EXPLICIT MOTION PLANNING RULES IN CERTAIN POLYGON SPACES

DONALD M. DAVIS

ABSTRACT. This is an addendum to our paper [1]. It seems somewhat relevant, but perhaps distracting. We give an optimal, explicit set of motion planning rules in a polygon space closely related to the polygon space studied in [1].

1. INTRODUCTION

In [1], we studied the algebraic and differential topology of the space

$$K_n = (S^1)^n / (z_1, \dots, z_{n-1}, z_n) \sim (\overline{z}_1, \dots, \overline{z}_{n-1}, -z_n).$$
(1.1)

We are particularly interested in determining its topological complexity, because it is homeomorphic to the space $\overline{M}(\epsilon^{n-1}, 1, 1, 1, 2)$ of isometry classes of planar polygons with the prescribed side lengths. Here $0 < \epsilon < \frac{1}{n-1}$ occurs n-1 times. All we can say is that $n \leq \operatorname{TC}(K_n) \leq 2n-5$. Here we consider motion planning in a closely related space of polygons.

Let $M(\epsilon^{n-1}, 1, 1, 1, 2)$ denote the space of planar polygons with the prescribed side lengths, identified under *oriented* isometry. Then the double cover $M(\epsilon^{n-1}, 1, 1, 1, 2) \rightarrow \overline{M}(\epsilon^{n-1}, 1, 1, 1, 2)$ which identifies a polygon with its reflection across the long edge corresponds to the double cover $T^n \rightarrow K_n$. The *n*-torus is well known to satisfy $TC(T^n) = n + 1$, with easily-described motion planning rules. Using [2], we give here n + 1 explicit motion planning rules between polygons in $M(\epsilon^{n-3}, 1, 1, 1, 2)$ corresponding to the simple motion planning rules for the torus.

Date: June 26, 2017.

Key words and phrases. topological complexity, planar polygon spaces.

²⁰⁰⁰ Mathematics Subject Classification: 55M30, 70B15.

DONALD M. DAVIS

2. Description of polygons

Let $\ell = (\epsilon^{n-1}, 1, 1, 1, 2)$. A polygon in $M(\ell)$ or $\overline{M}(\ell)$ with successive vertices X_1, \ldots, X_{n+3} can be placed so that $X_1 = (0, 0)$ and $X_{n+3} = (2, 0)$. Edges $X_i X_{i+1}$, $1 \leq i \leq n-1$, can be chosen as arbitrary vectors of length ϵ . These correspond to the first n-1 factors of T^n . The distance from X_n to X_{n+3} is a real number r satisfying 1 < r < 3. Following [2], we choose X_{n+1} and X_{n+2} as follows.

Identify S^1 as $S := [-1,1] \times \{-1,1\}/(\pm 1,-1) \sim (\pm 1,1)$. Let $C(\mathbf{x},r)$ denote the circle of radius r centered at \mathbf{x} . Vertex X_{n+1} lies on the arc of $C(X_n,1)$ which lies inside $C(X_{n+3},2)$. Parametrize this arc linearly from bottom (P_-) to top (P_+) as t goes from -1 to 1. For $[(t_1,t_2)] \in S$, X_{n+1} is the point on the arc with parameter value t_1 . If $t_1 \neq \pm 1$, $C(X_{n+1},1)$ intersects $C(X_{n+3},1)$ at two points, one lying above the segment $X_{n+1}X_{n+3}$ and the other below it. Let X_{n+2} be the point above (resp. below) the segment if $t_2 = 1$ (resp. -1). We also say that $X_{n+1}-X_{n+2}-X_{n+3}$ is an "up" (resp. "down") linkage. If $t_1 = \pm 1$, then $C(X_{n+1},1)$ and $C(X_{n+3},1)$ intersect at one point, which is chosen for X_{n+2} .

Note that conjugating the first n-1 S^1 -factors, while negating the last one, corresponds to reflecting the polygon about its long side. The following figure illustrates the polygon associated to $(z_1, z_2, z_3) \in T^3$ with $z_1 = e^{i\pi/4}$, $z_2 = e^{3i\pi/4}$, $z_3 \approx [(.6, 1)]$, with $\epsilon \approx 0.3$.

