THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE SPACE $K\left(\mathbb{Z}_{2}, 2\right)$

DONALD M. DAVIS AND W. STEPHEN WILSON

Abstract

We compute $k u^{*}\left(K\left(\mathbb{Z}_{2}, 2\right)\right)$ and $k u_{*}\left(K\left(\mathbb{Z}_{2}, 2\right)\right)$, the connective $K U$ cohomology and connective $K U$-homology groups of the mod 2 Eilenberg-MacLane space $K\left(\mathbb{Z}_{2}, 2\right)$, using the Adams spectral sequence. The mod-2 connective $K U$ cohomology groups, $k(1)^{*}\left(K\left(\mathbb{Z}_{2}, 2\right)\right)$, computed elsewhere, are needed in order to establish higher differentials and exotic extensions in the integral groups.

1. Main Results

In [11] and [5], the authors initiated a partial computation of the connective $K U$ homology groups, $k u_{*}\left(K_{2}\right)$, of the mod 2 Eilenberg-MacLane space $K_{2}=K\left(\mathbb{Z}_{2}, 2\right)$ in separate studies of Stiefel-Whitney classes of manifolds. We eventually turned to the associated cohomology groups, $k u^{*}\left(K_{2}\right)$, and here we give a complete determination, via the Adams spectral sequence (ASS). Subsequently the first author noticed a duality result ([4]) relating these homology and cohomology groups, and in Section 2, we discuss the resulting $k u_{*}\left(K_{2}\right)$.

The bulk of this introductory section is a discussion of the result of our ASS computation of (reduced) $k u^{*}\left(K_{2}\right)$. There are nice families of exotic extensions. We depict the ASS with cohomological (co)degrees increasing from right-to-left. The Bott element $v \in k u^{*}=\mathbb{Z}_{(2)}[v]$ decreases grading by 2.

In $k u^{*}\left(K_{2}\right)$, there is an infinite family of split \mathbb{Z}_{2} 's whose Poincaré series is described at the end of Section 3. Ignoring these from now on, as a $k u^{*}$-module, $k u^{*}\left(K_{2}\right)$ is generated by certain products of elements of $E_{2}^{0, *}, x_{4}, x_{9}$, and x_{8}, with $\left|x_{i}\right|=i$, and z_{j} for $j \geq 3$ with $\left|z_{j}\right|=2^{j}+2$. We let Λ_{j} denote the exterior algebra $E\left[z_{i}: i \geq j\right]$, and $\bar{\Lambda}$ and \bar{E} the augmentation ideal in an exterior algebra.

Date: June 22, 2022.
Key words and phrases. Adams spectral sequence, connective K-theory, Eilenberg-MacLane spaces.

2000 Mathematics Subject Classification: 55T15, 55N20, 55N15.

We will show that there are closely-related $k u^{*}$-modules A_{k} and B_{k} for $k \geq 3$ such that in even gradings ${ }^{1}$ there is an isomorphism of $k u^{*}$-modules

$$
\begin{equation*}
k u^{\mathrm{ev}}\left(K_{2}\right) \approx \bigoplus_{k \geq 3} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \otimes\left(A_{k} \oplus x_{4}^{2^{k-3}} B_{k} z_{k} \Lambda_{k+1} \oplus B_{k} \bar{\Lambda}_{k+1}\right) \tag{1.1}
\end{equation*}
$$

The notation $x_{4}^{2^{k-3}} B_{k} z_{k} \Lambda_{k+1}$ means that all elements of B_{k} are multiplied by $x_{4}^{2^{k-3}} z_{k}$, and this is tensored with Λ_{k+1}. Note that B_{k} never appears alone.

We give three descriptions of A_{k} and B_{k}, and discuss how Figure 1.10 depicts A_{k} and B_{k} for all $k \leq 7$, and enables one to envision them for all k. As a preview, the dashed lines in Figure 1.10 connect elements of A_{k} which are not in B_{k}, and the red lines (sometimes slightly curved) are exotic extensions (multiplication by 2 , not seen in Ext).

