and proof that they persist remains for the future. These are computed

using Proposition 4.7 and the algorithm described in the proof of 7.1.

We also list summand sizes of E2,2k+1
2 (SU(2m)) when k = 0 and 6 and m < 48.

The results are presented in Tables 5 and 6. The pattern for these is similar, but not

identical, to the groups for SU(2m+1). They are computed by a different algorithm,

which appears in the second half of Section 7. We show in Corollary 4.5 that if k is

odd, E2,2k+1
2 (SU(2m)) ≈ v−1

1 π2k−1(SU(2m + 1)) ⊕ Z/2, and so a separate listing of

E2,2k+1
2 (SU(2m)) is not needed when k is odd.

3. Proof of Theorem 1.2(1)

In this section, we prove Theorem 1.2(1). This section also contains many of the

preliminaries that will be used in future sections, as it introduces the way in which

the Small Complex of [6, §11] is used to make explicit calculations.

In [8], a K-based spectral sequence (the BTSS) converging to v−1
1 π∗(X) was in-

troduced, and in [4], it was proved that, for a category of spaces which includes

spheres and compact Lie groups, its Es,t
2 -term was Exts,t

A (QK1(X)/ im(ψ2)), where

A denotes the category of Z2-graded stable 2-adic Adams modules ([9]),2 Exts,t
A (M)

means Exts
A(M,K∗(St)), K-groups are Z2-graded 2-adic K-theory, and Q denotes

the indecomposable quotient. Since QK0(SU(n)) = 0 and K1(St) = 0 if t is even, it

2Stable 2-adic Adams modules involve an action of ψt for odd integers t, while
unstable 2-adic Adams modules involve ψt for all integers t.



8 DONALD M. DAVIS AND KATARZYNA POTOCKA

Table 1. Exponents of 2 of summands of
v−1

1 π2k−1(SU(2m + 1)), k = 0

m m m

32 1,3,7,15,38 64 1,3,7,15,31,71

1 2 33 1,3,7,18,37 65 1,3,7,15,34,70

2 4 34 1,3,8,20,36 66 1,3,7,16,36,69

3 2,4 35 1,3,10,20,36 67 1,3,7,18,37,68

4 1,7 36 1,4,9,19,39 68 1,3,8,17,36,71

5 4,6 37 1,4,11,20,38 69 1,3,8,20,36,70

6 1,3,8 38 1,5,11,19,40 70 1,3,9,20,35,72

7 2,4,8 39 1,6,11,20,40 71 1,3,10,20,36,72

8 1,3,12 40 2,5,10,19,44 72 1,4,9,19,35,76

9 1,6,11 41 2,5,10,22,43 73 1,4,9,19,38,75

10 2,6,12 42 2,6,10,22,44 74 1,4,10,19,38,76

11 4,6,12 43 2,6,12,22,44 75 1,4,11,20,38,76

12 1,3,5,15 44 3,6,11,21,47 76 1,5,11,19,37,79

13 1,3,8,14 45 3,6,11,24,46 77 1,5,11,19,40,78

14 2,3,7,16 46 4,6,11,23,48 78 1,6,11,19,39,80

15 2,4,8,16 47 4,6,12,24,48 79 1,6,11,20,40,80

16 1,3,7,21 48 1,3,5,11,23,53 80 2,5,10,19,39,85

17 1,3,10,20 49 1,3,5,11,26,52 81 2,5,10,19,42,84

18 1,4,11,20 50 1,3,5,12,27,52 82 2,5,10,20,43,84

19 1,6,11,20 51 1,3,5,14,27,52 83 2,5,10,22,43,84

20 2,5,10,23 52 1,3,6,13,26,55 84 2,6,10,21,42,87

21 2,6,12,22 53 1,3,6,14,28,54 85 2,6,11,22,44,86

22 3,6,11,24 54 1,3,7,14,27,56 86 2,6,11,22,43,88

23 4,6,12,24 55 1,3,8,14,28,56 87 2,6,12,22,44,88

24 1,3,5,11,28 56 2,3,7,13,27,60 88 3,6,11,21,43,92

25 1,3,5,14,27 57 2,3,7,13,30,59 89 3,6,11,21,46,91

26 1,3,6,14,28 58 2,3,7,14,30,60 90 3,6,11,22,46,92

27 1,3,8,14,28 59 2,3,7,16,30,60 91 3,6,11,24,46,92

28 2,3,7,13,31 60 2,4,7,15,29,63 92 4,6,11,23,45,95

29 2,3,7,16,30 61 2,4,7,15,32,62 93 4,6,11,23,48,94

30 2,4,7,15,32 62 2,4,8,15,31,64 94 4,6,12,23,47,96

31 2,4,8,16,32 63 2,4,8,16,32,64 95 4,6,12,24,48,96
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Table 2. Exponents of 2 of summands of
v−1

1 π2k−1(SU(2m + 1)), k = 6

m m m

32 1,6,6,16,34 64 1,6,6,16,32,66

1 2 33 1,6,6,18,34 65 1,6,6,16,34,66

2 3 34 1,6,7,16,36 66 1,6,6,17,32,68

3 2,6 35 1,6,8,18,39 67 1,6,6,18,34,71

4 1,8 36 1,5,8,18,41 68 1,6,7,16,34,73

5 3,6 37 1,5,8,20,39 69 1,6,7,16,36,71

6 1,3,6 38 1,6,8,19,40 70 1,6,8,16,34,73

7 2,6,7 39 1,6,10,22,40 71 1,6,8,18,37,73

8 1,6,8 40 2,4,10,22,41 72 1,5,8,18,37,74

9 1,6,10 41 2,4,10,23,42 73 1,5,8,18,39,74

10 2,4,12 42 2,4,11,21,44 74 1,5,8,19,38,75

11 3,6,15 43 2,4,12,23,47 75 1,5,8,20,39,79

12 1,3,4,16 44 3,4,12,21,48 76 1,6,8,19,38,80

13 1,3,6,15 45 3,4,12,23,47 77 1,6,8,19,40,79

14 2,3,6,15 46 3,5,12,23,47 78 1,6,9,19,40,79

15 2,6,7,16 47 3,6,15,23,48 79 1,6,10,22,40,80

16 1,6,6,18 48 1,3,4,14,23,50 80 2,4,10,22,39,82

17 1,6,8,18 49 1,3,4,16,23,50 81 2,4,10,22,41,82

18 1,5,8,20 50 1,3,4,15,23,52 82 2,4,10,21,41,84

19 1,6,10,23 51 1,3,4,15,26,55 83 2,4,10,23,42,87

20 2,4,10,25 52 1,3,5,13,26,57 84 2,4,11,21,42,89

21 2,4,12,23 53 1,3,5,13,28,55 85 2,4,11,21,44,87

22 3,4,12,23 54 1,3,6,13,28,55 86 2,4,12,21,44,87

23 3,6,15,23 55 1,3,6,15,31,55 87 2,4,12,23,47,87

24 1,3,4,16,23 56 2,3,6,13,31,56 88 3,4,12,21,48,87

25 1,3,4,15,26 57 2,3,6,13,31,58 89 3,4,12,21,47,90

26 1,3,5,13,28 58 2,3,6,14,29,60 90 3,4,12,22,45,92

27 1,3,6,15,31 59 2,3,6,15,31,63 91 3,4,12,23,47,95

28 2,3,6,13,32 60 2,4,6,15,29,64 92 3,5,12,23,45,96

29 2,3,6,15,31 61 2,4,6,15,31,63 93 3,5,12,23,47,95

30 2,4,6,15,31 62 2,5,6,15,31,63 94 3,6,12,23,47,95

31 2,6,7,16,32 63 2,6,7,16,32,64 95 3,6,15,23,48,96
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Table 3. Exponents of 2 of summands of
v−1

1 π2k−1(SU(2m + 1)), k = 1

m m m

32 3,4,8,16,32 64 3,4,8,16,32,64

1 1 33 3,4,6,14,38 65 3,4,7,14,30,71

2 3 34 3,3,6,16,39 66 3,4,6,14,32,72

3 1,4 35 3,3,6,20,37 67 3,4,6,14,36,70

4 3,4 36 2,3,8,20,38 68 3,3,6,16,36,71

5 2,7 37 2,3,8,21,39 69 3,3,6,16,38,71

6 1,2,8 38 2,3,10,20,40 70 3,3,6,18,37,72

7 1,4,8 39 2,3,12,20,40 71 3,3,6,20,37,72

8 3,4,8 40 2,4,12,21,40 72 2,3,8,20,38,72

9 2,3,12 41 2,4,12,19,44 73 2,3,8,20,36,76

10 2,4,13 42 2,4,12,20,45 74 2,3,8,21,36,77

11 2,7,12 43 2,4,12,23,44 75 2,3,8,21,39,76

12 1,2,8,12 44 2,6,11,24,44 76 2,3,10,20,40,76

13 1,2,7,15 45 2,6,11,23,47 77 2,3,10,20,39,79

14 1,4,6,16 46 2,7,12,22,48 78 2,3,12,20,38,80

15 1,4,8,16 47 2,7,12,24,48 79 2,3,12,20,40,80

16 3,4,8,16 48 1,2,8,12,24,48 80 2,4,12,21,40,80

17 3,3,6,21 49 1,2,8,11,22,53 81 2,4,12,20,38,85

18 2,3,8,22 50 1,2,8,10,24,54 82 2,4,12,19,40,86

19 2,3,12,20 51 1,2,8,10,28,52 83 2,4,12,19,44,84

20 2,4,12,21 52 1,2,7,12,28,53 84 2,4,12,20,44,85

21 2,4,12,23 53 1,2,7,12,28,55 85 2,4,12,20,44,87

22 2,6,11,24 54 1,2,7,14,27,56 86 2,4,12,22,43,88

23 2,7,12,24 55 1,2,7,15,28,56 87 2,4,12,23,44,88

24 1,2,8,12,24 56 1,4,6,16,28,56 88 2,6,11,24,44,88

25 1,2,8,10,28 57 1,4,6,16,26,60 89 2,6,11,24,42,92

26 1,2,7,12,29 58 1,4,6,15,28,61 90 2,6,11,23,44,93

27 1,2,7,15,28 59 1,4,6,15,31,60 91 2,6,11,23,47,92

28 1,4,6,16,28 60 1,4,8,14,32,60 92 2,7,12,22,48,92

29 1,4,6,15,31 61 1,4,8,14,31,63 93 2,7,12,22,47,95

30 1,4,8,14,32 62 1,4,8,16,30,64 94 2,7,12,24,46,96

31 1,4,8,16,32 63 1,4,8,16,32,64 95 2,7,12,24,48,96
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Table 4. Exponents of 2 of summands of
v−1

1 π2k−1(SU(2m + 1)), k = 13

m m m

32 3,5,10,13,32 64 3,5,10,13,32,64

1 1 33 3,4,10,12,35 65 3,5,10,12,31,67

2 3 34 3,3,11,13,36 66 3,4,10,12,33,68

3 1,7 35 3,3,11,15,39 67 3,4,10,12,35,71

4 3,5 36 2,3,13,16,37 68 3,3,11,13,36,69

5 2,6 37 2,3,13,16,37 69 3,3,11,13,36,69

6 1,2,7 38 2,3,15,15,38 70 3,3,11,15,36,69

7 1,5,15 39 2,3,14,18,42 71 3,3,11,15,37,75

8 3,5,13 40 2,4,15,18,42 72 2,3,13,16,37,75

9 2,3,16 41 2,4,12,18,46 73 2,3,13,16,34,79

10 2,4,15 42 2,4,11,20,47 74 2,3,13,16,35,80

11 2,6,13 43 2,4,11,22,46 75 2,3,13,16,37,78

12 1,2,7,13 44 2,6,10,23,46 76 2,3,15,15,38,78

13 1,2,6,14 45 2,6,10,22,47 77 2,3,15,15,37,79

14 1,4,5,15 46 2,6,12,21,48 78 2,3,14,17,37,80

15 1,5,10,13 47 2,6,13,25,47 79 2,3,14,18,42,78

16 3,5,10,13 48 1,2,7,13,25,47 80 2,4,15,18,42,78

17 3,3,11,15 49 1,2,7,11,25,50 81 2,4,13,18,42,81

18 2,3,13,16 50 1,2,7,10,27,51 82 2,4,12,18,44,82

19 2,3,15,18 51 1,2,7,10,29,53 83 2,4,12,18,46,83

20 2,4,15,18 52 1,2,6,12,30,52 84 2,4,11,20,47,83

21 2,4,11,22 53 1,2,6,12,28,54 85 2,4,11,20,44,86

22 2,6,10,23 54 1,2,6,14,27,55 86 2,4,11,22,43,87

23 2,6,13,25 55 1,2,6,14,30,57 87 2,4,11,22,46,89

24 1,2,7,13,25 56 1,4,5,15,30,57 88 2,6,10,23,46,89

25 1,2,7,10,29 57 1,4,5,15,27,61 89 2,6,10,23,43,93

26 1,2,6,12,30 58 1,4,5,14,29,62 90 2,6,10,22,45,94

27 1,2,6,14,30 59 1,4,5,14,31,62 91 2,6,10,22,47,94

28 1,4,5,15,30 60 1,5,6,13,32,62 92 2,6,12,21,48,94

29 1,4,5,14,31 61 1,5,6,13,31,63 93 2,6,12,21,47,95

30 1,5,6,13,32 62 1,5,8,13,30,64 94 2,6,13,22,46,96

31 1,5,10,13,32 63 1,5,10,13,32,64 95 2,6,13,25,47,96
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Table 5. Exponents of 2 of summands of
E2,2k+1

2 (SU(2m)), k = 0

m m m

16 1,3,4,8,16 32 1,3,4,8,16,32

1 1,1 17 1,1,3,8,21 33 1,1,3,7,16,38

2 1,3 18 1,1,4,10,20 34 1,1,3,8,18,37

3 1,1,4 19 1,1,5,11,20 35 1,1,3,9,20,36

4 1,3,4 20 1,2,6,11,20 36 1,1,4,10,20,36

5 1,2,7 21 1,2,6,10,23 37 1,1,4,10,19,39

6 1,1,4,6 22 1,3,6,12,22 38 1,1,5,11,20,38

7 1,2,3,8 23 1,4,6,11,24 39 1,1,6,11,19,40

8 1,3,4,8 24 1,1,4,6,12,24 40 1,2,6,11,20,40

9 1,1,4,12 25 1,1,3,5,12,28 41 1,2,5,10,20,44

10 1,2,6,11 26 1,1,3,6,14,27 42 1,2,6,10,22,43

11 1,3,6,12 27 1,1,3,7,14,28 43 1,2,6,11,22,44

12 1,1,4,6,12 28 1,2,3,8,14,28 44 1,3,6,12,22,44

13 1,1,3,6,15 29 1,2,3,7,14,31 45 1,3,6,11,22,47

14 1,2,3,8,14 30 1,2,4,7,16,30 46 1,4,6,11,24,46

15 1,2,4,7,16 31 1,2,4,8,15,32 47 1,4,6,12,23,48

follows that Es,t
2 (SU(n)) = 0 if t is even. This spectral sequence can also be obtained,

using methods of [9], as the homotopy spectral sequence for the spectrum Φ1X.

In [6, §11], a small chain complex for computing these Ext groups was developed.

That chain complex was not used in an essential way in [6]; part of the significance

of this paper is to demonstrate the utility of that chain complex.

The following definition is easily seen to be equivalent to [6, 11.1], e.g. using the

Smith normal form.

Definition 3.1. If M is an integer matrix, Q(M) is the torsion subgroup of the

Z∧2 -module presented by M .

