p-ADIC STIRLING NUMBERS OF THE SECOND KIND

DONALD M. DAVIS

ABSTRACT. Let S(n,k) denote the Stirling numbers of the second
kind. We prove that the p-adic limit of S(p¢a+c, p°b+d) as e — 0o
exists for any integers a, b, ¢, and d with 0 < b < a. We call the
limiting p-adic integer S(p>a+c, p>*°b+d). When a = b mod (p—1)
or d < 0, we express them in terms of p-adic binomial coefficients

(p ::o‘ff[;l) introduced in a recent paper.

1. MAIN THEOREMS

In [3], the author defined, for integers a, b, ¢, and d, with 0 < b < q, (g:gi;) to

pea+c)’ and gave explicit formulas

peb+d
for these in terms of rational numbers and p-adic integers which, if p or n is even,

could be considered to be U,((p>°n)!) :=lim U,((p°n)!). Here and throughout, v,(—)

be the p-adic integer which is the p-adic limit of (

denotes the exponent of p in an integer or rational number and Uy,(n) = n/ pre()
denotes the unit factor in n. Here we do the same for Stirling numbers S(n, k) of the
second kind; i.e., we prove that the p-adic limit of S(p°a + ¢, p°b + d) exists, and call
it S(p>®a+c,p*b+d). If a=bmod (p—1) or d < 0, we express these explicitly in

pa—1
p>pB
We now list our four main theorems, which will be proved in Sections 2 and 4. Let

terms of certain ( ) together with certain Stirling-like rational numbers.

Z,, denote the p-adic integers with the usual metric.

Theorem 1.1. Let p be a prime, and a, b, ¢, and d integers with 0 < a < D.
Then the p-adic limit of S(p°a + ¢,p°b + d) exists in Z,. We denote the limit as
S(p>®a+ ¢, p>b+d).
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Theorem 1.2. If p is any prime and 0 < b < a, then S(p~®a,p>b) = 0 if a £ b
mod (p — 1), while

(o) a—b
PP —
S(p™a,p>b) = ( pp(la_b) ) ifa=b mod (p—1).
=
These p-adic binomial coefficients are as introduced in [3].

Let |s(n, k)| denote the unsigned Stirling numbers of the first kind.

Theorem 1.3. If0 < b < a, then

d=0, c#0
d<0,¢c>0
|s(|d], |c[)|S(p>a,p®b) <0, d<0.

0
S(p>a+c,pb+d) =<0
In particular, if @ Z b mod (p — 1), then S(p™a + ¢, p™°b + d) = 0 whenever d < 0.

For any prime number p, integer n, and nonnegative integer k, define the partial
Stirling numbers T,,(n, k) ([2]) by

(1.4) Ty(n, k) = > (D)
i#0 (p)
Theorem 1.5. Ifa=b mod (p—1) and d > 1, then

porazt g
S(p*a+d—1,p°b+d) =T,(d— 1,d)< pflb )
pOO

When a = b mod (p — 1), results for all S(p>*a+ ¢, p*b+d) with d > 0 follow from
these results and the standard formula
(1.6) S(n,k)=kS(n—1,k)+Sn—1,k—1).

Explicit formulas are somewhat complicated and are relegated to Section 3.

2. PROOFS WHEN ¢ =b MOD (p—1) OR d <0

In this section, we prove Theorems 1.2, 1.3, and 1.5. If a =bmod (p—1) or d <0,
Theorem 1.1 follows immediately from Theorems 1.2, 1.3, and 1.5 and their proofs.
These give explicit values for the limits when d < 0 and for at least one value of ¢
when d > 0. The existence of the limit for other values of ¢ follows from (1.6) and
induction. Examples are given in Section 3. We will prove Theorem 1.1 when a # b
mod (p — 1) and d > 0 in Section 4.
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We rely heavily on the following two results of Chan and Manna.

Theorem 2.1. ([1, 4.2,5.2]) Suppose n > p™b with m > 3 if p=2. Then, mod p™ "
if p=2, and mod p™ if p is odd,
(nf/;ir;ibl;l) ifp=2andn=0 mod 2

S(n,p™b) = (("ZST;LZ))%Z:?)A) if pis odd andmn =b mod (p—1)

0 otherwise.

Theorem 2.2. ([1, 4.3,5.3]) Let p be any prime, and suppose n > p°b+ d. Then
S(n,pb+d) =Y Spb+(p—1)j,pb)S(n—pb—(p—1)j,d) mod p°.