We first give an inductive description. Let $B_{3}=0$, and A_{3} have as its only nonzero classes $^{2} x_{8}, z_{3}$, and $2 x_{8}=v z_{3}$. Let

$$
\begin{equation*}
z_{i, j}=z_{i}^{2} z_{i+1} \cdots z_{j-1} \text { for } 4 \leq i \leq j-1 \tag{1.2}
\end{equation*}
$$

while $z_{j, j}=z_{j}$. These classes occur in consecutive even gradings from $2^{j}+2 j-6$ down to $2^{j}+2$ as i goes from 4 to j. For $k \geq 4$, there are $k u^{*}$-modules T_{k}^{A} and T_{k}^{B} generated by $z_{j, k}$ for $4 \leq j \leq k$, with relations

$$
\begin{equation*}
2 z_{j, k}=v z_{j-1, k} \text { for } 5 \leq j \leq k \tag{1.3}
\end{equation*}
$$

$2 z_{4, k}=0, v^{2^{k-2}} z_{k, k}=0$ in T_{k}^{A}, and otherwise $v^{2^{j-2}-(j-2)} z_{j, k}=0$ in both T_{k}^{A} and T_{k}^{B}. In Figure 1.10, the batch of v-towers going up from gradings 130 to 136 are T_{7}^{A} and T_{7}^{B}, with the dashed part (whose slope was changed for typographical reasons) representing the elements $v^{i} z_{7}$ for $27 \leq i \leq 31$, which are in T_{7}^{A}, but not in T_{7}^{B}.

The inductive description is that, for $k \geq 4$, there are short exact sequences of $k u^{*}$-modules

$$
\begin{equation*}
0 \rightarrow T_{k}^{B} \rightarrow B_{k} \rightarrow \bigoplus_{j=4}^{k-1} x_{4}^{2^{j-3}} B_{j} z_{j+1} \cdots z_{k-1} \rightarrow 0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow T_{k}^{A} \rightarrow A_{k} \rightarrow x_{4}^{2^{k-4}} A_{k-1} \oplus \bigoplus_{j=4}^{k-2} x_{4}^{2^{j-3}} B_{j} z_{j+1} \cdots z_{k-1} \rightarrow 0 \tag{1.5}
\end{equation*}
$$

[^0]with extensions given by
\[

$$
\begin{align*}
\left(2 \cdot x_{8}=v z_{3}\right) & \otimes P\left[x_{4}\right] \\
\left(2 \cdot z_{3}=0\right) & \otimes P\left[x_{4}^{2}\right] \\
\left(2 \cdot x_{4} z_{3}=v^{2} z_{4}\right) & \otimes P\left[x_{4}^{2}\right] \\
\left(2 \cdot z_{4}=0\right) & \otimes P\left[x_{4}^{4}\right] \otimes \Lambda_{4} \\
\left(2 \cdot z_{j}=v z_{j-1}^{2}\right) & \otimes P\left[x_{4}^{2 j-2}\right] \otimes \Lambda_{j}, \quad j \geq 5 \\
\left(2 \cdot x_{4}^{2} z_{4}=v^{4} z_{5}\right) & \otimes P\left[x_{4}^{4}\right] \otimes \Lambda_{5} \\
\left(2 \cdot x_{4}^{2^{j-3}} z_{j}=v x_{4}^{2^{j-3}} z_{j-1}^{2}+v^{2^{j-2}} z_{j+1}\right) & \otimes P\left[x_{4}^{2^{j-2}}\right] \otimes \Lambda_{j+1}, \quad j \geq 5 . \tag{1.6}
\end{align*}
$$
\]

These formulas can be also multiplied by powers of v, as long as the elements are nonzero. The extension formulas can be visualized in Figure 1.10. For example, in grading 116, $2 x_{4}^{4} z_{5} z_{6}=v x_{4}^{4} z_{4}^{2} z_{6}+v^{8} z_{6}^{2}$, and in grading $114, v x_{4}^{4} z_{5} z_{6}+v^{8} z_{7}$ has order 2 , and v^{23} times it is nonzero in A_{7}. As another example, Figure 1.10 shows that A_{7} contributes a $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ summand to $k u^{126}\left(K_{2}\right)$ with generators $v^{2} z_{7}$ and $x_{4}^{2} z_{4} z_{5} z_{6}+v^{3} z_{6}^{2}$.