As in [6, 11.2], an unstable 2-adic Adams module is said to be algebraically spher-

ically resolved (ASR) if it can be built from various QK1(S2ni+1) by short exact

sequences. Our QK1(SU(n)) is ASR. By [6, 11.9,11.3], we have the following useful

result.
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Table 6. Exponents of 2 of summands of
E2,2k+1

2 (SU(2m)), k = 6

m m m

16 1,3,6,6,16 32 1,3,6,6,16,32

1 1,1 17 1,1,6,7,18 33 1,1,6,6,17,34

2 1,3 18 1,1,7,8,18 34 1,1,6,7,18,34

3 1,1,3 19 1,1,6,8,20 35 1,1,6,8,16,36

4 1,3,6 20 1,2,6,10,23 36 1,1,7,8,18,39

5 1,2,7 21 1,2,4,11,24 37 1,1,5,8,19,40

6 1,1,3,6 22 1,3,4,12,23 38 1,1,6,8,20,39

7 1,2,3,6 23 1,3,5,12,23 39 1,1,6,9,19,40

8 1,3,6,6 24 1,1,3,6,14,23 40 1,2,6,10,22,39

9 1,1,7,8 25 1,1,3,4,16,24 41 1,2,4,10,23,41

10 1,2,6,10 26 1,1,3,5,15,26 42 1,2,4,11,23,42

11 1,3,4,12 27 1,1,3,6,13,28 43 1,2,4,12,21,44

12 1,1,3,6,14 28 1,2,3,6,15,30 44 1,3,4,12,23,46

13 1,1,3,5,16 29 1,2,3,6,14,32 45 1,3,4,12,22,48

14 1,2,3,6,15 30 1,2,4,6,15,31 46 1,3,5,12,23,47

15 1,2,4,6,15 31 1,2,5,6,15,31 47 1,3,6,12,23,47

Theorem 3.2. ([6]) Let N be an ASR unstable 2-adic Adams module with basis B.

Thus N/ im(ψ2) is in A. Let Ψt and Θk denote the matrices of ψt and ψ3 − 3k,

respectively, with respect to B. Then

Exts,2k+1
A (N/ im(ψ2)) ≈ Q(Ms,k),

where

M1,k = (Ψ−1 − (−1)k Ψ2 Θk)

and, for s ≥ 2, with the last block of rows deleted if s = 2,

Ms,k =




Ψ−1 + (−1)s+k Ψ2 Θk 0
0 −Ψ−1 + (−1)s+k 0 Θk

0 0 −Ψ−1 + (−1)s+k −Ψ2

0 0 0 Ψ−1 + (−1)s+k


 .

One basis for QK1(SU(n)) is given by {X, . . . , Xn−1} with ψt(X) = (X − 1)t −
1 and ψt acting multiplicatively. We remark that QK1(SU(n)) does not admit a
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multiplication, but we use its isomorphism with K̃0(CP n−1), which does. We will

find it useful to use the alternate basis given in the following proposition.

Proposition 3.3. For ε ∈ {0, 1}, there is a basis

{X, XY, . . . , XY m−1, Y, . . . , Y m−1+ε}
for QK1(SU(2m + ε)) satisfying

ψt(Y ) =





Y t = −1

4Y + Y 2 t = 2

9Y + 6Y 2 + Y 3 t = 3

ψt(X) =





−X + Y t = −1

2X + XY + Y t = 2

3X + 4XY + 3Y + XY 2 + Y 2 t = 3

and multiplicativity.

Proof. We let Y = X2/(1 + X). The formulas follow from those for ψt(X). For

example,

ψ−1(Y ) =
((1 + X)−1 − 1)2

(1 + X)−1
=

(1− (1 + X))2

1 + X
=

X2

1 + X
= Y

ψ2(Y ) =
((1 + X)2 − 1)2

(1 + X)2
=

X4 + 4X2(1 + X)

(1 + X)2
= Y 2 + 4Y

ψ3(X) = 3X + 3X2 + X3 = 3X + 3(XY + Y ) + X2Y + XY

= 3X + 4XY + 3Y + (XY + Y )Y.

Now we can easily prove the following result. As pointed out in the introduction,

the proof of this result in [2] was very involved, occupying more than half of that

paper.

Theorem 3.4. If n is odd, then Es
2(SU(n)) = 0 for s > 2.

Proof. Let Qm = SU(2m + 1)/SU(2m− 1). There are short exact sequences in A
0 → QK1(Qm)/ im(ψ2) → QK1(SU(2m+1))/ im(ψ2) → QK1(SU(2m−1))/ im(ψ2) → 0,

and so the theorem follows by induction on m, using the exact sequences in ExtA and

the calculation in the following lemma.
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Lemma 3.5. Exts
A(QK1(Qm)/ im(ψ2)) = 0 if s > 2.

Proof. Using 3.3, we see that QK1(Qm) has basis {XY m−1, Y m} with matrices of ψt

given by

Ψ−1 =

(
−1 0
1 1

)
, Ψ2 =

(
22m−1 0
22m−2 22m

)
, Ψ3 =

(
32m−1 0
32m−1 32m

)
.

By Theorem 3.2, if s + k is even and s > 2, then the desired Ext group is Q(M),

where M is the following matrix:



0 0 22m−1 0 32m−1 − 3k 0 0 0
1 2 22m−2 22m 32m−1 32m − 3k 0 0
0 0 2 0 0 0 32m−1 − 3k 0
0 0 −1 0 0 0 32m−1 32m − 3k

0 0 0 0 2 0 −22m−1 0
0 0 0 0 −1 0 −22m−2 −22m

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2




One verifies that, with Ri denoting the ith row,

R1 = −22m−1R4 − (32m−1 − 3k)R6 + 22m−2(32m−1 + 3k)R8

R3 = −2R4 + (32m − 3k)R8

R5 = −2R6 − 22mR8.

After removing these dependent rows, the remaining matrix is of the form

M ′ =




1 x x x x x x x
0 0 1 x x x x x
0 0 0 0 1 x x x
0 0 0 0 0 0 1 x


 .

For such a matrix, Q(M ′) = 0.

If s + k is odd, the 2× 2 matrices along the diagonal are negated and reversed. A

similar and easier argument shows Q(M) = 0 in this case.

The portion of Theorem 1.2 regarding v−1
1 π2k(SU(n)) and the order of the group

v−1
1 π2k−1(SU(n)) when n is odd is now immediate from the following result, which is

an easy adaptation to the prime 2 of [9, 9.2].

Proposition 3.6. For all n ≥ 2, E1,2k+1
2 (SU(n)) ≈ Z/2e(k,n). If n is odd, the order

of E2,2k+1
2 (SU(n)) equals 2e(k,n).
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Proof. By [3, 1.1], E1,2k+1
2 ≈ QK1(SU(n))/(ψ2, ψt − tk : t odd).3 This is easily seen

to be Z/2e(k,n), using the same argument as was used by Bousfield in [9, §9] when

localized at an odd prime, using the basis obtained from powers of the Hopf bundle

ξ.

That E2,t
2 (X) and E1,t

2 (X) have the same order if Es
2(X) = 0 for s > 2 follows from

[4, 3.10], since one is the kernel and the other the cokernel of the same homomorphism.

An additional possible contribution to E2
2(X) in [4, 3.10] is 0 because it is isomorphic

to a summand of Es
2(X) for s > 2, and this is 0 when X = SU(n) with n odd.

We complete this section by proving the following result, which, with Theorem

3.4, implies the final part of Theorem 1.2(1). Here we have introduced the standard

notation, rk2(G), for the number of summands of a finite 2-group G.

Proposition 3.7. If m is a positive integer and k is any integer, then

rk2(E
2,2k+1
2 (SU(2m + 1))) = [log2(4m/3)].

Proof. Let M denote the matrix of Theorem 3.2 with N = QK1(SU(2m + 1)) and

s = 2, so that the last “row” is deleted. This is considered as a matrix over the

2-adics. Row and column operations do not change Q(M), and can bring the matrix

to diagonal form, with 1’s and other 2-powers on the diagonal. The simplified matrix

may also have rows and columns of all 0’s. This is the Smith normal form. See, e.g.

[1, 5.3.1]. Then our desired group Q(M) is the direct sum of Z/2e for those 2e with

e > 0 which appear on the diagonal. Clearly

rk2(Q(M)) = rank(M)− rank(M mod 2). (3.8)

We first show rank(M) = 4m. The rank may be computed over the rational

numbers. Corresponding to the rational splitting of SU(2m + 1) as a product of

spheres is an isomorphism of unstable Adams modules

QK1(SU(2m + 1);Q) ≈
2m⊕

i=1

QK1(S2i+1;Q).

3Actually, [3] showed the groups were Pontryagin dual, but we use that a finite
group is isomorphic to its dual.
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The result for rank(M) follows from the observation that the rank of the matrix for

S2i+1 equals 2. Indeed, the matrix for S2i+1 will be of one of the following two forms



0 2e a 0
0 2 0 a
0 0 2 −2e


 ,




2 2e a 0
0 0 0 a
0 0 0 −2e


 ,

with a even, each of which has rank 2.

Now we work over Z/2 and show that the rank of M mod 2 is 4m− [log2(4m/3)].

With (3.8), this will complete the proof.

We use the basis of Proposition 3.3, from which we obtain the following formulas

for Adams operations mod 2:

ψ−1(XY i−1) = XY i−1 + Y i

ψ2(XY i−1) = XY 2i−1 + Y 2i−1

ψ3(XY i−1) = XY i−1(1 + Y 2)i + Y i(1 + Y )2i−1

ψ−1(Y i) = Y i

ψ2(Y i) = Y 2i

ψ3(Y i) = Y i(1 + Y 2)i

.
(3.9)

The matrix M with respect to this basis is given in (3.10). Each submatrix indicated

by a single entry in (3.10) is m ×m, corresponding to one of the two halves of the

basis in 3.3. Here Θi is a matrix of components of ψ3 − 1, with i = 1 corresponding

to the portion of either half of the basis to itself (which are equal for the two half

bases), and i = 2 for the portion from the XY j-half-basis to the Y j-half-basis. Note

that the meaning of the subscript of Θ is different than that in 3.2. The submatrices

Ψ2 are subscripted similarly.




0 0 Ψ2
1 0 Θ1 0 0 0

I 0 Ψ2
2 Ψ2

1 Θ2 Θ1 0 0
0 0 0 0 0 0 Θ1 0
0 0 I 0 0 0 Θ2 Θ1

0 0 0 0 0 0 Ψ2
1 0

0 0 0 0 I 0 Ψ2
2 Ψ2

1




(3.10)

After pivoting on the three I’s, we obtain the matrix (3.11).
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


0 0 0 0 0 0 Ψ2
1Θ2 + Θ1Ψ

2
2 Ψ2

1Θ1 + Θ1Ψ
2
1

I 0 0 Ψ2
1 0 Θ1 Ψ2

2Θ2 + Θ2Ψ
2
2 Ψ2

2Θ1 + Θ2Ψ
2
1

0 0 0 0 0 0 Θ1 0
0 0 I 0 0 0 Θ2 Θ1

0 0 0 0 0 0 Ψ2
1 0

0 0 0 0 I 0 Ψ2
2 Ψ2

1


 (3.11)

We delete the rows and columns with the I’s, and the resulting columns of 0’s.

The 3m rows with the pivot 1’s which we delete here all contribute to the rank of

this mod 2 matrix. We also remove the last block of columns because the entry in

the upper right corner of (3.11) is 0. This leaves the following 3m×m matrix.



Ψ2
1Θ2 + Θ1Ψ

2
2

Θ1

Ψ2
1


 .

The m × m matrix Ψ2
1, mod 2, has a 1 in position (2j, j) for j ≤ [m/2] and 0’s

elsewhere. Similarly, the only nonzero entries of Ψ2
2 are in (2j−1, j). Both Θ1 and Θ2

are lower triangular, and Θ1 has 0’s on the diagonal. This implies that Ψ2
1Θ2 + Θ1Ψ

2
2

is 0 in columns > [m/2].

We pivot on the 1’s of Ψ2
1, and then remove their rows and columns and the rows

which are 0, leaving just the right half of Θ1, i.e. columns j with j > [m/2]. We

denote this matrix by ΘR. The [m/2] rows with leading 1’s which were removed also

contribute to the rank.

We show in the next paragraph that the rank of ΘR is m− [m/2] − [log2(4m/3)],

which, when combined with the ranks 3m and [m/2] already removed, implies the

claim about rank(M mod 2), and hence the proposition. This analysis is essentially

equivalent to that of [7, 1.14] and [6, 5.6ff].

If the rows (omitting those with i ≤ [m/2], since they are 0) and columns of ΘR are

ordered first by exponent of 2, and then in increasing order for those with the same

exponent, we obtain a lower triangular matrix with 0’s on the diagonal, and 1’s on

the subdiagonal except for the last column in each fixed-exponent grouping. This last

column in each group is 0. Thus the rank of ΘR equals its number of columns minus

the number of integers e such that there is an integer j satisfying [m/2] < j ≤ m and

ν(j) = e. This number is [log2(4m/3)]. To see this, note that if 2t ≤ m < 3 · 2t−1,
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then all integers e 6= t − 1 satisfying 0 ≤ e ≤ t occur, while if 3 · 2t−1 ≤ m < 2t+1,

then all integers e satisfying 0 ≤ e ≤ t occur.

4. Relationship between SU(n) and Sp([n/2])

In this section we show how the E2-term of SU(n) is related to that of Sp([n/2])

and SU(n)/Sp([n/2]). This is used in computing the summands of v−1
1 π∗(SU(n))

listed in Section 2.

In [5] and [7], Bendersky and the first author studied the exact sequence of UNSS

for the fibration

Sp(m)
i−→SU(2m + ε)

p−→Hm,ε (4.1)

and obtained relationships between some 1-line and 2-line groups of Sp(m) and

SU(2m + ε). Here ε = 0 or 1, and Hm,ε is the group quotient defined by the fi-

bration. We extend these results here, using the BTSS. These results accomplish two

things: first, they shed light on the relationship between these spaces, and second,

they give an easier way to compute some 2-line groups for SU(n). A major ingredient

in the proof of this proposition is our results, 3.7 and 6.8, about number of summands.

Proposition 4.2. Let i be as in (4.1).

(1) If t ≡ 3 mod 4, there is a split short exact sequence

0 → Z/2 → E2,t
2 (Sp(m))

i∗−→ E2,t
2 (SU(2m + 1)) → 0.

(2) If t ≡ 1 mod 4, then

E2,t
2 (Hm,1) ≈ E2,t

2 (SU(2m + 1))⊕ Z/2.

The morphism E2,t
2 (SU(2m+1))

p∗−→ E2,t
2 (Hm,1) corresponds to

multiplication by 2 under the above isomorphism.

(3) If t ≡ 3 mod 4, then E2,t
2 (SU(2m)) is isomorphic to E2,t

2 (Sp(m)).

The morphism i∗ has a split Z/2 in its kernel and cokernel.

Proof. The fibration (4.1) induces a short exact sequence in QK1(−). Indeed, under

the description in 3.3, QK1(Hm,ε) corresponds to the subspace spanned by the Y i’s,

and QK1(Sp(m)) to the quotient mod the Y i’s. There is also a short exact sequence

in QK1(−)/ im(ψ2) and hence a long exact sequence in E∗,t
2 .
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Let t ≡ 3 mod 4, and let ` = [log2(4m/3)]. The beginning of this exact sequence

is an isomorphism of cyclic groups E1,t
2 (Sp(m)) → E1,t

2 (SU(2m + 1)). This was

proved for the UNSS in [5, 1.2], and the same proof works for the BTSS. Since

Es,t
2 (SU(2m + 1)) = 0 for s > 2,

Es,t
2 (Hm,1) → Es+1,t

2 (Sp(m)) (4.3)

is an isomorphism for s ≥ 3, and by [6, p.26] these groups are (`+1)Z/2, i.e. a direct

sum of (` + 1) copies of Z/2. By [4, 3.8], E2,t
2 (Hm,1) is also (` + 1)Z/2, and so (4.3) is

also an isomorphism when s = 2. The short exact sequence claimed in part (1) now

follows, using E1,t
2 (Hm,1) = Z/2 by [5], and it is split because E2,t

2 (Sp(m)) has (` + 1)

summands by [6, p.26,p.76], while E2,t
2 (SU(2m + 1)) has ` summands by 3.7.

Now let t ≡ 1 mod 4. This time the exact sequence is a bit more complicated, so

we write it out.