Jj=0

Proof of Theorem 1.2. The result follows from Theorem 2.1. If p is odd and a # b
mod (p — 1), then v,(S(p°a,p°b)) > e, while if a = b mod (p — 1), then

p€71}ﬂ —
S(p°a,pb) = < Ej;(la_b) > mod p°.
P
If p=2, then
2¢7%(2a — b) — 1
2°a,2°) = 2¢71
S(2°, 2°b) ( 2e-2(2 — 20) ) mod

O

Let dy(n) denote the sum of the digits in the p-ary expansion of a positive integer

n.

Proof of Theorem 1.3. The first case follows readily Theorem 2.1. If p = 2, this says
that v(S(2%a + ¢,2°D)) > e — 1 if ¢ is odd, while if ¢ = 2k is even, then, mod 2°7!,
27 ta+ k-2 — 1
2¢71lg + k —2¢71) )
If 0 < k < 2°°! this has 2-exponent

Vo = dg(@ — b) + dg(k}) — (dg(ZCL — b) + dg(k? — 1)) + d2(26_2b — ].) — OO

S(2%a + 2k, 2°b) = (

as e — oo, while if k = —¢ < 0, then

vy = e—1+dy(a—b—1)—dy({—1)—(e—2+dy(2a—b—1)—dy({))+dx(2° 2b—1) — 0.
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The odd-primary case follows similarly.

The second case of the theorem follows from the result for ¢ = 0 just established
and (1.6) by induction. For the third case, write ¢ = —k and d = —¢ and argue by
induction on k and /¢, starting with the fact that the result is true if k =0 or [ = 0.
Then, mod p°,

S(pfa—k—1,p°6—0—1) = S(p°a—k,pb—10)— (p°b—0)S(p°a—k —1,p°b— 1)
= S, p0)(|s(, k)| + L]s(l, k + 1))
= S(p°a,p°b)|s({+ 1,k + 1),
implying the result. ([l
The proof of Theorem 1.5 will utilize the following two lemmas. We let lg,(z) =
[log, ()]
Lemma 2.3. If p is any prime and k and d are positive integers, then
vp(Tp((p — Dk +d = 1,d) = T,(d — 1,d)) > v,(k) —1g,(d).
Proof. We have
Ty((p— Dk +d—1,d) — Ty(d — 1,d)]

p—1
) S () 0+ ) (g ) )
r=1 J
p—1
_ Z(_l)r Z T(p—l)k+d—1—i—t((p—il)k) (dzl)é Z(_1>j (pj(j—r) (p .)i-i—t‘
r=1 i>0,t>0 J
Since ((p_il)k) = @((p_il_)f_l), we have Vp((p_il)k) > v,(k) — vp(i) for ¢ > 0. Also

vp (3 Y (=17 (1) (0d)™) = max(0,i +t — vyp(d))),
J
with the first part following from [7, Thm 1.1]. Thus it will suffice to show
lg,(d) — vp(i) + max(0,i +t — pp(d!)) > 0.
This is clearly true if v,(i) < lg,(d), while if 1,(i) > lg,(d) = ¢, then p,(d!) <

Z+171

vp((p™ = 1)) =B

The following lemma is easily proved by induction on A.

—(¢—1andi—v,(i) > p*t — £ —1, implying the lemma. [
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Lemma 2.4. If A and B are positive integers, then
A-1

2 (TN =,

=0
Now we can prove Theorem 1.5. We first prove it when p = 2, and then indicate
the minor changes required when p is odd. Using Theorem 2.2 at the first step and

Theorem 2.1 at the second, we have

S(2°a+d—1,2°b+d)

2¢a—1
= ) S(,2°0)8(2°a+d—1—4i,d) mod 2°

i=2¢b

27 1lg—1 , .

— 22— 1

= Y (7 S(2°a+d—1-2j,d) mod 2°"

. J—2c7"

j=2¢"1p

2¢71(a—b)—1 9

2¢72h — 1
= Z (l‘“r kb )S(Qe(a—b)+d—1—2k:,d)
k=0

2¢~1(a—b) _9
B 207224 — b) — 1 — ¢
- > ( pe2p 1 )S(2€+d—1,d)

/=1

2L roe200 _py 1 1 d

= To(20+d—1,d) £ — 27)%+41).
> (TG merea- ) (5 )@
We have v, (25_22(332713114) = f(a,b) +e—1y(l), where f(a,b) = vy (zgt;_bg_bl) +v9(a—
b) — 1. By [4, Thm 1.5],

(2.5) va( 3 20 (5)(25)%F ) > 20+ § — 1.