In Figure 1.10, the v-towers emanating from gradings ≤ 102 comprise A_{6} (if dashed arrows are included) and B_{6} (if not), after dividing the labels by x_{4}^{8}. Those from gradings ≤ 84 are A_{5} and B_{5} after dividing by x_{4}^{12}.

Remark 1.7. A simpler inductive description is that B_{k} (resp. A_{k}) is built from

$$
\begin{array}{ll}
& B_{k-1} z_{k-1},\left\langle z_{k}\right\rangle /\left(2, v^{2^{k-2}-(k-2)}\right), \text { and } x_{4}^{2^{k-4}} B_{k-1} \\
\text { resp. } & B_{k-1} z_{k-1},\left\langle z_{k}\right\rangle /\left(2, v^{2^{k-2}}\right), \text { and } x_{4}^{2^{k-4}} A_{k-1},
\end{array}
$$

with exotic extensions from $v^{i} x_{4}^{2^{k-4}} z_{k-1}$ to $v^{i+2^{k-3}} z_{k}, 0 \leq i \leq 2^{k-3}-(k-1)$ (resp. $0 \leq$ $i \leq 2^{k-3}-1$), and h_{0}-extensions from $v^{i} z_{k}$ to $v^{i+1} z_{k-1}^{2}, 0 \leq i \leq 2^{k-3}-(k-1)$.

The non-inductive analogue of (1.4) is

$$
\begin{equation*}
B_{k}=T_{k}^{B} \oplus \bigoplus_{i=4}^{k-1} x_{4}^{2^{i-3}} \bigoplus \prod_{j=i+1}^{k-1}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot T_{i}^{B} \tag{1.8}
\end{equation*}
$$

with extensions from T_{i}^{B} to T_{i+1}^{B} determined by (1.6). Here $\bigoplus \prod_{j=i+1}^{k-1}\left\{z_{j}, x_{4}^{2^{j-3}}\right\}$ is the sum over all ways of choosing one or the other of the two expressions and taking the product of the selected expressions. For example, this says that

$$
\begin{equation*}
B_{7}=T_{7}^{B} \oplus x_{4}^{8} T_{6}^{B} \oplus x_{4}^{4} z_{6} T_{5}^{B} \oplus x_{4}^{12} T_{5}^{B} \oplus x_{4}^{2} z_{5} z_{6} T_{4}^{B} \oplus x_{4}^{6} z_{6} T_{4}^{B} \oplus x_{4}^{10} z_{5} T_{4}^{B} \oplus x_{4}^{14} T_{4}^{B} \tag{1.9}
\end{equation*}
$$

as can be seen in Figure 1.10. The analogue of (1.8) for A_{k} is that T_{i}^{B} is replaced by T_{i}^{A} whenever no z_{j} 's accompany it, and there is an additional $x_{4}^{2^{k-3}-1} A_{3}$.

Figure 1.10. B_{7} and A_{7}.

We now define $k u^{*}$-modules $S_{k, \ell}$ for $3 \leq k<\ell$ such that the odd-grading portion of $k u^{*}\left(K_{2}\right)$ is

$$
\begin{equation*}
k u^{\mathrm{od}}\left(K_{2}\right)=\bigoplus_{k \geq 3} \bigoplus_{\ell>k} x_{4}^{2^{k-3}-1} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] x_{9} S_{k, \ell} \Lambda_{\ell+1} . \tag{1.11}
\end{equation*}
$$

Definition 1.12. For $3 \leq k<\ell$, the $k u^{*}$-module $S_{k, \ell}$ has v-towers of v-height $k-1$ with generators $z_{i, \ell}$ for $4 \leq i \leq \ell-k+3$, with h_{0} (the Ext analogue of multiplication by 2) nonzero wherever possible.