0 → E1,t
2 (Sp(m)) → E1,t

2 (SU(2m + 1)) → E1,t
2 (Hm,1)

δ−→ E2,t
2 (Sp(m))

→ E2,t
2 (SU(2m + 1))

p∗−→ E2,t
2 (Hm,1) → E3,t

2 (Sp(m)) → 0.

Using results and methods of [6], we have the following information about the groups

in the exact sequence.

0 → Z/2 → Cyclic → Cyclic
δ−→ (` + 1)Z/2

→ ` summands
p∗−→ (` + 1) summands → (` + 1)Z/2 → 0.

We observe that δ must hit one Z/2. It follows that the two cyclic groups are of

the same order with the morphism between them being ·2, and the claim about p∗ is

easily established by exactness properties.

For SU(2m), the exact sequence is more complicated for two reasons. One is that

the higher Ext groups of SU(n) are not 0, and the other is that the space Hm,0 in

(4.1) does not match up as nicely with Sp(m) (in terms of Ext summands) as did

Hm,1.

We consider only the case t ≡ 3 mod 4. By [5, 1.2], E1,t
2 (Sp(m)) → E1,t

2 (SU(2m))

is an isomorphism of cyclic groups. We analyze the resulting exact sequence,

0 → E1,t
2 (Hm,0)

δ1−→ E2,t
2 (Sp(m)) → E2,t

2 (SU(2m))
p∗−→ E2,t

2 (Hm,0)
δ2−→ E3,t

2 (Sp(m))
i∗−→ .



PERIODIC HOMOTOPY REVISITED 21

If m is not of the form 3 · 2e, then the sequence is

0 → Z/2
δ1−→ (`+1) summands → (`+1) summands

p∗−→ (`+1)Z/2 → (`+1)Z/2
i∗−→

with i∗ sending one Z/2 across. This follows from 6.8, [6], and, for i∗, a discussion

later in this proof. By pushing into the exact sequence of part (1), we find that the

image of δ1 is a split Z/2, from which we can also deduce that the only nontrivial

component of p∗ is to send a split Z/2 across, from which the claim of part (3) follows

(provided m 6= 3 · 2e).

If m = 3 ·2e, E2,t
2 (Hm,0) = `Z/2, but in this case, i∗ sends two Z/2’s across, so that

there is still a single Z/2 in the image of p∗, and the above argument and conclusion

apply.

We complete the proof by describing in a bit more detail the relevance of m = 3 ·2e,

and the reason for the claim about i∗. There is a 6-term exact circle

ηod(Sp(m)) −−−→ Z2 ⊕ Z2 −−−→ ηod(Hm,0)

δ1

x δ2

y

ηev(Hm,0) ←−−− Z2 ⊕ Z2
i∗←−−− ηev(Sp(m)),

(4.4)

in which the groups Z2⊕Z2 are the eta-towers of SU(2m). This is the exact sequence

in E2 of the fibration (4.1) in filtration > 2. The ηi notation is as in [6, pp 30-31];

ηi(X) = E
s,2(s+i)+1
2 (X) for s ≥ 3 and depends only on the parity of i.

Using (3.9), QK1(Hm,0;Z2) and QK1(Sp(m−1);Z2) are isomorphic abelian groups

with agreeing ψ2 and ψ3, but ψ−1 is respectively 1 and −1. Using [4, 3.10], this implies

that ηod(Hm,0) ≈ ηev(Sp(m − 1)) and ηev(Hm,0) ≈ ηod(Sp(m − 1)). The significance

of m = 3 · 2e is that for such m, [log2(4(m− 1)/3)] < [log2(4m/3)].

Using [6, 3.20] as a guide4, and referring to [6, 5.6], one can check that, if m 6= 3 ·2e,

both ker(δi) and coker(δi) have a single Z/2. Here δi refers to the two labeled arrows in

(4.4). If m = 3·2e, ker(δ2) = Z2, coker(δ2) = Z2⊕Z2, ker(δ1) = 0, and coker(δ1) = Z2.

The classes mapped nontrivially by i∗ are exactly coker(δ2).

The following corollary is immediate from 4.2 and is part of Theorem 1.4.

Corollary 4.5. If t ≡ 3 mod 4, E2,t
2 (SU(2m)) ≈ E2,t

2 (SU(2m + 1))⊕ Z/2.

4The listed eta towers of Spin(2n + 1) in [6, 3.20] correspond to most of the eta
towers of Sp(n− 1).
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The relationship between E2,t
2 (SU(2m)) and E2,t

2 (Hm,1) when t ≡ 1 mod 4 is more

complicated and will not be described here.

We remark that the proof of part (2) above established the following result, which

was conjectured in [5, 2.2], and was stated there as being equivalent to a certain

statement about power series. We mention this primarily as an indication of the

power of our new techniques.

Proposition 4.6. If t ≡ 1 mod 4, the cyclic groups E1,t
2 (SU(2m+1)) and E1,t

2 (Hm,1)

are isomorphic.

Computing E2
2(Sp(m)) and E2

2(Hm,ε) is easier than computing E2
2(SU(2m + ε))

because ψ−1 is −1 or 1, and not mixed. We obtain the following from parts (1)

and (3) of Proposition 4.2, together with [6, 11.3]. This proposition underlies the

calculation of the tables in Section 2 and proofs in Sections 5 and 7.

Proposition 4.7. (1) Let k be odd. Let Ψ2 be an m × m matrix

whose jth column is the coefficients of Z1, · · · , Zm in (2Z +

Z2)(4Z + Z2)j−1. Let Θk be an m × m matrix whose jth col-

umn is the coefficients of Z1, · · · , Zm in (3Z + 4Z2 + Z3)(9Z +

6Z2 + Z3)j−1 − 3kZj. Then E2,2k+1
2 (SU(2m + 1)) is isomor-

phic to the group Gm,k presented by the stackmatrix

(
Ψ2

Θk

)
, and

E2,2k+1
2 (SU(2m)) ≈ Gm,k ⊕ Z/2.

(2) Let k be even. Let Ψ2′ be an m ×m matrix whose jth column

is the coefficients of Y 1, . . . , Y m in (4Y + Y 2)j. Let Θ′
k be an

m×m matrix whose jth column is the coefficients of Y 1, . . . , Y m

in (9Y + 6Y 2 + Y 3)j. Then E2,2k+1
2 (SU(2m + 1)) is isomorphic

to the group G′
m,k presented by the stackmatrix

(
Ψ2′

Θ′
k

)
.

Proof. Using the classes in Proposition 3.3, the short exact sequence of unstable

Adams modules

0 → QK1(Hm,1)
p∗−→ QK1(SU(2m + 1))

i∗−→ QK1(Sp(m)) → 0

has im(p∗) the subgroup generated by the Y i, and coker(p∗) the quotient mod the Y i.

Letting Zj denote XY j−1 yields the basis for QK1(Sp(m)) with Adams operations

as described by the matrices of part (1).



PERIODIC HOMOTOPY REVISITED 23

Part (1) follows from parts (1) and (3) of Proposition 4.2 together with the first

part of [6, 11.3] and [6, 5.6], which would yield E2,2k+1
2 (Sp(m)) ≈ Gm,k ⊕ Z/2. Part

(2) follows similarly, using [6, 11.9] since ψ−1 = 1, not −1, in QK1(Hm,1). One may

derive that, with k even, E2,2k+1
2 (Hm,1) ≈ G′

m,k ⊕Z/2, which with 4.2(2) implies (2).

5. Summands of order 2 and 4

In this section we prove Theorem 1.2(2). To accomplish this, we show that, for any

value of k of the appropriate parity, the group Gm,k or G′
m,k presented by the matrix(

Ψ2

Θk

)
of Proposition 4.7 has summands of order 2 and 4 equal to those of Definition

1.3. We will describe in some detail the proof for the unprimed G, so k is odd, and

then outline the changes required for the groups G′.

Let m = 2` + ε, with ε = 0 or 1. We will postpone proofs of some propositions

until later in the section.

Proposition 5.1. Mod 8, Ψ2 has 1 in (2j, j), 2u in (2j − 1, j) and 0 elsewhere.

Here, and throughout, u denotes an odd integer (unit), whose value is not impor-

tant. In this section, our matrices are always considered mod 8.

We pivot the stackmatrix of 4.7(1) on the 1’s in (2j, j) for j = 1, . . . , `. Thus

we can remove the first ` columns of the stackmatrix, and the entire top half of the

stackmatrix, except for a row with its only nonzero entry a 2 in column `+1 if ε = 1.

This is due to the 2 in (2` + 1, ` + 1) without a 1 just below it. We remark here that

in simplifying a group presented by a matrix, after pivoting on an odd entry, its row

and column may be removed without changing the group presented, and rows of 0’s

may also be removed. Also note that we label rows and columns by their original

indices, not their position after various deletions and reorderings.

The matrix Θk has 0’s on its diagonal (since k is odd and hence 32j−1−3k ≡ 0 mod

8), and 0’s above. Thus (since the first ` columns have been deleted), the first ` rows

of the remaining part of Θk are 0, and so we delete them. Remaining are rows and

columns ` + 1 to 2` + ε, plus the one row from Ψ2 if ε = 1. We arrange these rows

and columns by increasing 2-exponents and increasing value within a fixed exponent,

and partition this matrix into odd (o) and even (e) entries. Thus, not including the
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extra row at the top if ε = 1, the matrix can be denoted by blocks as
(
Aoo Aoe

Aeo Aee

)
. (5.2)

In the following proposition, whose proof appears later in the section, we introduce

the notation of ei for a row whose only nonzero entry is a 1 in (original) column i.

Proposition 5.3. For the blocks just described,

a: The submatrix Aoo is lower triangular with 0’s on its diagonal

and units on its subdiagonal.

b: The submatrix Aeo contains just 0’s and 4’s. In the last column

it is 0 except in row 2` if m = 2` with ` odd.

c: All entries of Aoe are even. Its first row is 0 if ` is even, and

is 2ue`+1 if ` is odd.

d: The submatrix Aee equals the entire matrix for m = `, with all

row and column indices doubled.

Starting from the top, pivot on the units on the subdiagonal of Aoo. This can

introduce new 4’s in Aeo, but they eventually get pivoted away, as we pivot on all

odd columns except the last. The pivoting does not change Aee, since it is changed

by 4 times a row with even entries (by (c)). Deleting rows and columns after each

pivoting step, we will have removed all the odd columns except the last, and all the

odd rows except the first. What remains is (by (d)) the matrix Θk for `, with (by

(c)) a row 2ue`+1 adjoined if ` is odd, and, if m = 2` with ` odd, a column with a

single 4 in row 2`. If m > 6, this 4 will get pivoted away in the pivoting on Aee. The

reason for the requirement m > 6 is so that m − 2ν(m)+1 > m/2, for then position

(m,m − 2ν(m)+1) has a pivot unit in row m. The extra row equals the row that had

to be adjoined to Θk for m = ` when ` is odd, due to Ψ2.

Our desired group Lm is the summands of order 2 and 4 in the group presented by

(5.2) with the extra row if m is odd. Let L̃m denote the summands of order 2 and

4 in the group presented by just (5.2). Thus L̃m = Lm if m is even. The previous

paragraph implies that if m > 6, then

L̃m ≈ L[m/2]. (5.4)
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Theorem 1.2(2) with k odd follows immediately from (5.4) and the following two

propositions, which will be proved below.

Proposition 5.5. In m > 6 and m 6= 9, then L̃m ≈ Lm.

Proposition 5.6. L3 = L1 = Z/2; L4 = L2 = 0; L9 = L5 = Z/4; L6 = Z/2⊕ Z/4.

Now we give the postponed proofs.

Proof of Proposition 5.1. Immediate from, mod 8,

ψ2(Zj) = Zj(2+Z)(4+Z)j−1 ≡ Z2j+(2+4(j−1))Z2j−1 ≡ Z2j+2uZ2j−1.

Proof of Proposition 5.3. a: The triangularity and diagonal are clear. The subdiago-

nal entry in column j is the coefficient of Z2 in (3 + 4Z + Z2)(1 − Z)2(j−1). Mod 2,

this is 1 +
(

2(j−1)
2

)
, which is odd since j is odd.

b: Column 2t + 1 of Aeo contains the odd-power terms of (3 + 4Z + Z2)(1− Z)4t.

Mod 4, this is (3 + Z2)(1 + 2Z2 + Z4)t, which has odd-power terms 0. The only

possible nonzero entry in the last odd column occurs if m = 2`, and is 4` mod 8 in

(2`, 2`− 1).

c: We need the following lemma, which can be proved by induction on j.

Lemma 5.7. Define polynomials by

fj(Z) = (3 + 4Z + Z2)(1− Z)2(2j−1)

gj(Z) = (3 + 4Z2 + Z4)(1− Z2)2(j−1).

Then there is a polynomial φj such that, mod 8,

fj(Z)− gj(Z) ≡ 2Zφj(Z
2).

In column 2j, the entries of Aoe are the coefficients of odd powers of Z in fj(Z).

These are even, by the lemma.

If ` is odd, the first odd row has original index ` + 2. The only possible nonzero

entry in this row is in original column ` + 1, and this is easily seen to be 2 mod 4.

d: The entry in position (2t, 2j) of Aee is, mod 8, using Lemma 5.7,

coef(fj(Z), Z2t−2j) ≡ coef(gj(Z), Z2t−2j) = coef((3+4Z+Z2)(1−Z)2(j−1), Zt−j),
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which equals the entry in row t and column j, which is part of the matrix correspond-

ing to `.

Proof of Proposition 5.5. We will show that, if m > 6 and m 6= 9, the extra row 2e`+1

in Lm but not L̃m is actually a linear combination of rows already in L̃m, and hence

does not change the group presented. With Ri denoting row i, this is accomplished

by showing:

• If ` is odd, then 2e`+1 = R`+2;

• If ` ≡ 2 mod 4, then 2e`+1 = 2R`+3 + 2R`+4;

• If ` ≡ 0 mod 8, then 2e`+1 = 2R`+3 + R`+4; and

• If ` ≡ 4 mod 8, then 2e`+1 = 2R`+3 + 4R`+6.

The requirement that m > 6 and m 6= 9 is due to the fact that if ` = 2 the rows R`+3

and R`+4 are out of range, and similarly for R`+6 if ` = 4.

The proof of the four bulleted items involves analyzing binomial coefficients to give

explicit formulas for the listed rows Ri.

Proof of Proposition 5.6. For m = 1, 2, 3, 4, 5, 6, and 9, the Θk matrices, augmented

by a top row from the Ψ-matrix if m is odd, are given in (5.8). The ordering of the

rows and columns is:

m 1 2 3 4 5 6 9

order 1 2 3,2 3,4 3,5,4 5,6,4 5,7,9,6,8

The matrices for the 7 listed values of m are

(
2
0

)
,
(
0
)
,




0 2
0 6
0 0


 ,

(
0 0
0 0

)
,




2 0 0
0 0 0
u 0 2
0 0 0


 ,




0 0 2
4 0 6
0 0 0


 ,




2 0 0 0 0
0 0 0 0 0
5 0 0 6 0
6 7 0 2 2
4 0 0 0 0
0 0 0 0 0




.
(5.8)

A very similar proof works when k is even. The required changes in the argument

are listed below.
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(1) We use the matrix in Proposition 4.7(2).

(2) In Proposition 5.1, Ψ2 mod 8 has 1 in (2j, j), 4 in (4j−3, 2j−1),

and 0’s elsewhere.

(3) After the pivoting which follows 5.1, we are left with the right

half of Θk adorned with, if m ≡ 2 or 3 mod 8, an extra row

4e`+1.

(4) Parts (a) and (d) of Proposition 5.3 are unchanged, while the

new (b) says that Aeo is even, and its last column is 0 unless

ε = 0, in which case it has 2u in row 2`. The new (c) says that

Aoe has all 0’s and 4’s, and its first row is 0 unless m ≡ 2, 3

mod 8, in which case it is 4e`+1.

(5) Propositions 5.5 and 5.6 are modified as in the primed portion

of Definition 1.3.

(6) Lemma 5.7, used in the proof of 5.3, becomes: if fj(y) = y2j((1−
y)4j − 1) and gj(y) = y2j((1 − y2)2j − 1), then fj(y) − gj(y) ≡
4yφj(y

2) mod 8.

