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Abstract. This is an addendum to our paper [1]. It seems some-
what relevant, but perhaps distracting. We give an optimal, ex-
plicit set of motion planning rules in a polygon space closely related
to the polygon space studied in [1].

1. Introduction

In [1], we studied the algebraic and differential topology of the space

Kn = (S1)n/(z1, . . . , zn−1, zn) ∼ (z1, . . . , zn−1,−zn). (1.1)

We are particularly interested in determining its topological complexity, because it is

homeomorphic to the space M(εn−1, 1, 1, 1, 2) of isometry classes of planar polygons

with the prescribed side lengths. Here 0 < ε < 1
n−1 occurs n − 1 times. All we can

say is that n ≤ TC(Kn) ≤ 2n − 5. Here we consider motion planning in a closely

related space of polygons.

Let M(εn−1, 1, 1, 1, 2) denote the space of planar polygons with the prescribed side

lengths, identified under oriented isometry. Then the double coverM(εn−1, 1, 1, 1, 2)→
M(εn−1, 1, 1, 1, 2) which identifies a polygon with its reflection across the long edge

corresponds to the double cover T n → Kn. The n-torus is well known to satisfy

TC(T n) = n + 1, with easily-described motion planning rules. Using [2], we give

here n+ 1 explicit motion planning rules between polygons in M(εn−3, 1, 1, 1, 2) cor-

responding to the simple motion planning rules for the torus.
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2. Description of polygons

Let ` = (εn−1, 1, 1, 1, 2). A polygon in M(`) or M(`) with successive vertices

X1, . . . , Xn+3 can be placed so that X1 = (0, 0) and Xn+3 = (2, 0). Edges XiXi+1,

1 ≤ i ≤ n−1, can be chosen as arbitrary vectors of length ε. These correspond to the

first n− 1 factors of T n. The distance from Xn to Xn+3 is a real number r satisfying

1 < r < 3. Following [2], we choose Xn+1 and Xn+2 as follows.

Identify S1 as S := [−1, 1] × {−1, 1}/(±1,−1) ∼ (±1, 1). Let C(x, r) denote the

circle of radius r centered at x. Vertex Xn+1 lies on the arc of C(Xn, 1) which lies

inside C(Xn+3, 2). Parametrize this arc linearly from bottom (P−) to top (P+) as t

goes from −1 to 1. For [(t1, t2)] ∈ S, Xn+1 is the point on the arc with parameter value

t1. If t1 6= ±1, C(Xn+1, 1) intersects C(Xn+3, 1) at two points, one lying above the

segment Xn+1Xn+3 and the other below it. Let Xn+2 be the point above (resp. below)

the segment if t2 = 1 (resp. −1). We also say that Xn+1-Xn+2-Xn+3 is an “up”

(resp. “down”) linkage. If t1 = ±1, then C(Xn+1, 1) and C(Xn+3, 1) intersect at one

point, which is chosen for Xn+2.

Note that conjugating the first n− 1 S1-factors, while negating the last one, corre-

sponds to reflecting the polygon about its long side. The following figure illustrates

the polygon associated to (z1, z2, z3) ∈ T 3 with z1 = eiπ/4, z2 = e3iπ/4, z3 ≈ [(.6, 1)],

with ε ≈ 0.3.
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3. Motion planning rules

Recall that the n + 1 motion planning rules for T n are that in each factor move

along the shorter arc if the points are not antipodal and counterclockwise if they are.
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The domains of continuity are sets having a fixed number of antipodal components.

These motions can be done either simultaneously in all components, or sequentially.

We wish to tell how to move from a polygon with vertices (X1, . . . , Xn+3) to polygon

(X1, X
′
2, . . . , X

′
n+2, Xn+3). For both of them, X1 = (0, 0) and Xn+3 = (2, 0). The

polygons are associated to points (z1, . . . , zn−1, [t1, t2]) and (z′1, . . . , z
′
n−1, [t

′
1, t
′
2]) in

T n−1 × S as described in the previous section. We will do the motion for the first

n− 1 components first, as they are simpler.

We rotate the edges XiXi+1 for 1 ≤ i ≤ n − 1 according to the rule for the

torus (the shorter way if z′i 6= −zi, else counterclockwise). This can be done either

simultaneously or sequentially. During this motion, the vertex Xn will be moving

to X ′n, causing the arc from P− to P+ to change smoothly. While this takes place,

we maintain the parameter values [t1, t2] from the initial polygon; as the arc moves,

Xn+1 stays the same fraction of the way along it, and the linkage Xn+1-Xn+2-Xn+3

stays either “up” or “down” (or straight if t2 = ±1). Following this motion, we

will be at (X1, X
′
2, . . . , X

′
n, X

′′
n+1, X

′′
n+2, Xn+3), where (X ′n, X

′′
n+1, X

′′
n+2, Xn+3) has the

initial parameter values [t1, t2], and we wish to move it to (X ′n, X
′
n+1, X

′
n+2, Xn+3) with

parameter values [t′1, t
′
2], without moving X ′n. There are two cases, corresponding to

antipodal or not on the circle.

Case 1: Suppose that X ′n+1 and X ′n+2 are not the reflections of X ′′n+1 and X ′′n+2

across the segment X ′nXn+3. If both are “up” linkages or both are “down” linkages

(or one is straight), then, maintaining the sign of the linkage, move from X ′′n+1 to

X ′n+1. This will automatically move X ′′n+2 to X ′n+2. If the linkages have opposite sign

(i.e., t′2 6= t2), then without loss of generality assume that

d(X ′′n+1, P+) + d(P+, X
′
n+1) < d(X ′′n+1, P−) + d(P−, X

′
n+1). (3.1)

(These will not be equal by the “not reflections” assumption.) Then move from X ′′n+1

to P+ using its linkage sign (i.e., t2), and then from P+ to X ′n+1 using linkage sign t′2.

If the opposite inequality occurs in (3.1), move similarly through P−.

Case 2: Suppose that X ′n+1 and X ′n+2 are the reflections of X ′′n+1 and X ′′n+2 across

the segment X ′nXn+3. If X ′′n+1-X
′′
n+2-Xn+3 is an “up” linkage (i.e., t2 = 1), move

X ′′n+1 down to P−, maintaining the “up” orientation, and then switch to a “down”

orientation as you move up from P− to X ′n+1. If X ′′n+1-X
′′
n+2-Xn+3 is a “down” linkage,

move X ′′n+1 up to P+, maintaining the “down” orientation, and then switch to an “up”
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orientation as you move down from P+ to X ′n+1. The key point for continuity here is

that if you were moving from P+ to P−, you get the same path regardless of whether

you think of the initial orientation as being up or down. It will move through “up”

linkages. Similarly, motion from P− to P+ will be through “down” linkages either

way you think about it.
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