Thus, using Lemma 2.3 at the first step and Lemma 2.4 at the second, we obtain

S(2°a+d—1,2°b+d)
2¢=1(a—b)—1

k+2720— 1 .
Tg(d 1, d) Z ( + \ ) mod 2m1n(e—l,e+f(a,b)—lg(d))
k=0

2¢7(a —b) + 272 — 1
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Letting e — oo yields the claim of Theorem 1.5. In the congruence, we have also
used that vo(Ta(d — 1,d)) > 0. In fact, by (2.5) and S(d — 1,d) = 0, we have
va(To(d — 1,d)) > ¢ — 1. See Table 2 for some explicit values of T5(d — 1, d).

We now present the minor modifications required when p is odd and a = b mod
(p—1). Let a=b+ (p—1)t. Then

S(pta+d—1,p° + d)

pet—1
= > SEb+(p-1)4pb)SEla—b)—(p—1)j+d—1,d)
=0
pet—l 6—1 .
pb+7—1 . .
= X (") st - ve- - i a1
— J
J
pet e e—1
t b—0—1
_ (p o )S((p—1)€+d—1,d)
peib—1
(=1
P 4 — 1
- Tp(d—l,d)Z(p -/ )
=0 J
p°t+pih—1
_ Tp(d—l,d)< 1 )

3. MORE FORMULAS AND NUMERICAL VALUES

In Theorem 1.3, we gave a simple formula for S(p>~a+ ¢, p>b+ d) when d < 0. For
d > 0, all values can be written explicitly using (1.6) and the initial values given in
Theorem 1.5, provided a = b mod (p — 1).

First assume ¢ > d — 1. For i > 1, define Stirling-like numbers S;(c, d) satisfying
that for d < i or ¢ < d — 1 the only nonzero value is S;(i — 1,7) = 1 and satisfying the
analogue of (1.6) when ¢ > d. Note that Si(c,d) = S(c,d) if (¢,d) & {(0,0),(0,1)}.
The following result is easily obtained. Here we use that the binomial coefficient in

Theorem 1.5 equals }%“T_”S(pooa,poob).

Proposition 3.1. Assumea=b mod (p—1). Ford>1, ¢>d— 1, we have
d
S(p™a+e, p<b+d) = S(p™a,pb) (S(c,d)+Y  Si(e, d)T,(i—1,4)L5%52).

i=1
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The reader may obtain a better feeling for these numbers from the table of values

of S(p®a+c,p*b+d)/S(p>a,p>b) in Table 1, in which T; denotes T,(i — 1, @')p%l‘%b.

TABLE 1. S(p®a+c,p>*b+d)/S(p>¥a,p>b) when a = b

mod (p — 1)
d
1 2 3 4 o
0] T
111+7T T,
c 2(1+Ty 1+1T,+27, 15
311+1y 3+31 +47T, 14T+ 275 T
+3T5
411+Ty 7T+ 7T + 815 6 + 6Ty 14+ T + 2T, Ts
+10T% + 975 +315 + 47,
5/1+T17y 15+ 15Ty 25 +2577 10+ 1077 + 187, 14Ty + 215
+1675 +38T5 + 2715 +2175 + 1614 +3715 + 47T}
+5T5

The first few values of Ty(d — 1,d) and T3(d — 1,d) are given in Table 2.

TABLE 2. Some values of Ty(d — 1,d) and T3(d — 1,d)

d 1 2 3 4 5 6 7 8
To(d—1,d)|1 -1 2 —& 12 14 408 _ 50008
Ld-Ld|L 0 -3 § - R B -5

For ¢ < d — 1, we use (1.6) to work backwards from S(p>®a + d — 1,p>b + d),

obtaining

Proposition 3.2. Suppose a = b mod (p —1). Fork > 1,d > 0, let Y(k,d) =
S(p>a+d—k,p*b+d). Then Y (1,d) is as in Theorem 1.5 for d > 1, Y (k,0) =0
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fork>1, and, fork>2,d>1,
Y(k,d)=(Y(k—-1,d)—-Y(k-1d-1))/d.