(7) The pivoting which follows 5.3 reduces from the matrix for m =

2`+ε to the matrix for ` if m > 6 and m 6= 10. Indeed, if m > 6

and m 6= 10, the extra row and column described above can be

written as linear combinations of other rows or columns of the

matrix. For example, if m ≡ 2 mod 8, with Cj denoting column

j, Cm−1 = 2Cm−4+2Cm−6, provided m > 10, but when m = 10,

Cm−6 does not appear in the matrix.

(8) For m = 4, 6, and 10, the right half of the Θk matrices, mod

8, are as below, with rows and columns 3,4 for m = 4, 5,6,4

for m = 6, and 7,9,6,10,8 for m = 10. The extra row 4e(m/2)+1

when m = 10 is not listed, as it equals row 7.

(
0 0
2 0

)
,




0 0 0
6 0 4
0 0 0


 ,




0 0 4 0 0
3 0 4 0 0
0 0 0 0 0
4 6 7 0 0
2 0 2 0 0



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6. Results and proofs for SU(2m)

In this section, we prove results about v−1
1 π∗(SU(2m)) which were stated or alluded

to in Section 1.

Much of the proof of Theorem 1.4 was given in [2]. It involves the exact sequence

in E2 of the fibration

SU(2m− 1) → SU(2m) → S4m−1

and knowledge of the BTSS for S4m−1, as given, for example, in [2, p.488]. Each

group Es,t
2 (SU(2m)) with t odd and s > 2 maps isomorphically to the Z2 ⊕ Z2 in

S4m−1, and the d3-differentials involving most of these elements correspond under this

isomorphism. They are pictured in [2, p.488]. In our diagrams, we have not pictured

most of the elements which are involved in nontrivial differentials, since they do not

survive to homotopy classes, and their inclusion leads to a more cluttered diagram.

For example, each group E2,2k+1
2 (SU(2m)) is Gk⊕Z2, but in those cases in which the

Z2 supports a nonzero differential, we do not include it in our charts. We record this

result now.

Proposition 6.1. There is an isomorphism

E2,2k+1
2 (SU(2m)) ≈ Gk ⊕ Z2,

where Gk is a group of order 2e(k,2m).

Proof. If k is odd, the result is immediate from 4.5 and 1.2.

Let k be even. The exact sequence

0 → E1,2k+1
2 (SU(2m− 1)) → E1,2k+1

2 (SU(2m)) → E1,2k+1
2 (S4m−1)

→ E2,2k+1
2 (SU(2m− 1)) → E2,2k+1

2 (SU(2m)) → E2,2k+1
2 (S4m−1) → 0

has alternating sum of 2-exponents of orders of groups equal to 0, and the exponents

of orders of the nonzero groups are, respectively,

e(k, 2m− 1), e(k, 2m), 1, e(k, 2m− 1), ν(|E2,2k+1
2 (SU(2m))|), 2.

This implies the claim about the order of E2,2k+1
2 (SU(2m)). That at least one of the

summands is a Z2 follows from the exact sequence together with the fact (6.8 and

3.7) that

rk2(E
2,2k+1
2 (SU(2m))) > rk2(E

2,2k+1
2 (SU(2m− 1))),
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and E2,2k+1
2 (S4m−1) ≈ Z2 ⊕ Z2.

Next we record part of the portion of Theorem 1.4 which deals with the exotic

extensions in the spectral sequence. This refers to situations in which 2 times the

element of order 2 in Es,t
∞ (SU(2m)) (with s = 1 or 2) equals in v−1

1 πt−s(SU(2m)) a

nonzero element in Es+2,t+2
∞ (SU(2m)).

Proposition 6.2. The extension in the spectral sequence of SU(2m) from Es,2k+1
∞ (SU(2m))

(1) is trivial if s = 1;

(2) is trivial in t− s = 8a− 1 when m is even;

(3) is nontrivial from the split5 Z/2 when s = 2 and k = 4a − 1

with m odd or k = 4a+1 with m even, provided the target class

is not hit by a d3-differential. (See 6.5 and 6.7.);

(4) is nontrivial if s = 2 and either k = 4a and m odd or k =

4a + 2 and m even, provided the target class is not hit by a

d3-differential. (See 6.5 and 6.7.)

Proof. (1). There can be no extension from the 1-line because E1,t
2 (SU(2m − 1)) →

E1,t
2 (SU(2m)) is injective but there is no possible extension in the spectral sequence

for SU(2m− 1).

(2). The filtration-4 class maps to an element in v−1
1 π8a−1(S

4m−1) which is not

divisible by 2 (by [2, p.488]).

(3). Let w ∈ E2,2k+1
∞ (SU(2m)) denote the split Z/2, y ∈ E4,2k+3

∞ (SU(2m)) be the

putative target of the extension, and z ∈ E2,2k−1
∞ (SU(2m)) satisfy zη2 = y. Let

M denote the mod-2 Moore spectrum with bottom cell in dimension 2k − 3, and

map M to ΦSU(2m)) by extending z (note that 2z = 0 in π∗(ΦSU(2m))). The K-

based spectral sequence for π∗(M) has elements z′, y′, and w′ in (s, t) = (0, 2k − 3),

(2, 2k + 1), and (0, 2k − 1), respectively, satisfying z′η2 = y′ and 2w′ = y′ in π∗(M).

Our map sends z′ 7→ z, y′ 7→ y, and w′ 7→ w. This can be seen by following into

S4m−1. The asserted extension in SU(2m) follows by naturality.

5i.e., one which is not part of Gk
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(4). By 6.5, the assumption that the target class is not hit by d3 implies that there

is an exact sequence

0 → E1,2k+1
2 (S4m−1) → E2,2k+1

2 (SU(2m−1)) → E2,2k+1
2 (SU(2m)) → E2,2k+1

2 (S4m−1) → 0,

in which the groups are

0 → Z2 → Gk → G′
k ⊕ Z2 → Z2 ⊕ Z2 → 0,

in which the second Z2’s correspond, and |Gk| = |G′
k|. Thus6 Gk → G′

k is

Z/2e+1 ⊕ Z/2f ⊕ S
(1,2,1)−−−→ Z/2e ⊕ Z/2f+1 ⊕ S,

where S denotes the other summands.7 In order that the fibration yield an exact

sequence of homotopy groups, it must be the case that there is an extension from

the Z/2e summand into the filtration-4 class whose image in S4m−1 is hit by the

differential from E1,2k+1
2 (S4m−1).

The d3-differentials from the 1-line were determined in [2, 1.1] using the following

elementary result.

Proposition 6.3. The differential

d3 : E1,2k+1
3 (X) → E4,2k+3

3 (X)

is nonzero for X = SU(2m) if and only if it is nonzero for X = S4m−1 and

E1,2k+1
2 (SU(2m)) → E1,2k+1

2 (S4m−1) (6.4)

is surjective.

Proof. This is immediate from the fact that E4
2(SU(2m)) → E4

2(S
4m−1) is bijective.

The condition for surjectivity of (6.4) is obtained in [2, 1.1] from the exact sequence

0 → E1,2k+1
2 (SU(2m− 1)) → E1,2k+1

2 (SU(2m)) → E1,2k+1
2 (S4m−1)

as
6It can be shown that the Z2’s in the kernel and cokernel of Gk → G′k are not

split by an analysis similar to the proof of 4.2.
7It is possible that the kernel and cokernel elements of Gk → G′k occur in the

same summand, but this does not affect our conclusions.
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Corollary 6.5. ([2, 1.1]) The differential

d3 : E1,2k+1
3 (SU(2m)) → E4,2k+3

3 (SU(2m))

is nonzero if and only if one of the following conditions holds:

• k − 2m ≡ 1 mod 4 and e(k, 2m) = e(k, 2m− 1) + 3;

• k − 2m ≡ 2 mod 4 and e(k, 2m) = e(k, 2m− 1) + 1;

• k ≡ 1 mod 4, ν(k−2m+1) ≥ 2m−3, and e(k, 2m) = e(k, 2m−
1) + 2m− 1.

The following results shed some light on these rather intractable conditions. The

conjecture will be discussed in Section 9, while the theorem will be proved at the end

of this section.

Conjecture 6.6. The third condition of Corollary 6.5 is satisfied if and only if m = 3

and k ≡ 13 mod 32.

Theorem 6.7. The first condition of Corollary 6.5 is never satisfied if k = 3, 5, 7, 9,

or 13. When k = 11, it is satisfied if and only if m ≡ 71 mod 512. For k =

2, 4, 6, 8, 10, the second condition of Corollary 6.5 is satisfied (and hence d3 6= 0 on

E1,2k+1
3 (SU(2m))) in exactly the following cases:





k = 2 m ≡ 2 (4)

k = 4 m odd, m 6≡ 11 (16)

k = 6 m ≡ 2 (4) or 4 (16)

k = 8 m odd, m 6≡ 23 (32) or 69 (128)

k = 10 m ≡ 2 (4) and 6≡ 198 (256)

For fixed n, e(k, n) is periodic in k, with period that increases with n. Thus

Theorem 6.7 gives information about differentials for some larger values of k, too.

However, the impact of the theorem is primarily qualitative; it suggests that nonzero

differentials are rare when k is odd, but rather frequent when k is even.

The following result has been referred to several times.

Proposition 6.8. If m is a positive integer and k is any integer, then

rk2(E
2,2k+1
2 (SU(2m))) = 1 + [log2(4m + 3)].

Proof. The argument is like the proof of Proposition 3.7 with the modifications de-

scribed below.
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We now have N = QK1(SU(2m)) determining the matrix M . We still have (3.8),

and now rank(M) = 4m − 2 for the same reason. The 2-by-2 blocks in (3.10) now

represent m rows or columns in the first half and (m − 1) rows or columns in the

second half. The “identity” matrices I now have a column of 0’s at the end, and the

second Ψ2
1 and Θ1 are restrictions of the first to the first (m− 1) rows and columns.

After the first round of pivoting, a matrix which looks exactly like (3.11) is obtained.

The third and fifth 0 in the first row could actually have as their last column the last

column of Ψ2
1 and Θ1, respectively, but these are 0. When we delete the rows with

the I’s, we are now deleting just (3m− 3) rows. The 3m×m matrix which remains

is exactly as in the proof of 3.7, and so has rank m− [log2(4m/3)]. The final answer

for rk2(E
2,2k+1
2 (SU(2m)) is

4m− 2− ((3m− 3) + (m− [log2(4m/3)])).

Proof of Theorem 6.7. We give the proof when k = 10. The proof for other values of

k is performed similarly. The condition which must be satisfied is 2m ≡ 0 mod 4,

and ν(a(10, 2m− 1)) is strictly less than ν(a(10, j)) for all j ≥ 2m.

Let S(n, j) denote the Stirling number of the second kind, and let jt = j!/(j − t)!,

a product of t consecutive integers. We have

ν(a(10, j)) =
∑

i odd

(
j

i

)
i10 =

∑

i odd

(
j

i

)
10∑

t=0

S(10, t)it

=
10∑

t=0

S(10, t)jt

∑

i odd

(
j − t

i− t

)

=
10∑

t=0

S(10, t)jt2
j−t−1 = 2j−11p(j), (6.9)

where p(j) =
∑10

t=0 S(10, t)jt2
10−t, a 10th degree polynomial in j with integer coeffi-

cients. With hindsight, we use Maple to compute p(8b + ∆) for 395 ≤ ∆ ≤ 402, a

10th degree polynomial in b. We obtain

p(8b + ∆) =
10∑

i=0

ui2
eibi, (6.10)

with ui odd, ei > e2 if i > 2, and e0, e1, and e2 given in Table 7.



PERIODIC HOMOTOPY REVISITED 33

Table 7. Exponents in (6.10)

∆ e0 e1 e2

395 15 9 11
396 17 9 11
397 13 8 9
398 13 8 9
399 13 11 10
400 13 11 10
401 17 8 9
402 10 8 9

Since all mod 8 values have been included, this implies that ν(p(j)) ≥ 8 for all j.

Using (6.9), we obtain that ν(a(10, 8b + ∆))− 8b− 384 is given in Table 8.

Table 8. Values of ν(a(10, 8b + ∆))− 8b− 384

ν(b)
∆ 0 1 2 3 4 5 6 ≥ 7

395 9 10 11 12 13 14 ≥ 16 15
396 10 11 12 13 14 15 16 ≥ 17
397 10 11 12 13 14 ≥ 16 15 15
398 11 12 13 14 15 ≥ 17 16 16
399 14 ≥ 17 ≥ 18 17 17 17 17 17
400 15 ≥ 18 ≥ 19 18 18 18 18 18
401 14 15 16 17 18 19 20 ≥ 21
402 15 16 ≥ 18 17 17 17 17 17

> 402 ≥ 16 ≥ 16 ≥ 16 ≥ 16 ≥ 16 ≥ 16 ≥ 16 ≥ 16

If 2m ≡ 0 mod 8, then 2m− 1 can be written as 8b + 399, and a comparison of the

399 row of Table 8 with rows 401 and 402 shows that ν(a(10, 2m− 1)) is not strictly

less than both ν(a(10, 2m+1)) and ν(a(10, 2m+2)) in this case. Thus the condition

of Theorem 6.7 is not satisfied when k = 10 and 2m ≡ 0 mod 8.

If 2m ≡ 4 mod 8, then 2m − 1 can be written as 8b + 395. Table 8 shows that if

ν(b) < 6, then ν(a(10, 8b + 395)) is strictly less than ν(a(10, j)) for all j > 8b + 395,

while this is not the case if ν(b) ≥ 6, establishing the claim of the theorem when

k = 10.
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7. More differentials and extensions in SU(2m)

In this section, we prove some of the more difficult differentials and extensions in

the spectral sequence for SU(2m) which are part of Theorem 1.4.

Theorem 7.1. In the spectral sequence for SU(2m) pictured in Diagrams 1.5 and

1.6, the extension from G4a+1 is nontrivial from the Z/8 summand if m = 2e and

from the Z/4 summand if m = 3 · 2e, e ≥ 1, and the differential from G4a+1 does

not emanate from a Z/2 or Z/4 summand. The differential is nontrivial from Z/8 if

m = 2e.

Proof. The non-differential from Z/2 or Z/4 follows easily from the fact ([2, p.488])

that on E2,8a+3
2 (S4m−1) ≈ Z/2ν⊕Z2 with ν ≥ 3, the nonzero d3 arises from the larger

summand. Let p : SU(2m) → S4m−1 and α ∈ E2,8a+3
2 (SU(2m)). If d3(α) 6= 0, then,

since p∗ is bijective in filtration > 2, we have d3(p∗(α)) 6= 0. Therefore 4p∗(α) 6= 0

and hence 4α 6= 0.

When m = 2e or 3 · 2e, e ≥ 1, we will compute part of the morphism

G4a+1 ⊕ Z2 = E2,8a+3
2 (SU(2m))

p∗−→ E2,8a+3
2 (S4m−1) = Z/23 ⊕ Z2.

(7.2)

The split Z2’s correspond under p∗. The filtration-4 class of the putative extension

in SU(2m) maps nontrivially to the class in S4m−1 into which the Z/23 extends. We

will show that8 when m = 3 · 2e, G4a+1 = Z2 ⊕ Z4 ⊕ H, where H (higher) denotes

summands of larger order, and (7.2) sends the Z2 summand trivially and the Z4

summand injectively. By naturality, this implies that the extension in SU(2m) is

from the Z4 summand. Similarly, we will show that when m = 2e, the smallest

summand of G4a+1 is a Z/8 and it maps isomorphically under (7.2), implying the

extension from it, and the differential.

By Proposition 4.2, the commutative diagram

E2,8a+3
2 (Sp(m)) −−−→ E2,8a+3

2 (S4m−1)y =

y
E2,8a+3

2 (SU(2m)) −−−→ E2,8a+3
2 (S4m−1)

8Actually, we already showed the part about summands in 1.2 and 4.5.
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shows that the morphism G4a+1 → Z/8 can be computed using Proposition 4.7(1).