3. MOTION PLANNING RULES

Recall that the n + 1 motion planning rules for T^n are that in each factor move along the shorter arc if the points are not antipodal and counterclockwise if they are. The domains of continuity are sets having a fixed number of antipodal components. These motions can be done either simultaneously in all components, or sequentially.

We wish to tell how to move from a polygon with vertices (X_1, \ldots, X_{n+3}) to polygon $(X_1, X'_2, \ldots, X'_{n+2}, X_{n+3})$. For both of them, $X_1 = (0,0)$ and $X_{n+3} = (2,0)$. The polygons are associated to points $(z_1, \ldots, z_{n-1}, [t_1, t_2])$ and $(z'_1, \ldots, z'_{n-1}, [t'_1, t'_2])$ in $T^{n-1} \times S$ as described in the previous section. We will do the motion for the first n-1 components first, as they are simpler.

We rotate the edges $X_i X_{i+1}$ for $1 \leq i \leq n-1$ according to the rule for the torus (the shorter way if $z'_i \neq -z_i$, else counterclockwise). This can be done either simultaneously or sequentially. During this motion, the vertex X_n will be moving to X'_n , causing the arc from P_- to P_+ to change smoothly. While this takes place, we maintain the parameter values $[t_1, t_2]$ from the initial polygon; as the arc moves, X_{n+1} stays the same fraction of the way along it, and the linkage X_{n+1} - X_{n+2} - X_{n+3} stays either "up" or "down" (or straight if $t_2 = \pm 1$). Following this motion, we will be at $(X_1, X'_2, \ldots, X'_n, X''_{n+1}, X''_{n+2}, X_{n+3})$, where $(X'_n, X''_{n+1}, X''_{n+2}, X_{n+3})$ has the initial parameter values $[t_1, t_2]$, and we wish to move it to $(X'_n, X''_{n+1}, X''_{n+2}, X_{n+3})$ with parameter values $[t'_1, t'_2]$, without moving X'_n . There are two cases, corresponding to antipodal or not on the circle.

Case 1: Suppose that X'_{n+1} and X'_{n+2} are not the reflections of X''_{n+1} and X''_{n+2} across the segment $X'_n X_{n+3}$. If both are "up" linkages or both are "down" linkages (or one is straight), then, maintaining the sign of the linkage, move from X''_{n+1} to X'_{n+1} . This will automatically move X''_{n+2} to X'_{n+2} . If the linkages have opposite sign (i.e., $t'_2 \neq t_2$), then without loss of generality assume that

$$d(X_{n+1}'', P_+) + d(P_+, X_{n+1}') < d(X_{n+1}'', P_-) + d(P_-, X_{n+1}').$$
(3.1)

(These will not be equal by the "not reflections" assumption.) Then move from X''_{n+1} to P_+ using its linkage sign (i.e., t_2), and then from P_+ to X'_{n+1} using linkage sign t'_2 . If the opposite inequality occurs in (3.1), move similarly through P_- .

Case 2: Suppose that X'_{n+1} and X'_{n+2} are the reflections of X''_{n+1} and X''_{n+2} across the segment $X'_n X_{n+3}$. If $X''_{n+1} \cdot X''_{n+2} \cdot X_{n+3}$ is an "up" linkage (i.e., $t_2 = 1$), move X''_{n+1} down to P_- , maintaining the "up" orientation, and then switch to a "down" orientation as you move up from P_- to X'_{n+1} . If $X''_{n+1} \cdot X''_{n+2} \cdot X_{n+3}$ is a "down" linkage, move X''_{n+1} up to P_+ , maintaining the "down" orientation, and then switch to an "up" orientation as you move down from P_+ to X'_{n+1} . The key point for continuity here is that if you were moving from P_+ to P_- , you get the same path regardless of whether you think of the initial orientation as being up or down. It will move through "up" linkages. Similarly, motion from P_- to P_+ will be through "down" linkages either way you think about it.

References

- [1] D.M.Davis, *n*-dimensional Klein bottles, on arXiv.
- [2] _____, Real projective space as a planar polygon space, Morfismos 19 (2015) 1–6.

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PA 18015, USA *E-mail address*: dmd1@lehigh.edu