We illustrate these values in Table 3, where again 7; denotes T,(i — 1, z)%laT’b

TABLE 3. S(p®a+c¢,p>®b+d)/S(p™¥a,p>b) when a = b

mod (p — 1)
d
1 2 3 4
1 7 1 781 865 415
—2|T §T2 B §T1 §T3 B 648T2 + 216T1 1024T4 - 82944T3 + 20736T - 3456T1
1 3 1 175 115
—1T ZT2 - ZTl ﬁT3 108T2 + Tl 256T4 6912T3 + TQBT2 288T1
C 0 Tl %TQ — %TI %Tg — ETQ -+ %TI @T‘l 576T3 -+ 144T2 T1
2 Ts iT4 — %Tg

Note that since S(d — 1,d) = 0 and T,(n,k) — S(n, k) is a sum like that in (1.4)
taken over ¢ = 0 mod p, we deduce that T,(d—1,d) = 0if 1 < d < p, which simplifies
these results slightly.

4. THE CASE a #b MOD (p — 1)

In this section, we complete the proof of Theorem 1.1 when a # b mod (p — 1) by

proving the following case.

Theorem 4.1. Suppose 0 < b < a and d > 1. Then the p-adic limit of S(p g
(a —b),p*"b+ d) exists as e — .

Then lim S(p*™a + ¢, p°'b + d) exists for all integers ¢ by induction using (1.6).
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Let Ry(e) = (p™' —1)/(p — 1). The proof of Theorem 4.1 begins with, mod p®,

S(r*a — (a - b),p*'b + d)

Ry(e)(a—b)

> SET+ (p— 15 p TS = 1)(a—b) — (p— 1)4,d)
=0

Ry (e)(a—b) . L
PO+ -1\ (=1) (AN (e D)) (1)
Z ( . > d Z(—l) i i@ 1)(a—b)—(p—1);

§=0 J i=0

d Ry(€) (a—b) .
= Z(—l)”dl' (d) 3 (peb T 1),-<p8+1—1>(a—b>—(p—1)j‘
d'\i ‘

=0 Jj=0 J

We show that for each 7, the limit as e — oo of
Rp(e)(a—b)

e e A Ry
(4.2) ( , )z D)~

exists in Z,. This will complete the proof of the theorem.
If i # 0 mod p, write ®*~! = Ap + 1, using Fermat’s Little Theorem. Then (4.2)

becomes

Ry(e)(a—b) Ry(e)(a—b) . )
¢ pb+j—1\ (Ryle)(a—0b)—j
2 () ( j ) ( ‘
/=0 7=0
. Rp(e (a—b)(Ap>€ b+ Rp(e) (a . b)
P peb+ ¢

by [6, p.9(3c)]. Lemma 4.5 says that for each ¢, there exists a p-adic integer

. p°b+ R,(e)(a —b)
zp = lim ( b 0 )

e—00

Then Z(AP)ZZ[ is a p-adic integer, which is the limit of (4.2) as e — oco.

=0
If i = 0, since 0° = 1 in (4.2) and the equations preceding it, (4.2) becomes
(peb + Ry(e)(a—b) — 1) _ p°b (peb + Ry(e)(a — b))
peb—1 peb+ Ry(e)(a — b) peb '

peb+Rp(e)(a—b)—1

Since by the proof of Lemma 4.5 v, (p 6b+R§£Z)(“_b)) is eventually constant, ( b1

0 in Z,, due to the p°b factor.

) —
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We complete the proof of Theorem 4.1 in the following lemma, which shows that
the p-adic limit of (4.2) is 0 when ¢ = 0 mod p and i > 0.

Lemma 4.3. If 0 < j < R,(e)(a —b), then

brj—1 '
yp(p Jj >+(pe+1—1)(a—b)—(f9_1)]26_10gp(a_b+p)

for e sufficiently large.

Proof. Let ¢ = Ry(e)(a—b) —janda—b=(p—1)t+A, 1 <A <p-—1. The
p-exponent of the binomial coefficient becomes

(4.4)

dy(b—1)+e+d,((p*T = 1)t+R,(e) A=) —d,((p°™ = 1)t+ R, (e) A+p°b—L—1).