Thus $2 v^{m} z_{i, \ell}=v^{m+1} z_{i-1, \ell}$ iff $i>4$ and $m \leq k-3$. For example, $S_{7,10}$ is depicted in Figure 1.13.

Figure 1.13. $S_{7,10}$

Recapitulating into theorem form, our main result is
Theorem 1.14. In addition to the split \mathbb{Z}_{2} 's, which are enumerated at the end of Section 3, the $k u^{*}$-module $k u^{*}\left(K_{2}\right)$ is as in (1.1) and (1.11), where A_{k} and B_{k} are given either inductively or explicitly as above, and $S_{k, \ell}$ is as in Definition 1.12.

The non-visual, formulaic form of our result is as follows, where $T P_{m}[v]=P[v] /\left(v^{m}\right)$.
Theorem 1.15. The $k u^{*}$-module $k u^{*}\left(K_{2}\right)$ is isomorphic to a trivial $k u^{*}$-module plus

$$
\begin{align*}
& P\left[x_{4}\right] x_{8} \oplus \bigoplus_{t \geq 0} T P_{2^{t+1}}[v] \otimes P\left[x_{4}^{2^{t}}\right] z_{t+3} \tag{1.16}\\
\oplus & \bigoplus_{t \geq 1} T P_{2^{t+1}-t-1}[v] \otimes P\left[x_{4}^{2^{t}}\right] z_{t+3} \Lambda_{t+3} \tag{1.17}\\
\oplus & \bigoplus_{e \geq 1} T P_{e+1}[v] \otimes P\left[x_{4}^{2^{e}}\right] x_{4}^{2^{e-1}-1} x_{9} \otimes \bigoplus_{j \geq 4} z_{j} Z_{j}^{j+e-2} \Lambda_{j+e-1}, \tag{1.18}
\end{align*}
$$

where $Z_{j}^{j+e-2}=z_{j} \cdots z_{j+e-2}$. Multiplication by 2 in (1.16) and (1.17) is given in (1.6), while in (1.18) it is determined by

$$
2 \cdot z_{j} M=\left\{\begin{array}{ll}
v z_{j-1}^{2} M & j \geq 5 \\
0 & j=4
\end{array} \text { for } M \in \Lambda_{j} .\right.
$$

The most direct route to this result is via the right-hand-side of equations (4.3), (4.4), and (4.5).

The structure of the rest of the paper is as follows. As already noted, Section 2 presents the results for $k u_{*}\left(K_{2}\right)$. In Section 3, we compute the E_{2}-term of the ASS for $k u^{*}\left(K_{2}\right)$. In Section 4 we determine the differentials in this ASS. In order to do so, we need to compare with $k(1)^{*}\left(K_{2}\right)$, where $k(1)$ is the spectrum for mod-2 connective $K U$-theory, using the exact sequence

$$
\begin{equation*}
\rightarrow k(1)^{*-1}\left(K_{2}\right) \rightarrow k u^{*}\left(K_{2}\right) \xrightarrow{2} k u^{*}\left(K_{2}\right) \rightarrow k(1)^{*}\left(K_{2}\right) \rightarrow k u^{*+1}\left(K_{2}\right) \xrightarrow{2} . \tag{1.19}
\end{equation*}
$$

In Section 4, we restate results about $k(1)^{*}\left(K_{2}\right)$ from [6]. At the end of Section 4, we show how the descriptions of $k u^{*}\left(K_{2}\right)$ in (1.1) and (1.11) are obtained once we know the differentials. This exact sequence is also used in determining the exotic extensions of (1.6), which is done in Section 5. In Section 6, we propose complete formulas for the exact sequence (1.19), and then in Section 7 , we show that our proposed formulas exactly account for all elements of $k(1)^{*}\left(K_{2}\right)$. In the optional Section 8, we discuss in more detail how the charts are obtained and explain a surprising duality in the B_{k} charts.