Our algorithm for computing G4a+1 from the matrix of 4.7(1) is

• Find the least 2-divisible entry in the matrix. If there are sev-

eral, choose the earliest one in the earliest column.

• Pivot on that entry and remove its row and column.

• Repeat.

• If the pivot entry is 2e · u with u odd and e ≥ 1, then a Z/2e

summand is obtained with generator 2−e times the combination

of generators with coefficients the entries of the row removed.

The image in the Z/8 summand of E2,8a+3
2 (S4m−1) of the generator just described

is its entry αm in the last column (the one with original label m). The Z/2e summand

maps injectively to E2,8a+3
2 (S4m−1), and hence supports a nontrivial extension, if and

only if ν(αm) + e = ν(E2,8a+3
2 (S4m−1)) = 3.

Theorem 7.1 follows from the following description of the result of the pivoting.

Lemma 7.3. The result of the pivoting described above on the matrix of 4.7(1) with

k = 4a + 1 is:

• If m = 2e, after pivoting on all odd entries9, the obtained matrix

has all entries divisible by 8, and has a row with 8u in the first

column (3 · 2e−2) and 8u′ in the last column (m). Here and

throughout, u and its variants denote odd integers.

• Let m = 3 · 2e.

– Pivoting on all odd entries removes all columns except m−
2e, m− 2e−1, . . . , m− 20, m.

– There will be a row with a 2 in column m−2e and a highly

2-divisible number in column m.

– After pivoting on the 2 just described, all remaining entries

are divisible by 4, and there is a row with 4u in column

m− 2e−1 and 8u′ in column m.

9and removing their row and column
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Proof. We consider the mod 16 reduction of the matrix of 4.7(1) with k = 4a+1 and

m = 2e or 3 · 2e. In the rest of this proof, we are always working mod 16. Since

(2x + x2)(4x + x2)j−1 ≡ x2j + 2ux2j−1 + 8(j − 1)x2j−2,

where u, as always, denotes an odd number, the only nonzero entries in the Ψ2-part

are 1 in (2j, j), 2u in (2j − 1, j), and 8(j − 1) in (2j − 2, j). Pivoting on the 1’s in

(2j, j), and removing pivot rows and columns and also rows of 0’s leaves just the last

m/2 rows and columns of the Θk part of the matrix, and these are not changed by

this initial pivoting.

Let Mi,j, m/2 < i, j ≤ m, denote the entries of the remaining matrix M . We will

prove the following about these entries.

Proposition 7.4. If M = Θk of 4.7(1) with k ≡ 1 (4), then

(1) If i < j, then Mi,j ≡ 0 (16).

(2) Mi,i ≡




0 (8) if i odd

8 (16) if i even.

(3) Mj+2ν(j)+1,j is odd.

(4) If ν(i) 6= ν(j), then Mi,j is even.

(5) If ν(i) > ν(j), then Mi,j ≡ 0 (4).

(6) If ν(i) > ν(j) + 1, then Mi,j ≡ 0 (8).

(7) If e ≥ t+3 and t ≥ 0, then M2e,2e−2t ≡ 0 (16) and M3·2e,3·2e−2t ≡
0 (16).

(8) M7·2t,6·2t ≡ 2 (4); M6·2t,5·2t ≡ 4 (8); M4·2t,3·2t ≡ 8 (16); M5·2t,4·2t ≡
2 (4).

Arrange the rows and columns of M by increasing 2-powers, and increasing value

within a fixed 2-power. We pivot on the units in (j+2, j) for odd j in increasing order,

removing the pivot row and column each time. We prove below that this pivoting

preserves properties (1)-(8) of the rest of the matrix. Row m/2+1 and column m−1,

which are not pivot rows or columns, will be 0 mod 16 after the pivoting, and so can

be removed without changing Q(M). This leaves the matrix with just even row and

column indices from m/2 + 2 to m, and it satisfies all the properties (1)-(8) like the

entire matrix for m/2, with indices doubled. Thus, if m = 2e, by induction, the
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summands of order less than 16 in Q(M) are the same as those of Q(M8), where M8

is the mod 16 matrix in Table 9, which is the matrix which satisfies 7.4 when m = 8.

Table 9. Mod 16 matrix at end of induction, m = 2e

5 7 6 8
5 8a 0 0 0
7 u 8b 2u′ 0
6 4 0 8 0
8 8c 0 8 8

Here a, b, c = 0 or 1, and u and u′ are odd. The specific values in (7,6), (6,5), and

(8,6), respectively, are due to 7.4(8). Our proof below of the effects of pivoting shows

that these specific congruences will not have changed during the pivoting. Pivoting

on the u in Table 9 reduces the matrix to one whose only nonzero elements are 8 in

(8,6) and (8,8). This implies the case m = 2e of Lemma 7.3.

If m = 3 · 2e, the induction reduces to the case m = 12, still satisfying 7.4. After

pivoting on the units in (9, 7) and (11, 9) and removing their rows and columns, and

the 0-row 7, we obtain the matrix in Table 10, where a, b, and c are integers, and u

and u′ are odd integers. This clearly leads to the claimed result.

Table 10. Mod 16 matrix at end of induction, m = 3 · 2e

11 10 12 8
10 0 8a 0 2u
12 8b 4u′ 8 2c
8 0 0 0 8

Now we explain why pivoting does not change properties (1)-(8). Refer to Table

11. The only way that pivoting on a unit in (t + 2, t), with t odd, can change a

congruence of c := Mi,j is if, up to odd multiples, Mi,t = 2a and Mt+2,j = 2b, both

nonzero mod 16, and c − 2a+b/u no longer satisfies the congruence. Since u is the

only odd entry left in its row, we have b ≥ 1, and we must have j < t + 2 by 7.4(1).

Case 1: If i is odd, then i > t + 2, so i > j and ν(j) > 0 = ν(i), so the property

of c is that it is even, and this is not changed by this pivoting, since b ≥ 1.
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Table 11. Portion of matrix which can change congru-
ence condition

t j
t + 2 u 2b

i 2a c

Case 2: If i ≡ 2 mod 4, then a ≥ 2 by 7.4(5), and since a < 4, we must have

i > t. It is possible that i = j = t + 1. Then, since a ≥ 2 and b ≥ 1, c is changed

by 8, if at all. A change of 8 in c is consistent with property (2) because the index

i will be divided by 2, and hence become odd, when we get to the next matrix to

consider. Otherwise, j < i, for which there is no condition for c if ν(i) = ν(j), while

if ν(j) > ν(i), the condition is c even, which is unaffected by the pivoting.

Case 3: If ν(i) > 1, then a ≥ 3, and since b ≥ 1, c will not be changed.

Proof of Proposition 7.4. Let qj(x) = (3 + 4x + x2)(9 + 6x + x2)j−1. Then Mi,j is the

coefficient of xi−j in qj(x) if i > j, while Mi,i = 32i−1 − 3. We prove each of the 8

parts.

(1) Clearly, Mi,j = 0 if i < j. The proposition just states this to

be true mod 16, because that is all that is maintained during

pivoting, and all that is needed.

(2) Immediate from ν(32i−1 − 3) = ν(2i− 2) + 2.

(3) If j = 2eu with u odd, then, mod 2, qj(x) ≡ (1 + x2)j ≡
(1 + x2e+1

)u, so the coefficient u of x2e+1
is odd.

(4) As in the proof of (3) just completed, with e = ν(j), then, mod

2, qj(x) is a polynomial in x2e+1
. For i − j to be a multiple of

2e+1, we must have ν(i) = ν(j).

(5) Mod 4, qj(x) ≡ (1 + x)2j − 2(1 + x)2j−1. Note also that, mod 4,

(1 + x)2f ≡ (1 + x2f−1
)2 for f ≥ 2. Thus, if j = 2e(2b + 1), then

qj(x) ≡ (1 + x2e+1

)2b((1 + x2e

)2 − 2
2e+1−1∑

t=0

xt).
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The only term in the second factor of the form x2eu with u odd

has coefficient 2 − 2. Thus all terms in qj(x) of the form x2eu

have coefficient 0, and these are the terms xi−j with ν(i) > ν(j).

(6) Let j = 2e(2b + 1). We must show the coefficient of xi−j in

(3+4x+x2)(1−x)2j−2 is 0 mod 8 if i ≡ 0 (2e+2). This coefficient

equals



3
(

2e+3t+2e+1−2
c2e+2+3·2e

)
− 4

(
2e+3t+2e+1−2
c2e+2+3·2e−1

)
+

(
2e+3t+2e+1−2
c2e+2+3·2e−2

)
b = 2t

3
(

2e+3t+3·2e+1−2
c2e+2+2e

)
− 4

(
2e+3t+3·2e+1−2

c2e+2+2e−1

)
+

(
2e+3t+3·2e+1−2

c2e+2+2e−2

)
b = 2t + 1.(7.5)

We shall denote the three terms of (7.5) by 3C1, −4C2, and C3.

Case 1: e = 0, b = 2t. One easily shows that C1 and C3 are

0 mod 8 and C2 is even, and hence (7.5) is 0 mod 8.

Case 2: e = 0, b = 2t + 1. If c = 2d, then C3 ≡ 0 mod 8,

while, mod 8, both 3C1 and −4C2 are 4
(

t
d

)
, and hence (7.5) is

0 mod 8. If c = 2d + 1, the conclusion is similar with C3 and

3C1 interchanged.

Case 3: e > 0, b = 2t. Here we have ν(C1) = ν(C3) =

ν
(

4t
2c+1

)
≥ 2 and ν(C2) ≥ 1, and hence (7.5) is 0 mod 8.

Case 4: e > 0, b = 2t + 1. Again 4C2 ≡ 0 mod 8. We write

3C1 + C3 as P · S, where

P = (2e+3t + 3 · 2e+1 − 2)(2e+3t + 3 · 2e+1 − 3)

(
2e+3t + 3 · 2e+1 − 4

c2e+2 + 2e − 2

)

S =
3

(c2e+2 + 2e)(c2e+2 + 2e − 1)
+

1

(2e+3t + 5 · 2e − c2e+2)(2e+3t + 5 · 2e − c2e+2 − 1)

The product P has the same 2-exponent as 2
(

2t+1
c

)(
2e+1−4
2e−2

)
, and

hence ν(P ) ≥ e. The sum S has the same 2-exponent as

3(8t + 5− 4c)2 + (4c + 1)2 − 2−e(3(8t + 5− 4c) + 4c + 1).

Thus the mod 8 value of P ·S is a multiple of 2e(3 + 1)− (15−
8c + 1) which is 0.

(7) We work mod 16, and will show coef(q2e−2t , x2t
) ≡ 0. The proof

for m = 3 · 2e is virtually identical. We use (9 + 6x + x2)2 ≡
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(1− x)4 and

(3 + 4x + x2)(9 + 6x + x2) ≡ 11 + 6x + 4x2 + 10x3 + x4.

Case 1: t = 0. The required coefficient is

coef((3 + 4x + x2)(1− x)2e+1−4, x) = 4− 3(2e+1 − 4) ≡ 0

since e ≥ 3.

Case 2: t = 1. The required coefficient is

coef((11+6x+4x2)(1−x)2e+1−8, x2) = 4−6(2e+1−8)+11
(

2e+1−8
2

)
≡ 4+11·36 ≡ 0,

since e ≥ 4.

Case 3: t = 2. The required coefficient is

coef((11 + 6x + 4x2 + 10x3 + x4)(1− x)2e+1−12, x4)

= 1− 10(2e+1 − 12) + 4
(

2e+1−12
2

)
− 6

(
2e+1−12

3

)
+ 11

(
2e+1−12

4

)

≡ 1 + 8 + 8 + 8 + 11 (2e+1−12)(2e+1−13)(2e+1−14)(2e+1−15)
24

≡ 8 + 1
3
(3 + 11(2e−1 − 3)3(2e − 7)) ≡ 8 + 1

3
(3 + 5) ≡ 0,

since e ≥ 5.

Case 4: t ≥ 3. The required coefficient is

coef((11 + 6x + 4x2 + 10x3 + x4)(1− x)2e+1−2t+1−4, x2t

)

= 11
(

2e+1−2t+1−4
2t

)
− 6

(
2e+1−2t+1−4

2t−1

)
+ 4

(
2e+1−2t+1−4

2t−2

)
− 10

(
2e+1−2t+1−4

2t−3

)
+

(
2e+1−2t+1−4

2t−4

)
.

One easily shows that the 2-exponent in each of the three middle

terms (including their coefficient) is t + 1 ≥ 4. The sum of the

first and last terms is analyzed similarly to Case 4 of (6). It

is P · S, where P is a product of four terms with exponent

sum 3 + ν
(

2e+1−2t+1−8
2t−4

)
= t + 1. The sum S is 11/p1 + 1/p2 =

(11p2 + p1)/(p1p2) with ν(p1) = ν(p2) = t + 1, and 11p2 + p1

given by

11D(D − 1)(D − 2)(D − 3) + 2t(2t − 1)(2t − 2)(2t − 3),
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with D = 2e+1 − 3 · 2t. Then P · S becomes, mod 16,

11(2e+1−t − 3)(2e+1 − 3 · 2t − 1)(2e − 3 · 2t−1 − 1)(2e+1 − 3 · 2t − 3)

+(2t − 1)(2t−1 − 1)(2t − 3) (7.6)

≡ (3 · 2t + 1)(3 · 2t−1 + 1)(3 · 2t + 3) + (2t − 1)(2t−1 − 1)(2t − 3)

≡ 12 · 2t−1 ≡ 0.

(8) Case 1: As in the proof of (5), mod 4,

q6·2t(x) ≡ (1 + x2t+2

)2((1 + x2t+1

)2 − 2
2t+2−1∑

`=0

x`),

which has 2 as its coefficient of xt. The proof for M5·2t,4·2t is

identical.

Case 2: Similarly to the proof of (6), mod 8, the desired

coefficient is

3

(
2t+3 + 2t+1 − 2

2t

)
+

(
2t+3 + 2t+1 − 2

2t − 2

)
= P · S

with

ν(P ) = 1 + ν

(
2t+3 + 2t+1 − 4

2t − 2

)
= t

and

ν(S) + t = ν(3(8 + 1)(2t+3 + 2t − 1) + (2t − 1)) = ν(244 · 2t − 28) = 2.

Case 3: This is like Case 4 of (7), except now e = t+2. This

changes the first term of (7.6) by 8 mod 16.

Next we present substantial evidence to support the following conjecture.

Conjecture 7.7. If m 6= 2e or 3 · 2e, e ≥ 0, the extension from G4a+1 is trivial in the

spectral sequence for SU(2m) pictured in Diagrams 1.5 and 1.6.

Some of the evidence supporting Conjecture 7.7 is a calculation when a = 0 and

m ≤ 50. The algorithm is that of the proof of Theorem 7.1, and the results are

presented in Table 12. We are computing the homomorphism

E2,3
2 (SU(2m))

p∗−→ E2,3
2 (S4m−1)
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without listing a split Z2 in each which correspond under p∗. We list the 2-exponents

of the summands of E2,3
2 (SU(2m)), which is the same as those of Table 3, the 2-

exponent of the coefficient of the image of each generator in the main summand of

E2,3
2 (S4m−1), and then its 2-exponent. For example, ignoring the split Z/2 in each,

E2,3
2 (SU(10))

p∗−→ E2,3
2 (S19)

is Z/22 ⊕ Z/27 → Z/25 with p∗(g1) = 24G and p∗(g2) = G. Often the exponent of

the image of a summand will be larger than that of the sphere’s summand; this just

means that the summand maps to 0, but the more specific information is provided

by our algorithm.

The information of Table 12 provides information about both differentials and

extensions in SU(2m). The differential occurs from the smallest summand which

maps to a generator; i.e., to have 0 as the 2-exponent of the coefficient of its image.

The extension occurs from the first summand such that the sum of its 2-exponent

plus that of its image equals that of the sphere-summand, for this implies that p∗ is

injective.

Once we get a summand which maps to the generator, we do not compute the

images of subsequent (larger) summands. The reason for this is that, if g1 and g2 are

the generators of the respective summands, then we could rechoose g′2 = g2 − g1 to

have the same order, but the opposite property with regard to whether it maps to a

generator.