Choose s minimal so that p%l(ps —1)—4¢—1—1t > 0. Then, if e > s, the p-ary
expansion of (p*tt — 1)t + R,(e)A — ¢ splits as

S —1

e=s _ 1
sP A—l—t,
1

pPt+a) + p—on 4 P
p—1 I
and there is a similar splitting for the expression at the end of (4.4). We obtain that

(4.4) equals

e+ vy(b) + Vp(pt+Z+A) - Vp(ﬁ(ps —1) =0 —1t).

The expression in the lemma equals this plus (p — 1)¢. Since s was minimal, we have

ﬁ(ps—l)—f—t < (p—1)(+t)+p+A, and hence l/p(ﬁ(ps—l)—ﬁ—t) <log,((p—

1)(€+1t)+p+A). The smallest value of (p —1)¢ —log,((p —1)(¢ +1) +p+ A) occurs
when ¢ = 0. We obtain that the expression in the lemma is > e —log,(a —b+p). O

The following lemma was referred to above.

Lemma 4.5. If o and b are positive integers and ¢ > 0, then

e b+ R,(e)x
peb+ ¢

e—00

ex1sts i Ly,.

This is another p-adic binomial coefficient, slightly different than those of [3], which

pb+ Ry (00)a
P>b+L

ing that the p-exponents are eventually constant, and showing that the unit parts

we would call ( ) The proof of the lemma breaks into two parts: show-

approach a limit.
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The proof that the p-exponent is eventually constant is very similar to the proof of

Lemma 4.3. Let a = (p—1)t+A with 1 < A < p—1, and choose s minimal such that

Se(p

obtain that for e > s, the desired p-exponent equals v, (pt+Z+A) + 1, (A(ps_l)é(p_l)_t),

S

—1)—t—¢> 0. Then the p-ary expansions split again into three parts and we

independent of e.

We complete the proof of Lemma 4.5 by showing that, if £ < min(R,(e — 1)a, p°b)
and p® > «, then
(4.6)

-1
p“ b+ Ry(e — Do p°b+ R,(e)a b1
U d pet/(ebl)

p( pelb+ AN e ’

where f(a,b,f) = min(v,(b) — Ig,(a), vp(a) —1g,(£), vp(b) —1g,(£),1). We write the
second binomial coefficient in (4.6) as

L w R@a) (Rea) ) (1)
DL VA5 ) R VA e A P e 0T

We show that the unit parts of these four factors are congruent to their (e — 1)-

analogue mod petr®)-ls@—1  petvp(@)-lg, (-1 petr®)-lg, (-1 anq pe respectively,
which will imply the result. For the fourth factor, this was shown in [3]. For the
second and third, the claim is clear, since each of the ¢ unit factors being multiplied
will be congruent to their (e — 1)-analogue modulo the specified amount.

To prove the first, we will prove
(4.8)

(Rp(e)Oé + 1) ... (Rp(e)Oé +peb) (1) mod pete® (e
Up((Rp(G—l)O[—I—l)---(Rp(e_1)&+pe—1b))_( 1) dp .

Since U,(j) = Up(pj), we may cancel most multiples of p in the numerator with

factors in the denominator. Using that p - R,(e — 1) = R,(e) — 1, we obtain that
the LHS of (4.8) equals P U,(A)/U,(B), where P is the product of the units in the
numerator, A is the product of all j = 0 mod p which satisfy

(Ry(e) — 1)a+pb < j < Ry(e)a + p,
and B is the product of all integers k such that
(4.9) Ry(e—1Da+1<k<Rye—1a+ [2].

o
p
Since the mod p® values of the p-adic units in any interval of p© consecutive integers

are just a permutation of the set of positive p-adic units less than p¢, and by [5,
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® mod p°. Thus

Lemma 1] the product of these is —1 mod p°, we obtain P = (—1)
(4.8) reduces to showing U,(A)/ U,(B) =1 mod pe»®)-lsp(e)—1,

We have

Up(4) _ H Up(k +p='b)

Uy(B) Up(k)
taken over all k satisfying (4.9). We show that if k satisfies (4.9), then
(4.10) vp(k) <lg,(a).
Then U, (k) = U,(k + p°'b) mod pet»®~1e(@)=1 egtablishing the result.

We prove (4.10) by showing that it is impossible to have 1 < a < p*, 1 <i < [%},
t < e, and
(4.11) Ry(e—1)a+i=0 mod p".

From (4.11) we deduce o = i(p — 1) mod p'. But i(p — 1) < a, so the only way to
satisfy (4.11) would be with a = p' and i = 0, but a < p'.
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