The main point of Section 7 is to prove that there are no additional exotic extensions in $k u^{*}\left(K_{2}\right)$. An exotic extension $2 \cdot A=B$ implies that A is not in the image from $k(1)^{*-1}\left(K_{2}\right)$, and B does not map nontrivially to $k(1)^{*}\left(K_{2}\right)$, so once we have shown that all elements are accounted for, there can be no more extensions. Many of our formulas in Section 6 are forced by naturality. However, many others occur in regular families, but with surprising filtration jumps. We could probably show that the homomorphisms must be as we claim, by showing that there are no other possibilities, but we prefer to forgo doing that.

2. Results for $k u_{*}\left(K_{2}\right)$

Our initial interest in this project was $k u_{*}\left(K_{2}\right)([11],[5])$, but here we first achieved success in computing $k u^{*}\left(K_{2}\right)$. In [4, Corollary 1.3], the first author proved the following result.

Theorem 2.1. There is an isomorphism of $k u_{*}$-modules $k u_{*}\left(K_{2}\right) \approx\left(k u^{*+4} K_{2}\right)^{\vee}$.
Here $M^{\vee}=\operatorname{Hom}\left(M, \mathbb{Z} / 2^{\infty}\right)$, the Pontryagin dual, localized at 2. A homotopy chart for $k u_{*}\left(K_{2}\right)$ could be thought of as a shifted version of the homotopy chart of $k u^{*}\left(K_{2}\right)$ viewed upside-down and backwards.

A remarkable property, for which one explanation is given in Section 8, is that B_{k} is self-dual as a $k u^{*}$-module. One way of stating this is to let \widetilde{B}_{k} denote B_{k} with its indices negated. Then there is an isomorphism of $k u_{*}$-modules

$$
\begin{equation*}
\Sigma^{2^{k}+2^{k-1}+2 k+2} \widetilde{B}_{k} \approx B_{k}^{\vee} . \tag{2.2}
\end{equation*}
$$

For example, the second generator Y of $\Sigma^{208} \widetilde{B}_{7}$ is in grading $208-134=74$ and has $2 Y \neq 0$ and $v^{4} Y \neq 0$. (See Figure 1.10.) The second generator Z of B_{7}^{\vee} is dual to the class in position (74,4) in Figure 1.10, and also satisfies $2 Z \neq 0$ and $v^{4} Z \neq 0$. The isomorphism (2.2) can be proved by induction on k using Remark 1.7.
A complete description of the $k u_{*}$-module $k u_{*}\left(K_{2}\right)$ is immediate from Theorems 1.14 and 2.1. However, one might like a complete description of its ASS. We can write formulas for the E_{2}-term and differentials, but will not do so here. In Theorem 2.4 we give a complete description of the E_{∞}-term of the ASS of $k u_{*}\left(K_{2}\right)$ with exotic extensions included, in terms of the charts described in Section 1.

In [4], a comparison was made of the chart for A_{5} and its $k u_{*}$ analogue. Here we present in Figure 2.3 the $k u_{*}$ analogue of Figure 1.10. This presents the portion of the ASS of $k u_{*}\left(K_{2}\right)$ dual to A_{7} under the isomorphism of Theorem 2.1. The chart dual to B_{7} is obtained from this by removing the classes connected by dashed lines, and lowering the remaining tower so that the bottom is in filtration 0 . The resulting chart is isomorphic to the B_{7} part of Figure 1.10.

Figure 2.3. Portion of $k u_{*}\left(K_{2}\right)$ corresponding to B_{7} and A_{7}.

We observe that in even gradings of the ASS for $k u_{*}\left(K_{2}\right), h_{0}$-extensions exactly correspond to exotic extensions in the ASS of $k u^{*+4}\left(K_{2}\right)$, and vice versa. As a typical example of the duality, the summands of $k u^{82}\left(K_{2}\right), k u^{82}\left(K_{2}\right)^{\vee}$, and $k u_{78}\left(K_{2}\right)$ in Figures 1.10 and 2.3 are all isomorphic to $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$. But for the $k u_{*}$-module structure, it is $k u^{82}\left(K_{2}\right)^{\vee}$ and $k u_{78}\left(K_{2}\right)$ that correspond, since in both, the element that is divisible by 4 , in position $(82,0)$ and $(78,7)$, resp., is also divisible by v^{7} for A_{7} and by v^{4} for B_{7}.