The result of the table is that in this range the extension occurs if and only if

m = 2e or 3 · 2e, while the differential occurs on a large summand unless m = 2e.

The biggest obstacle to proving the statement about nonexistence of extensions would

seem to come when the sphere-summand is large.

Indeed, another verification of the conjecture points to a subtlety when the sphere-

summand has its maximum possible value. We performed a verification for SU(10)

by computing

E2,8a+3
2 (SU(10))

p∗−→ E2,8a+3
2 (S19) (7.8)

to be (not including a split Z/2 in each which correspond under p∗)

Z/22 ⊕ Z/2min(ν(a−18)+6,12) p∗−→ Z/2min(ν(a−2)+4,9)
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Table 12. E2,3
2 (SU(2m))

p∗−→ E2,3
2 (S4m−1)

m SU(2m) im(p∗) S4m−1 m SU(2m) im(p∗) S4m−1

3 1,4 4,0 4

4 3,4 0,0 3 26 1,2,7,12,29 8,4,6,1,0 3

5 2,7 4,0 5 27 1,2,7,15,28 11,7,9,1,0 4

6 1,2,8 10,1,0 3 28 1,4,6,16,28 9,1,1,0,x 3

7 1,4,8 9,2,0 4 29 1,4,6,15,31 14,6,6,6,0 5

8 3,4,8 0,x,x 3 30 1,4,8,14,32 13,3,1,1,0 3

9 2,3,12 9,7,0 6 31 1,4,8,16,32 17,6,4,2,0 4

10 2,4,13 2,1,0 3 32 3,4,8,16,32 0,x,x,x,x 3

11 2,7,12 5,1,0 4 33 3,4,6,14,38 11,11,12,10,0 8

12 1,2,8,12 22,1,0,x 3 34 3,3,6,16,39 8,5,5,1,0 3

13 1,2,7,15 10,6,7,0 5 35 3,3,6,20,37 11,8,8,0,x 4

14 1,4,6,16 9,1,1,0 3 36 2,3,8,20,38 6,4,1,1,0 3

15 1,4,8,16 13,4,2,0 4 37 2,3,8,21,39 11,9,6,3,0 5

16 3,4,8,16 0,x,x,x 3 38 2,3,10,20,40 8,6,1,4,0 3

17 3,3,6,21 12,9,9,0 7 39 2,3,12,20,40 11,9,2,6,0 4

18 2,3,8,22 6,4,1,0 3 40 2,4,12,21,40 2,1,3,0,x 3

19 2,3,12,20 9,7,0,x 4 41 2,4,12,19,44 9,8,8,7,0 6

20 2,4,12,21 2,1,3,0 3 42 2,4,12,20,45 5,4,2,1,0 3

21 2,4,12,23 7.6.4.0 5 43 2,4,12,23,44 8,7,5,1,0 4

22 2,6,11,24 4,1,5,0 3 44 2,6,11,24,44 4,1,5,0,x 3

23 2,7,12,24 7,3,2,0 4 45 2,6,11,23,47 9,6,12,7,0 5

24 1,2,8,12,24 46,1,0,x,x 3 46 2,7,12,22,48 6,2,1,1,0 3

25 1,2,8,10,28 13,8,7,8,0 6 47 2,7,12,24,48 9,5,4,2,0 4

48 1,2,8,12,24,48 94,1,0,x,x,x 3

with the second summand mapping surjectively, while the order of the image of the

first summand is 



21 if ν(a− 2) < 4

20 if ν(a− 2) = 4

22 if ν(a− 2) ≥ 5.

If ν(a − 2) < 5, then v−1
1 π8a+1(S

19) ≈ Z/2ν(a−2)+4 is obtained by a nontrivial

extension from E2,8a+3
2 (S19) ≈ Z/2ν(a−2)+4 to a class in filtration 4, together with a
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nontrivial d3-differential on E2,8a+3
2 (S19). We have just noted that for such a, neither

summand of E2,8a+3
2 (SU(10)) maps injectively, and hence the extension in SU(10) is

trivial.

If ν(a−2) ≥ 5, there is not an extension in v−1
1 π8a+1(S

19) since the filtration-4 class

is hit by a d3-differential. No deduction about the extension in v−1
1 π8a+1(SU(10))

can be made from the exact sequences in E2 and v−1
1 π∗ of the fibration SU(9) →

SU(10) → S19 in this case.

Instead, we use the method of [15] to prove the following result, which implies that

the extension is trivial in this case.10

Proposition 7.9. If ν(a− 2) ≥ 5, then

v−1
1 π8a+1(SU(10)) ≈ Z/2⊕ Z/22 ⊕ Z/29.

Proof. We use heavily the notation of [15], and note that results listed as conjectures

there were subsequently proved in [10]. By [15, 2.3,3.1], for SU(10) we have

QH = 〈λ̃1 + λ̃9, λ̃2 + λ̃8, λ̃3 + λ̃7, λ̃4 + λ̃6, λ̃5〉
QR = 〈λ̃1 + λ̃9, λ̃2 + λ̃8, λ̃3 + λ̃7, λ̃4 + λ̃6, 2λ̃5〉.

By [15, 2.1,2.2],

v−1
1 π8a+1(SU(10))# ≈ ker

(
QR/λ2(QH)

θ−→QR/λ2(QH)
)
,

(7.10)

where, by the argument at the beginning of the proof of [15, 4.2], θ = λ3 − 34a+1.

We use the isomorphism Q(SU(10)) → PK1(SU(10)) with λ̃i ↔ Bi. Let y1 =

B1 + B9, . . . , y4 = B4 + B6 and y5 = B5. Using ([15, 3.15]) for ψk(Bi), we obtain the

following matrices of ψk on the basis 〈y1, . . . , y5〉.

Ψ2 =




10 −120 252 −120 10
−1 45 −210 211 −45

0 −10 120 −262 120
0 1 −46 255 −210
0 0 20 −240 252


 Ψ3 =




55 −1452 6766 −8560 2850
−10 615 −4750 9568 −4740

1 −210 2905 −9802 6765
0 56 −1662 9615 −8350
0 −20 1230 −9480 8953




10The Z/210 summand in E2 supports a nontrivial d3-differential, which is what
brought its order down to 29.
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We let a = 2 and Θ = Ψ3 − 39. We use the agreement up to sign of ψk in PK1(G)

and λk in Q(G). By [15, 5.9]11, our desired group is presented by the matrix obtained

from
(

Ψ2

Θ

)
by dividing the last row of Ψ2 by 2. Several steps of pivoting in Maple

show easily that this group is Z/2⊕ Z/4⊕ Z/29.

Changing a by a multiple of 32 does not change the matrix mod 29. Thus it certainly

does not change the Z/2 and Z/4 summands. The total order of the group can be

obtained by other methods, and so the result is valid for all a as in the proposition.

Now we present a rather lengthy account of the part of the last part of Theorem

1.4 dealing with summands of order 2 in E2,2k+1
2 (SU(2m)) when k is even, and also

the method used to compute the summands of these groups in Tables 5 and 6.

When k is even, E2,2k+1
2 (SU(2m)) cannot be computed from Theorem 4.7. Instead,

we use the Small Complex matrix M2,k of 3.2 and compute Q(M2,k). We use the basis

of 3.3. The matrix has the following form. Here Ψ = Ψ2 and Θ = Θk of 3.2, and the

subscripts of Ψ and Θ here just refer to their position in the matrix. We emphasize

that the meaning of the subscript of Θ is different here than in 3.2.



0 0 Ψ1 0 Θ1 0 0 0
I ′ 2I Ψ2 Ψ3 Θ2 Θ3 0 0
0 0 2I 0 0 0 Θ1 0
0 0 −I ′ 0 0 0 Θ2 Θ3

0 0 0 0 2I 0 −Ψ1 0
0 0 0 0 −I ′ 0 −Ψ2 −Ψ3




(7.11)

Each 2× 2 block consists of a batch of m rows followed by a batch of m− 1 rows,

with exactly the same configuration for the columns. Thus, for example Ψ1 is m×m,

while Ψ2 is (m−1)×m. The matrix I ′ is an identity matrix with a column of 0’s at the

end. We pivot on the three I ′’s, removing their rows and columns. We also remove the

second, fourth, and sixth blocks of columns, which will have become 0 after removal

of the second block of rows. (Recall that columns of 0’s do not contribute to Q(M).)

If N is a matrix with m−1 rows, such as Θi or Ψi with i = 2 or 3, let N denote the

matrix obtained from N by appending a row of 0’s beneath. If N is a matrix with

11There is a misprint in [15, 5.9]. The entries 2C2 and 1
2C3 should actually be

C2 and C3. This misprint does not affect the validity of the applications made of
this result in [15].
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m columns, such as Θ1 or Ψ1, let Ñ denote the matrix obtained from N by deleting

the last column, and let N` denote the last column of N .12 What remains after the

pivoting described above is the (m+m+m)× (1+1+m+(m−1)) matrix in (7.12).



Ψ1,` Θ1,` Ψ̃1Θ2 − Θ̃1Ψ2 Ψ̃1Θ3 − Θ̃1Ψ3

2I` 0 Θ1 + 2Θ2 2Θ3

0 2I` −Ψ1 − 2Ψ2 −2Ψ3


 (7.12)

The columns here correspond, in (7.11), to the last column of the third and fifth of

the 8 blocks, and all the columns of the last two blocks.

To obtain the summands in Tables 5 and 6, we perform on (7.12) the algorithm

described in the proof of Theorem 7.1. Note that this matrix yields the split Z/2

as well as the Gk summand of Diagrams 1.5 and 1.6, unlike the algorithm based on

4.7(1) when k is odd, which just produces the Gk summand of E2,2k+1
2 (SU(2m)).

To prove the portion of Theorem 1.4 about Z/2 summands in G4a±2 and differentials

from them, we prove the following theorem and two corollaries.

Theorem 7.13. Let M be the matrix (7.12) reduced mod 4 with k even. Since 3k has

the same mod 4 value for all even k, M is independent of even k. Let M ′ be obtained

from M by pivoting on odd entries and removing their rows and columns. Then

rk2(M
′) =





2 if m ∈ {3} ∪ ⋃

e≥0

(4 · 2e, 5 · 2e) ∪ [6 · 2e, 7 · 2e)

1 otherwise. (7.14)

Here we have used open and closed interval notation. Considering only columns 1, 2,

(m + 2) of M , M ′ has a row (2, 0, 2) if and only if m = 3 · 2e or 2e+1, e ≥ 0, and a

row (0, 2, 0) if and only if m 6= 2e.

Corollary 7.15. If k is even, the number of Z/2 summands in E2,2k+1
2 (SU(2m)) is

as in (7.14). The image of these summands in E2,2k+1
2 (S4m−1) = Z2 ⊕ Z2 contains

the unstable summand (first one in its box in [2, p.488]) if and only if m = 3 · 2e or

2e+1, e ≥ 0, and contains the stable summand (second one in its box) if and only if

m 6= 2e.

The following is part of Theorem 1.4.

12Note that ` stands for “last”, not for an integer.
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Corollary 7.16. If k ≡ 2 mod 4, the group Gk in Diagram 1.5 or 1.6 has a Z/2

summand iff m = 3 or 4 · 2e < m < 5 · 2e or 6 · 2e ≤ m < 7 · 2e for some e ≥ 0. The

differential is nonzero on the Z/2 summand iff m = 3 · 2e for e ≥ 0.

Proof. By [2, p.488], if k ≡ 2 mod 4, the unstable summand of E2,4k+1
2 (S4m−1) always

supports a nonzero d3-differential, while the stable summand does iff m is even. Since

the target of d3 maps bijectively from SU(2m) to S4m−1, d3 is nonzero on a Z/2

summand of E2,4k+1
2 (SU(2m)) iff it is nonzero on its image in S4m−1.

Recall that E2,2k+1
2 (SU(2m)) = Gk ⊕ Z2, and Diagram 1.6 does not show the split

Z2 which is supporting a nonzero d3. By Corollary 7.15, the number of Z2 summands

of E2,2k+1
2 (SU(2m)) which map to a summand of E2,2k+1

2 (S4m−1) which supports a

nonzero differential is 0 if m is odd and m > 3, 2 if m = 3 · 2e, and 1 otherwise. Since

one of these is accounted for by the split Z2 when m is even, the result follows.

Proof of Corollary 7.15. We begin by studying the computation of E2,2k+1
2 (S4m−1)

when k is even, using 3.2. We obtain

E2,2k+1
2 (S4m−1) ≈ Q




0 22m−1 2u 0
0 2 0 2u
0 0 2 −22m−1


 .

(7.17)

We claim the Z/2 from the second row is the unstable class, while the Z/2 from

the first (or third) row is the stable one. To see this, we consider the morphism

of small resolutions (see [6, 11.11]) induced by the surjection Z∧2 /2n → Z∧2 /2n−1,

corresponding to the double suspension homomorphism. One easily checks that the

induced morphism of the groups Rs of [6, 11.11] for s ≥ 2 is multiplication by 2 on the

second and fourth summands. This will yield the unstable summands, since they are

the ones that map by ·2 under double suspension, and it corresponds to the second

row of the matrix above.

We compute the morphism E2,2k+1
2 (SU(2m)) → E2,2k+1

2 (S4m−1) by applying the

algorithm of the proof of 7.1 to (7.11). We look at the entries of a row corresponding

to a generator in the columns corresponding to the last column in first, third, fifth, and

seventh blocks of (7.11). As the first will have all 0’s, the ones of interest correspond

to columns 1, 2, and m+2 of (7.12), and to the last three columns of (7.17). Now we

combine the result of Theorem 7.13 about rows of the form (2,0,2) and (0,2,0) in M ′
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with the result of the preceding paragraph which characterizes 1/2 times these rows

in the sphere as respectively unstable and stable.

Proof of Theorem 7.13. The proof is somewhat similar to that in Section 5. We first

outline the proof, and then provide more details to fill in the outline.

Let 02 denote a column with all 0’s except for a 2 in its last entry. The matrix

(7.12) can be written as



0 02 M1 M2

02 0 M3 M4

0 02 M5 M6


 . (7.18)

This involves an easy verification for the top left columns, and merely a new name

for the other submatrices; Mi has m rows and m (resp. m − 1) columns if i is odd

(resp. even).

Step 1: The submatrix M5 has −1 in position (2j, j), 1 ≤ j ≤ [m/2], a 2 in

(m, [m/2] + 1) if m is odd, and 0’s elsewhere. We pivot13 on these odd entries. The

only change in the first two columns of (7.18) occurs (due to the lowest 02) if m is

even, in which case M1 has an odd entry in its position (m,m/2), and M3 has an

odd entry in column m/2 in row m
2

+ 2ν(m) if this is ≤ m, and possibly also in rows
m
2

+ c · 2ν(m) for certain c > 1. The pivoting on position (m,m/2) of M5 will add 2 in

column 2 to the rows just mentioned. The obtained matrix now has the form



0 0′2 M ′
1 M ′

2

02 Cm M ′
3 M ′

4

0 0′2 M ′
5 M ′

6


 , (7.19)

where the bottom block of rows has m − [m/2] rows, and the M ′
odd have m − [m/2]

columns. Here, also,

0′2 =





02 if m odd

0 if m even.

and the column Cm = 0 if m is odd, while if m is even, Cm has a 2 in row m
2

+ 2ν(m)

if this is ≤ m, and possibly some rows m
2

+ c · 2ν(m) with c > 1. Here and throughout,

we use the original row and column indices in each M ′
i . For example, if i is odd, the

first column of M ′
i is labeled m− [m

2
] + 1.

13As usual, “pivoting” includes removal of the row and column of the pivot entry.



PERIODIC HOMOTOPY REVISITED 49

Step 2. The first odd entry in column j of M ′
3 occurs in row j + 2ν(j)+1, if this is

≤ m. We pivot on these entries. Let



C1,1 C1,2 M ′′
1 M ′′

2

C2,1 C2,2 M ′′
3 M ′′

4

C3,1 C3,2 M ′′
5 M ′′

6




be the obtained matrix. The only nonzero entries remaining are 2’s in the positions

described below, and this implies the theorem. The proof that this occurs, as well

as some of the earlier steps in this proof, appears below. Note that the same m can

occur in two of the six listed possibilities.