Theorem 2.4. The E_{∞}-term of the $A S S$ of $k u_{*}\left(K_{2}\right)$ with exotic extensions included contains exactly the following.

- There are \mathbb{Z}_{2} 's annihilated by v corresponding to those enumerated at the end of Section 3 with gradings decreased by 4.
- For every summand of (1.11), there is a chart of the same form as Figure 1.13 with v-towers of height $k-1$ on generators in gradings described as follows. Corresponding to the factor $S_{k, \ell}$ itself, they are in gradings $2^{\ell}+2 i-4$ for $0 \leq i \leq \ell-k-1$. One must add to this the grading of the other factors accompanying $S_{k, \ell}$ in (1.11).
- For each occurrence of B_{k} in (1.1), there is a summand $\Sigma^{2^{k}+2^{k-1}+2 k-2} \widetilde{B}_{k}$ with gradings increased by those of other factors accompanying B_{k} in (1.1). Here \widetilde{B}_{k} is as defined prior to (2.2).
- For each summand $x_{4}^{c^{2-2}} A_{k}$ in (1.1), there is a variant of $\Sigma^{2^{k}+2^{k-1}+2 k-2} \widetilde{B}_{k}$ with gradings increased by $c 2^{k}$. In this variant, the initial T_{k}^{B} is pushed up by $k-2$ filtrations and surrounded with a triangle of classes of the sort appearing in the lower left corner of Figure 2.3. See Remark 2.5.

Proof. Theorem 2.1 and our results for $k u^{*}\left(K_{2}\right)$ give the $k u_{*}$-module structure of $k u_{*}\left(K_{2}\right)$, but that is not the same as the ASS picture. Expanding on work done in [5] and [11] and using methods such as those in Section 3, we were able to write the E_{2}-term of the ASS for $k u_{*}\left(K_{2}\right)$, and had conjectured the differentials (but not the extensions) prior to embarking on our $k u$-cohomology project. We were unable to prove the differentials, probably because we had not taken sufficient advantage of the exact sequence with $k(1)_{*}\left(K_{2}\right)$. Now that we know the 2 -orders and v-heights of generators (by grading, at least, if not by name), it is straightforward to see that
the differentials and extensions must be as claimed. The isomorphism (2.2) plays an important role here; the left hand side gives the ASS form of the right hand side.

Remark 2.5. Regarding the unusual portion of the ASS chart for part of $k u_{*}\left(K_{2}\right)$ in the lower left of Figure 2.3, this is obtained from [5, Fig. 4.2] with d_{6}-differentials on all odd-graded towers. For A_{k}, it will be a triangle going up to filtration $k-2$, with all but the first two dots on the top row being part of B_{k}.

3. The E_{2}-TERM of the ASS For $k u^{*}\left(K_{2}\right)$

We will need some notation. By $H^{*} K_{2}$, we understand $H^{*}\left(K\left(\mathbb{Z}_{2}, 2\right) ; \mathbb{Z}_{2}\right)$. Let E denote an exterior algebra, P a polynomial algebra, and $T P_{n}[x]=P[x] /\left(x^{n}\right)$ the truncated polynomial algebra. In all cases these will be over \mathbb{Z}_{2}, the integers $\bmod 2$, and we also use $\mathbb{Z}_{2}[-]$ notation for polynomial algebras. Let \bar{E} denote the augmentation ideal of an exterior algebra, and $E_{1}=E\left[Q_{0}, Q_{1}\right]$, where $Q_{0}=\mathrm{Sq}^{1}$ and $Q_{1}=\mathrm{Sq}^{2} \mathrm{Sq}^{1}+\mathrm{Sq}^{1} \mathrm{Sq}^{2}$. Because $Q_{i}^{2}=0$ we have homology groups, $H_{*}\left(-; Q_{i}\right)$, defined for E_{1}-modules. We let $\left\langle y_{1}, y_{2}, \ldots\right\rangle$ denote the \mathbb{Z}_{2}-span of classes y_{i}.