• m odd, 6= 2e− 1: last row of C1,2 and C3,2. Of course, one of these

can be removed by pivoting.

• m = 2e−1: last row of C1,2 and C3,2, and last row of M ′′
1 and M ′′

5 in

column 2e−1, which will be the first column in those submatrices.

Here again, one of the two rows can be removed.

• m = 2e: last row of C2,1, and last row, last column (m) of M ′
3.

• m = 3 · 2e, e ≥ 0: last row of C2,1; last row, first (2e+1) and last

(m) column of M ′′
3 ; and last row, column 2e of M ′′

4 . (i.e. four 2’s

in the same row.)

• m even, 6= 2e: row m
2

+ 2ν(m) of C2,2, and same row, column m/2

of M ′′
4 .

• m = a · 2e+1 + ∆, a = 2 or 3, 0 < ∆ < 2e: row a · 2e+1 of M ′′
3 ,

columns a · 2e+1 − 2i for ∆ < 2i ≤ 2e.

Here we provide additional details of the proof of Theorem 7.13, a sketch of which

was just completed. The details here are not meant as a self-contained account, but

rather justification for statements of the above proof.

Using the basis of 3.3, mod 4, ψ2(Y ) ≡ Y 2, ψ3(Y ) ≡ Y (1 + Y )2, ψ2(X) ≡ X(2 +

Y )+Y , and ψ3(X) ≡ X(−1+Y 2)+(−Y +Y 2). Hence Ψ1, which is the matrix of ψ2

from the XY j-basis to itself, has 1 in (2j, j), 2 in (2j−1, j), and 0 elsewhere. Also, Ψ2,

which is the matrix of ψ2 from the XY j-basis to the Y j-basis, has 1 in (2j−1, j), and

0 elsewhere, while Ψ3, which is the matrix of ψ2 from the Y j-basis to itself, has just 1’s

in (2j, j). The matrices Θ1, Θ2, and Θ3 are those of ψ3 − 1 with respect to the bases
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just described, and in column j are the coefficients of xj((−1 + x2)(1 + x)2(j−1) − 1),

xj(−1 + x)(1 + x)2(j−1), and xj((1 + x)2j − 1), respectively.

The claims prior to Step 1 about the last column of Ψ1 and Θ1 being 0 and 02,

respectively, are immediate from the above description. In Step 1, (a.) in M5 =

−Ψ1 − 2Ψ2, the 2 in (2j − 1, j) from −Ψ1 is cancelled by the 2Ψ2 unless it is in the

last row; (b.) the first odd entry of M3 is that of Θ1, which occurs in the row of the

first odd coefficient of xj((1 + x)2j − 1), which is row j + 2ν(2j); and (c.) the claim

about odd entries in column m/2 of M1 is seen by noting that, mod 2, column m/2

of Ψ̃1Θ2 has a 1 in its last entry coming from column m/2 of Ψ1, while column m/2

of Θ̃1Ψ2 equals column m of Θ1, which is 0 mod 2.

Step 2: The pivoting of Step 1 did not change the remaining columns of Modd,

and so the odd entries in the remaining columns of M ′
3 are as described in part (b)

of the previous paragraph. We analyze the result of this pivoting.

First column: If m = 2e or 3 · 2e, then m 6= j + 2ν(2j) for j ≥ m/2, and so

the 2 in column 1 will not be involved in pivoting. For other m, there is such a j,

there will be pivoting on position (m, j) of M ′
3, and the row with the 2 in the first

column will be eliminated. The pivoting will create another 2 in column 1 if this

column j has another odd entry. This will not be the case in M ′
3 since the pivot

1 under consideration is the last entry in M ′
3 in its column, but the first odd in its

column. Note that M ′
1 = −Θ̃1Ψ2 + Ψ̃1Θ2 with its first [m/2] columns deleted. In

these remaining columns, Ψ2 is 0 and hence so is Θ̃1Ψ2, while Ψ̃1Θ2 is 0 since in these

columns Θ2 is nonzero only in rows > m/2 but Ψ̃1 is 0 in columns > m/2. This

establishes the claim that at the end of Step 2, column 1 has a 2 iff m = 2e or 3 · 2e,

and this occurs in the last row.

Second column: If m is odd, there are no changes in the second column because

the pivoting is on rows in the middle block, and the second column Cm had all 0’s

there after the first step.

If m is even, the column Cm had, after the first step, 2’s in rows m
2

+ c · 2ν(m) for

c = 1 and perhaps some larger values of c. The columns of M ′
3 occur only for j > m/2.

For c ≥ 2, M ′
3 has a pivot 1 in (m

2
+c ·2ν(m), m

2
+(c−1)2ν(m)). This will cause removal

of all these rows, leaving in the second column just the 2 in row m
2

+ 2ν(m). This

pivoting cannot cause additional 2’s in column 2 in other rows, because M ′
1, M ′

5, and
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other rows of M ′
3 have no odd entries. This observation for M ′

1 is similar to that of

(c.) several paragraphs above. This establishes the claim that at the end of Step 2,

column 2 has a 2 in the last row of the first and third blocks if m is odd, and in row
m
2

+ 2ν(m) of the second block if m is even.

The submatrices M ′′
i , i = 1, 2, 5, and 6: We first show that the only nonzero

entry in M ′
i for these values of i is a 2 in position (m, m+1

2
) if m is odd and i = 1 or 5.

To do this, one easily checks that, mod 4, M6 ≡ 2M5 except in (m, m
2
) if m is even,

where M5 has 1 and M6 has 0. We will show that the same is true of M2 and M1.

Also, it is easily verified that these four matrices are 0 in columns > [m+1
2

]. This

implies that the pivoting in Step 1, which zeros the first [m
2
] columns of M1 and M5,

does the same for those columns of M2 and M6, since they are twice as large.14 The

2 in (m, m+1
2

) of M5 is from −Ψ1, and the 2 in that position of M1 comes from the 2

in position (m, m+1
2

) of Ψ1 times the 1 in (m+1
2

, m+1
2

) of Θ2. These 2’s are not altered

in the first step of pivoting.

Next we verify the claim of the preceding paragraph that M2 ≡ 2M1 with the

one mentioned exception. We first note that, mod 2, the jth column of Θ̃1Ψ2 is the

(2j − 1)st column of Θ1, which is x2j−1((1 + x2)2j−1 − 1). Also the jth column of

Ψ̃1Θ2 is x2j(1 + x2)2j−1. Adding these yields x2j−1((1 + x)4j−1 − 1) as the generating

polynomial for the jth column of M1 mod 2, and doubling it generates 2M1 mod 4.

Similarly, the jth column of Θ̃1Ψ3 is generated by the (2j)th column of Θ̃1, which is

x2j((3 + x2)(1 + x)2(2j−1)− 1).15 The even components of Ψ̃1Θ3 in column j are those

of x2j((1 + x2)2j − 1), while its odd components are those of 2x2j−1((1 + x2)2j − 1).

Adding and reducing mod 4, we find that 2x2j−1((1 + x)4j−1 − 1) generates the jth

column of M2. Some care is required due to the tildes. This causes the one exception,

which was described in the footnote.

Finally we observe that the 2 in M ′
1 and M ′

5 when m is odd will be removed in the

second step of pivoting, on an odd in (m+1
2

+2ν(m+1), m+1
2

), provided m+1
2

+2ν(m+1) ≤
m, which is true unless m = 2e − 1. This establishes the claim that this latter case

(m = 2e − 1) is the only time that M ′′
i is nonzero when i ∈ {1, 2, 5, 6}.

14The anomaly in column m
2 when m is even presents no problem here, since

both M2 and M6 have a similar 0.
15unless m is even and 2j = m, in which case the column is 0 due to the tilde,

but the polynomial would have given 2.
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The submatrix M ′′
4 : Except in its last row, M4 ≡ 2M3. The first round of pivoting

will eliminate the 2’s in M4 as it eliminates the odd entries in M3. One exception

is that, since M6 lacks a 2 in (m, m
2
) when m is even, the pivoting on (m, m

2
) of M5

will not zero the 2 in (m
2

+ c · 2ν(m), m
2
) in M4 for various c ≥ 1.16 All except the one

with c = 1 will be eliminated in Step 2 by the pivoting on (m
2

+2ν(m), m
2
) of M ′

3. This

accounts for the asserted 2 in M ′′
4 of the fifth type.

The other exception is due to the last row of M4 being 0. If row m of M3 has an

odd entry in column j ≤ [m
2
],17 the pivoting in Step 1 will create a 2 in (m, j) in

M ′
4. However, if m 6= 3 · 2e, then M ′

3 has a pivot 1 in row m, and so this row will be

removed. This accounts for the asserted 2 in M ′′
4 of the fourth type when m = 3 · 2e,

since here j = 2e.

The submatrix M ′′
3 : M ′

3 is just M3 with the first [m/2] columns deleted. Because

of the triangularity, we can delete the first [m/2] rows also. It is convenient to order

the rows by first considering ν(i), and ordering the columns similarly. For example,

if m = 17, the order of the rows and columns is 9, 11, 13, 15, 17|10, 14|12|16.

With this ordering of the rows and columns, we write M ′
3 as

Am =

(
Aoo Aoe

Aeo Aee

)
,

where the double subscripts e and o refer to even and odd rows and columns, and the

single subscript refers to the value of m. We claim that the matrix Aee for 2m equals

the whole matrix Am. This is true because the entry in (i, j) for Am equals




(
2j
i−j

)
− δi,j i 6= m

3
(

2(j−1)
m−j

)
+

(
2(j−1)
m−j−2

)
i = m.

Here we have taken into account the irregularity in the last row of Θ2. It is not

difficult to show that the mod 4 value of this expression is not changed when i, j,

and m are doubled.

One easily verifies that, mod 4, Aoo is lower triangular with 0’s on the diagonal,

except a 2 in the last diagonal entry if m is odd, and units on the immediate sub-

diagonal, and that Aeo and Aoe are even, and Aoe is 0 in its first row. We let R(A)

denote the matrix obtained from A by pivoting on odd entries (and then removing

16There is no such 2 if m = 2e, since m
2 + 2ν(m) > m.

17Note that this does not happen if m = 2e.
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pivot row and column), and also removing rows and columns of 0’s, so that Q(A) is

now the group presented by R(A). Let D(−) double the row and column indices of a

matrix, while keeping the entries the same. The observations of this paragraph imply

that R(A2m) = D(R(Am)).

Our goal is to prove that R(Am) has only nonzero entries 2’s in




(m, m) m = 2e

(m, 2e+1), (m,m) m = 3 · 2e

(a · 2e+1, a · 2e+1 − 2i), ∆ < 2i ≤ 2e m = a · 2e+1 + ∆

with a = 2 or 3 and 0 < ∆ < 2e. As this property is preserved by halving, it suffices to

consider odd m. Also, the cases m = 4 and 6 are easily verified to start the induction

in the first cases.

We will prove R(A4k+3) = D(R(A2k+1)) and R(A4k+1) = D(R(A2k+1)) unless k =

2e or 3 · 2e, in which case R(A4k+1) has an extra 2 in position (4k, 4k − 2). With the

easily-verified R(A3) = 0 and R(A5) = 0, this will yield an inductive proof for all m.

We now prove the claim of the preceding paragraph. Each subblock of constant

ν(−) has the form described above for Aoo. After pivoting on the odd subdiagonal

entries in all subblocks of constant ν(−), all that remains are the last entry in each

subblock as column indices, and the first entry in each subblock as row indices. For

example, if m = 15, the column indices remaining are 15, 14, 12, 8, while the row

indices are 7, 10, 12, 8. We call this matrix A′
m.

It is easy to see that for A′
4k+3, the column indices are 4k + 3 followed by twice

the column indices of A′
2k+1, while the row indices are 2k + 1 followed by twice the

row indices of A′
2k+1. Moreover, the entries in the first row and first column are 0 by

triangularity, and the other entries equal those of the corresponding entries of A′
2k+1.

This proves the first claim.

Similarly, the column indices of A′
4k+1 are 4k + 1, then 4k − 2, then 4 times the

column indices after the first of A′
2k+1, while the row indices are 2k + 1 followed by

twice the row indices of A′
2k+1. The first row and first column of A′

4k+1 are 0, as is

the first column of A′
2k+1. The second column of A′

4k+1 will have a 2 in (4k, 4k − 2)

if it has a row 4k; i.e. if 4k − 2ν(4k)+1 < 2k + 1. This is the case iff k = 2e or 3 · 2e.

This proves the second claim, and hence establishes our claim for M ′
3.
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8. Results for SU(n) when n ≤ 13

In this section, we present complete results of v−1
1 π∗(SU(n)) for n ≤ 13. This

serves to illustrate our methods and confirm their efficacy. We begin with the easier

situation in which n is odd. There is some overlap here with [2, 5.5].

Theorem 8.1. v−1
1 π2k(SU(n)) = Z/2e(k,n), where

e(k, 3) = min(2, 1 + ν(k))

e(k, 5) =





min(6, 2 + ν(k − 12)) k even

min(4, 2 + ν(k − 3)) k odd

e(k, 7) =





min(8, 5 + ν(k − 6)) k even

min(8, 3 + ν(k − 13)) k odd

e(k, 9) =





min(12, 5 + ν(k − 72)) k ≡ 0 (4)

min(9, 5 + ν(k − 6)) k ≡ 2 (4)

min(8, 5 + ν(k − 5)) k ≡ 1 (4)

min(11, 5 + ν(k − 7)) k ≡ 3 (4)

e(k, 11) =





min(13, 7 + ν(k − 40)) k ≡ 0 (4)

min(15, 7 + ν(k − 74)) k ≡ 2 (4)

min(14, 6 + ν(k − 73)) k ≡ 1 (4)

min(11, 6 + ν(k − 7)) k ≡ 3 (4)

e(k, 13) =





min(14, 9 + ν(k − 24)) k ≡ 0 (8)

min(18, 9 + ν(k − 12)) k ≡ 4 (8)

min(17, 8 + ν(k − 458)) k ≡ 2 (4)

min(14, 8 + ν(k − 9)) k ≡ 1 (4)

min(15, 9 + ν(k − 11)) k ≡ 3 (4)
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v−1
1 π2k−1(SU(n)) ≈ v−1

1 π2k(SU(n)) for n = 3 and 5. Also,

v−1
1 π2k−1(SU(7)) =




Z/4⊕ Z/2e(k,7)−2 k even

Z/2⊕ Z/2e(k,7)−1 k odd

v−1
1 π2k−1(SU(9)) =




Z/2⊕ Z/2e(k,9)−1 k even

Z/8⊕ Z/2e(k,9)−3 k odd

v−1
1 π2k−1(SU(11)) =





Z/16⊕ Z/2e(k,11)−4 k ≡ 0 (4)

Z/8⊕ Z/2e(k,11)−3 k ≡ 2 (4)

Z/4⊕ Z/2e(k,11)−2 k odd

v−1
1 π2k−1(SU(13)) =




Z/2⊕ Z/8⊕ Z/2e(k,13)−4 k even

Z/2⊕ Z/4⊕ Z/2e(k,13)−3 k odd

Proof. For the values of e(k, n), we use Maple to compute min(ν(a(k, n)), . . . , ν(a(k, n+

8))) for various families of values of k, using observed periodicities to focus the values

of k. The choice of n + 8 as the largest j in a(k, j) to consider is rather arbitrary.

In practice, the minimum almost always occurs for j ≤ n + 3. We can use that

ν(a(k, j)) ≥ j−α(j) ([6, 8.1]), with α(j) the number of 1’s in the binary expansion of

j, to guarantee that we are not overlooking a smaller value of ν(a(k, j)) which occurs

for a larger value of j. We can also use the periodicity in k of e(k, n) ([2, p.492]) to

obtain information for infinitely many k with a finite number of calculations.

For the groups v−1
1 π2k−1(SU(2m+ 1)), we use the algorithm described in the proof

of Theorem 7.1, observing patterns in the small summands, and using 3.6 for the

order. The summands of order 2 and 4 are proved in Section 5, and those of order 8

or 16 could be proved by the same method. The number of summands was proved in

3.7.