The ASS for $k u^{*}\left(K_{2}\right)$ has $E_{2}^{s, t}=\operatorname{Ext}_{\mathcal{A}}^{s, t}\left(H^{*}(b u), H^{*} K_{2}\right)$, where \mathcal{A} is the mod 2 Steenrod algebra and $H^{*}(b u) \approx \mathcal{A} / \mathcal{A}\left(Q_{0}, Q_{1}\right)$. Using a standard change of rings theorem, [7], this is $\operatorname{Ext}_{E_{1}}^{s, t}\left(\mathbb{Z}_{2}, H^{*} K_{2}\right)$. This converges to $k u^{-(t-s)}\left(K_{2}\right)$. We depict this with $E_{2}^{s, t}$ in position $(t-s, s)$ as usual, but label the axis with codegrees, the negative of the homotopical degree, so the left side of the chart will have positive gradings. In an attempt to avoid confusion, we rewrite this as $G_{2}^{-(t-s), s}$. With this notation, the differentials are $d_{r}: G_{r}^{a, b} \longrightarrow G_{r}^{a+1, b+r}$, multiplication by the element $v \in k u^{-2}$ (also considered in $G_{r}^{-2,1}$), is $v: G_{r}^{a, b} \longrightarrow G_{r}^{a-2, b+1}$, and multiplication by the element representing $2 \in k u^{0},\left(h_{0} \in G_{r}^{0,1}\right)$, is $h_{0}: G_{r}^{a, b} \longrightarrow G_{r}^{a, b+1}$.

We will later define elements $z_{j} \in G_{2}^{2^{j}+2,0}$ for $j \geq 4$ and elements $z_{i, j} \in G_{2}^{2^{j}+2+2(j-i), 0}$ as

$$
z_{i, j}=z_{i}^{2} \prod_{t=1}^{j-i-1} z_{i+t}
$$

for $4 \leq i \leq j$ with $z_{j, j}=z_{j}$, the Ext analogues of (1.2). They will have the properties: $h_{0} z_{j}=v z_{j-1}^{2}$ for $j \geq 5$, and $h_{0} z_{4}=0$. Additionally, $h_{0} z_{i, j}=v z_{i-1, j}$, and $h_{0} z_{4, j}=0$.

For $j \geq 4$, we define $W_{j}=\left\langle z_{j, j}, z_{j-1, j}, \ldots, z_{4, j}\right\rangle$. We also have $x_{i} \in G_{2}^{i, 0}$ for $i=$ $4,8,9,10$. One last definition, let $\Lambda_{j+1}=E\left[z_{i}: i \geq j+1\right]$.

A picture of $P[v] \otimes W_{7}$ as a $P\left[v, h_{0}\right]$-module appears in Figure 3.1.
Figure 3.1. A depiction of $P[v] \otimes W_{7}$

The remainder of this section is devoted to proving the following result.
Theorem 3.2. The E_{2} term of the Adams spectral sequence for the reduced $k u^{*}\left(K_{2}\right)$ is isomorphic as a $P\left[h_{0}, v\right]$-module to

$$
\begin{gathered}
P\left[v, x_{4}\right] \otimes E\left[x_{9}\right] \otimes\left(\bigoplus_{j \geq 4}\left(W_{j} \otimes \Lambda_{j+1}\right)\right) \\
\oplus\left(P\left[h_{0}, v, x_{4}\right] \otimes E\left[v^{2} x_{9}\right]\right) \oplus\left(P\left[x_{4}\right] \otimes\left\langle x_{8}, x_{10}, h_{0} x_{8}=v x_{10}\right\rangle\right)
\end{gathered}
$$

plus the family of filtration- $0 \mathbb{Z}_{2}$'s annihilated by h_{0} and v enumerated at the end of this section.