The homotopy results for SU(2m) are much more complicated. We begin by record-

ing the values of e(k, 2m) and Gk, which are a first step toward writing v−1
1 π∗(SU(2m)).
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Theorem 8.2. If k is odd, then e(k, 2m) = e(k, 2m + 1). For even k, we have

e(k, 4) = 3

e(k, 6) = min(6, 3 + ν(k − 4))

e(k, 8) =





7 k ≡ 0 (4)

min(9, 5 + ν(k − 6)) k ≡ 2 (4)

e(k, 10) =





min(12, 6 + ν(k − 8)) k ≡ 0 (4)

min(9, 6 + ν(k − 6)) k ≡ 2 (4)

e(k, 12) =





min(13, 8 + ν(k − 8)) k ≡ 0 (4)

min(15, 8 + ν(k − 74)) k ≡ 2 (4)

Also, E2,2k+1
2 (SU(2m)) ≈ Gk⊕Z2, where, if k is odd, Gk equals the groups v−1

1 π2k−1(SU(2m+

1)) given in the second part of 8.1, while, if k is even, then

Gk =





Z/2e(k,4) m = 2

Z/2⊕ Z/2e(k,6)−1 m = 3

Z/8⊕ Z/2e(k,8)−3 m = 4

Z/4⊕ Z/2e(k,10)−2 m = 5

Z/2⊕ Z/8⊕ Z/2e(k,12)−4 m = 6, k ≡ 2 (4)

Z/2⊕ Z/16⊕ Z/2e(k,12)−5 m = 6, k ≡ 0 (4)

Proof. The first sentence was proved in [5, 1.2]. The last part is calculated using the

algorithm which produced Tables 5 and 6 and is described just after (7.12).

Diagrams 8.3, 8.4, 8.5, 8.6, and 8.7 present the results for SU(4), SU(6), SU(8),

SU(10), and SU(12). Complete explicit formulas for all these homotopy groups can

be read off from these charts together with Theorem 8.2. For the most part, these

are Diagrams 1.5 and 1.6 with the specific information of 8.2 inserted, along with

information about differentials and extensions given in 6.2, 6.5, 7.1, and 7.16. More

delicate arguments for specific differentials and extensions are described later in this

section.

In these charts an integer e or letter e refers to a Z/2e summand. If an extension

is not depicted, it is trivial. As in Diagrams 1.5 and 1.6, many elements involved in

differentials are not pictured.
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Diagram 8.3. v−1
1 π∗(SU(4))

t− s = 8a+ −2 0 2 4

s = 1
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In the following diagram x = e(4a, 6), as given in 8.2, y = e(4a + 1, 6), x = x− 1,

and y = y − 1. We have 5 ≤ x ≤ 6 and 5 ≤ y ≤ 8.

Diagram 8.4. v−1
1 π∗(SU(6))

t− s = 8a+ −4 −2 0 2

s = 1
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In Diagram 8.4, the d3-differential from x is nonzero iff a 6≡ 3 mod 4. The d3-

differential from y is nonzero iff a ≡ 3 mod 8. The extension in 8a + 1 goes from y if

a 6≡ 3 mod 4, and from the 1 if a ≡ 7 mod 8. Note that differentials and extensions
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are emanating from specific summands, but we do not specify on which summand η

is acting.

In Diagram 8.5, x = e(4a + 1, 8), y = e(4a + 2, 8), z = e(4a − 1, 8), x = x − 3,

y = y − 3, and z = z − 3. We have 7 ≤ x ≤ 9, 7 ≤ y ≤ 8, and 7 ≤ z ≤ 11.

Diagram 8.5. v−1
1 π∗(SU(8))
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The differential on y in Diagram 8.5 is nonzero if and only if a ≡ 1 mod 4.

In Diagram 8.6, w = e(4a−2, 10), x = e(4a−1, 10), y = e(4a, 10), z = e(4a+1, 10),

w = w − 2, x = x − 2, y = y − 2, and z = z − 2. We have 8 ≤ w ≤ 9, 8 ≤ x ≤ 11,

8 ≤ y ≤ 12, and 8 ≤ z ≤ 14.



PERIODIC HOMOTOPY REVISITED 59

Diagram 8.6. v−1
1 π∗(SU(10))
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In Diagram 8.6, the differential from y is nonzero iff a 6≡ 18 mod 32.

In Diagram 8.7, w = e(4a−1, 12), x = e(4a, 12), y = e(4a+1, 12), z = e(4a+2, 12),

w = w− 3, x = x− 5, y = y− 3, and z = z − 4. We have 11 ≤ w ≤ 15, 10 ≤ x ≤ 13,

10 ≤ y ≤ 14, and 10 ≤ z ≤ 15. In this diagram, the differential from z is nonzero

iff a 6≡ 18 mod 64. Extensions are as specifically indicated, from y in 8.6 and from 2

and z in 8.7. Also, differentials are from the summands specifically indicated, 2 and

z in 8.6 and 1 in 8.7.
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Diagram 8.7. v−1
1 π∗(SU(12))

t− s = 8a+ −2 0 2 4
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Here we provide some detailed arguments for the above charts.

Case 1: SU(6):

(1) The differential from y is not pictured in Diagram 1.5 (which ex-

cludes SU(6)) because it is conjectured (see 6.6 and 9.7) that

m = 3 is the only time this differential is nonzero. When m = 3,

it is easily verified to be nonzero iff a ≡ 3 mod 8, using 6.5, 8.1,

and 8.2.

(2) The differential from x was already noted in [2, p.493].

(3) The differential from the 1 in 1, 3 is Corollary 7.16.

(4) The differential from y in 1, y is Theorem 7.1.

(5) That the extension in 8a−1 is from x is proved similarly to Propo-

sition 6.2(4). Here E2,2k+1
2 (SU(5)) → E2,2k+1

2 (SU(6)) sends Z/26

onto the Z/25 summand, and so 25 · gen is in the image from

E1,2k+1
2 (S11). The element of E1,2k+1

2 (S11) supports a differential,

and consideration of the homotopy exact sequence implies the ex-

tension in SU(6).

(6) To compute the extension in 8a+1, we compute E2,2k+1
2 (SU(6)) →

E2,2k+1
2 (S11) as in Section 7, obtaining that the Z2 injects if k ≡ 5
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mod 8 but not if k ≡ 1 mod 8, while the large summand is an

isomorphism of Z/24 if k ≡ 1 mod 8, an isomorphism of Z/25 if

k ≡ 5 mod 16, and a surjection from a larger summand onto Z/25

if k ≡ 13 mod 16. The extension follows from this information

using the argument just after the algorithm in the proof of 7.1.

When k ≡ 5 mod 16, so that both summands inject, the extension

is from the larger summand, by rechoosing the generator of smaller

order.

Case 2: SU(8): The only part of the proof that is not immediate from results cited

just prior to Diagram 8.3 is the differential and extension from G4a+2 ≈ Z/23⊕Z/2y.

If a 6≡ 1 mod 4, there is an exact sequence (with t = 8a + 5)

0 → E1,t
2 (S15) → E2,t

2 (SU(7)) → E2,t
2 (SU(8)) → E2,t

2 (S15) → 0

which is, ignoring a split Z/2 in E2,t
2 (SU(8)) and E2,t

2 (S15),

0 → Z/2 → Z/4⊕ Z/2e+1 → Z/8⊕ Z/2e → Z/2 → 0

with e = 4 or 5. The Z/8 must map onto the Z/2 and hence support the differential

(since the Z/2 does in S15), and the extension must be from the Z/2e by the argument

in the proof of 6.2(4).

If a ≡ 1 mod 4, there is an exact sequence

0 → E2,t
2 (SU(7)) → E2,t

2 (SU(8)) → E2,t
2 (S15) → 0

which is, again ignoring a Z/2 in the latter two groups,

0 → Z/4⊕ Z/26 → Z/8⊕ Z/26 → Z/2 → 0

and so again the Z/8 must map onto the Z/2 and hence support the differential.

There is no extension in this case.

Case 3: SU(10):

(1) That there is no extension in 8a + 1 was discussed in detail in

Proposition 7.9 and the paragraphs preceding it.

(2) That the differential from G4a−2 is from the Z/4 is proved similarly

to the proof of Corollary 7.15. When the pivoting algorithm is

applied to (7.12) for SU(10), the Z/2 comes from a row with 2

in the second column, and then the Z/4 comes from a row with
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4’s in columns 1 and 7. The image of these in the matrix (7.17)

for S19 is the row (0 0 2 0) for the Z/2, and this is the stable

generator, which does not support a differential, while for the Z/4

the image is the unstable generator (0 2 0 2), which does support

a differential.

(3) For the extension from the big summand in G4a when a ≡ 18 mod

32, Theorems 8.1 and 8.2 imply that there is an exact sequence

(with t = 8a + 1)

0 → E1,t
2 (S19) → E2,t

2 (SU(9)) → E2,t
2 (SU(10)) → E2,t

2 (S19) → 0

which is

0 → Z/2 → Z/2⊕ Z/211 → Z/4⊕ Z/210 ⊕ Z/2 → Z/2⊕ Z/2 → 0.

By the proof of 6.2(4), this implies that the extension is from the

Z/210.

Case 4: SU(12): Everything here follows by methods used in the three previous

cases, using Theorem 7.1, Corollary 7.16, and Theorems 8.1 and 8.2.

9. Combinatorial conjectures

In this section we present two combinatorial conjectures which have implications

about the v1-periodic homotopy groups of SU(n). Both involve the numbers a(k, j)

and e(k, n) which appear in Definition 1.1.

A particularly attractive conjecture is one involving large v1-periodic homotopy

groups, because they give estimates for large actual homotopy groups. The p-exponent

of a space X, denoted expp(X), is defined to be the largest e such that π∗(X) has an

element of order pe. Since v1-periodic homotopy groups are, for spheres and compact

Lie groups, direct summands of actual homotopy groups, computations of v−1
1 π∗(X)

lead to lower bounds for expp(X). Lower bounds for expp(SU(n)) when p is odd were

obtained by the first author, using a different method, in [14].

The following conjecture about 2-divisibility is based on extensive computation. It

is conjecturally sharp for 2e < n ≤ 2e +6 (e ≥ 4) and 2e +8 < n ≤ 2e +12 (e ≥ 5) and

other similar ranges. It has also been verified in many cases that the largest value of

e(k, n) occurs when k = 2L + n− 1.
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Conjecture 9.1. If L > n + ν2([n/2]!), then

e(2L + n− 1, n) ≥ n− 1 + ν2([n/2]!).

Alternatively,

ν(a(2L + n− 1, j)) ≥ n− 1 + ν([n/2]!) for all j ≥ n.

As is well-known, the ν([n/2]!) here can be replaced by
∑

t≥2[n/2t], which shows some

similarity to the odd-primary result of [14], which, we emphasize, was derived in an

entirely different manner. Another well-known expression for ν(m!) is m − α(m),

where α(m) is the number of 1’s in the binary expansion of m.

The significance is given by the following elementary result.

Proposition 9.2. If Conjecture 9.1 is true for n, then exp2(SU(n)) ≥ n − 1 +

ν([n/2]!).

Proof. The conjecture implies that, for k = 2L + n − 1, E1,2k+1
2 (SU(n)) contains an

element of order 2e with e = n−1+ν([n/2]!). The same will be true of v−1
1 π2k(SU(n)),

which is clear when n is odd, while if n is even, we use Diagrams 1.5 and 1.6 to see

that there is no differential from the relevant 1-line group. Finally, as observed at the

beginning of the section, this implies the same for some actual homotopy group.

We point out one reduction of Conjecture 9.1.

Proposition 9.3. If it is true that

ν

(∑ (
j
2`

)
`n−1

)
≥ ν([n/2]!) for all j ≥ n, (9.4)

then Conjecture 9.1 is true.

Proof. Let j ≥ n. We write

a(2L + n− 1, j) =
∑

odd i

(
j
i

)
in−1(i2

L − 1) +
∑

odd i

(
j
i

)
in−1.

We note that, for odd i, ν(i2
L−1) ≥ L+1, and so, by our assumption L > n+ν([n/2]!),

the terms in the first sum will not affect whether or not the RHS is divisible by

2n−1+ν([n/2]!). Thus we omit the first sum. We also note that
∑

all i(−1)i
(

j
i

)
in−1 = 0,
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since j ≥ n. One way to see this is that it equals j!S(n−1, j), where S(−,−) denotes

a Stirling number of the second kind, and this is 0 since n− 1 < j. Consequently

ν(a(2L + n− 1, j)) = ν

( ∑

even i

(
j
i

)
in−1

)
= n− 1 + H,

(9.5)

where H is the left hand side of (9.4). Here we have written i = 2` and factored 2n−1

out of (2`)n−1. If H ≥ ν([n/2]!), then (9.5) becomes 9.1.

Conjecture 6.6 for n(= 2m) ≥ 18 is implied by similar conjectures.

Conjecture 9.6. Let n ≡ 2 mod 4.

(1) If n ≥ 18, then ν

(
∑ (

n
2`

)
`n−1

)
< n− 3− [log2(n− 2)].

(2) If n ≥ 6, and A ≥ 1, then

ν

( ∑

odd i

(
n
i

)
(i2

n−3A − 1)in−1

)
≥ 2n− 4− [log2(n− 2)].

Proposition 9.7. Conjecture 9.6 for n implies Conjecture 6.6 for 2m = n.

Proof. One observes from the definitions that Conjecture 6.6 is implied by the state-

ment that, if n ≡ 2 mod 4 and A ≥ 1, then

ν(a(n− 1 + 2n−3A, n))− e(n− 1 + 2n−3A, n− 1) < n− 1.
(9.8)

We will show

e(n− 1 + 2n−3A, n− 1) = ν((n− 1)!). (9.9)

As above, we write

a(n− 1 + 2n−3A, n) =
∑

odd i

(
n
i

)
(i2

n−3A − 1)in−1 + 2n−1
∑ (

n
2`

)
`n−1.

By Conjecture 9.6 (assumed), the divisibility of this sum of sums is determined by

its second sum, and its 2-exponent is less than 2n − 4 − [log2(n − 2)]. The desired

conclusion (9.8) follows from the easily-verified fact that

(2n− 4− [log2(n− 2)])− ν((n− 1)!) ≤ n− 1.

We complete the proof by proving (9.9). This will be accomplished by proving that

if j ≥ n − 1, then ν(a(n − 1 + 2n−3A, j) ≥ ν((n − 1)!) with equality if j = n − 1.
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Similarly to the proof of 9.3, we have

a(n− 1 + 2n−3A, j) =
∑

odd i

(
j
i

)
(i2

n−3A − 1)in−1 + 2n−1
∑

`

(
j
2`

)
`n−1 + j!S(n− 1, j).

(9.10)

The last term equals (n − 1)! if j = n − 1, and 0 if j > n − 1. In the first sum,

(i2
n−3A − 1) is divisible by 2n−2, and n− 2 ≥ ν((n− 1)!) with equality if and only if

n− 1 is a 2-power. The other part is clearly divisible by 2n−1.

We conclude that if j > n − 1, all terms of (9.10) have 2-exponent ≥ ν((n − 1)!),

while if j = n− 1 and n− 1 is not a 2-power, (9.10) is (n− 1)! plus something which

is more highly 2-divisible. If j = n− 1 = 2e, then all the binomial coefficients
(

j
i

)
in

the sum are even, and so the sum is again more highly 2-divisible than is (n− 1)!.

Conjecture 6.6 is also true for n = 6, 10, and 14, and the above argument works

when n = 10. However, 9.6(1) and (9.8) fail when n = 6 and 14. If n = 6, the result

of Conjecture 6.6 is easily verified using 8.2. For n = 14, one can easily check that

ν(a(13 + 211A, 18)) = 21 and so

e(13 + 211A, 14)− e(13 + 211A, 13) ≤ 21− 10,

which implies 6.6 when n = 14.

The reader should note that Conjectures (9.4) and 9.6(1) deal with bounds on the

2-exponent of the same sum. Our data suggest that (9.4) tends to be sharper.
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