Some of the algebra structure of this E_{2} will be useful later. For example, the product structure among the z_{j} 's will be clear, and also the formula

$$
\begin{equation*}
\left(v^{2} x_{9}\right)^{2}=v^{4} z_{4}, \tag{3.3}
\end{equation*}
$$

holds since, as we shall see, in $H^{*}\left(K_{2}\right), x_{9}^{2}-Q_{0} x_{17} \in \operatorname{im}\left(Q_{1}\right)$.
There are two parts to proving this theorem. First, we must give a complete description of the E_{1}-module structure of $H^{*} K_{2}$. Second, we have to compute $\operatorname{Ext}_{E_{1}}^{*, *}\left(\mathbb{Z}_{2},-\right)$ of this. We begin the first part.

Serre ([8]) showed that $H^{*} K_{2}$ is a polynomial algebra on classes $u_{2^{j}+1}$ in degree $2^{j}+1$ for $j \geq 0$ defined by $u_{2}=\iota_{2}$ and $u_{2^{j+1}+1}=\mathrm{Sq}^{2^{j}} u_{2^{j}+1}$ for $j \geq 0$. We easily have

$$
Q_{0}\left(u_{2}\right)=u_{3}, Q_{0}\left(u_{3}\right)=0, Q_{0}\left(u_{2^{j}+1}\right)=u_{2^{j-1}+1}^{2} \text { for } j \geq 2,
$$

and

$$
Q_{1}\left(u_{2}\right)=u_{5}, Q_{1}\left(u_{3}\right)=u_{3}^{2}, Q_{1}\left(u_{5}\right)=0, Q_{1}\left(u_{2^{j}+1}\right)=u_{2^{j-2}+1}^{4} \text { for } j \geq 3
$$

Let $x_{5}=u_{5}+u_{2} u_{3}$ and write $H^{*} K_{2}$ as an associated graded object:

$$
P\left[u_{2}^{2}\right] \otimes E\left[x_{5}\right] \otimes\left(E\left[u_{2}\right] \otimes P\left[u_{3}\right]\right) \otimes_{j \geq 2}\left(E\left[u_{2^{j+1}+1}\right] \otimes P\left[\left(u_{2^{j}+1}\right)^{2}\right]\right)
$$

From this, we can read off

Lemma 3.4.

$$
H_{*}\left(H^{*} K_{2} ; Q_{0}\right)=P\left[u_{2}^{2}\right] \otimes E\left[x_{5}\right]
$$

Letting $x_{9}=u_{9}+u_{3}^{3}$ and $x_{17}=u_{17}+u_{2} u_{5}^{3}$, we rewrite again as

$$
\begin{gathered}
P\left[u_{2}^{2}\right] \otimes T P_{4}\left[x_{9}\right] \otimes T P_{4}\left[x_{17}\right] \otimes_{j>4} E\left[\left(u_{2^{j}+1}\right)^{2}\right] \\
\otimes\left(E\left[u_{2}\right] \otimes P\left[u_{5}\right]\right) \otimes\left(E\left[u_{3}\right] \otimes P\left[u_{3}^{2}\right]\right) \otimes_{j>4}\left(E\left[u_{2^{j}+1}\right] \otimes P\left[\left(u_{2^{j-2}+1}\right)^{4}\right]\right)
\end{gathered}
$$

Again we read off

Lemma 3.5.

$$
H_{*}\left(H^{*} K_{2} ; Q_{1}\right)=P\left[u_{2}^{2}\right] \otimes T P_{4}\left[x_{9}\right] \otimes T P_{4}\left[x_{17}\right] \otimes_{j>4} E\left[\left(u_{2^{j}+1}\right)^{2}\right]
$$

An associated graded version of this is

Lemma 3.6.

$$
H_{*}\left(H^{*} K_{2} ; Q_{1}\right)=P\left[u_{2}^{2}\right] \otimes E\left[x_{9}\right] \otimes E\left[x_{17}\right] \otimes_{j>2} E\left[\left(u_{2^{j}+1}\right)^{2}\right]
$$

The bulk of the work here is finding a nice splitting of $H^{*} K_{2}$ as an E_{1}-module.
Let N be the E_{1}-submodule with single nonzero elements in gradings $5,7,8,9$, and 10 with generators $x_{5}=u_{5}+u_{2} u_{3}, x_{7}=u_{2} u_{5}$, and $x_{9}=u_{9}+u_{3}^{3}$, satisfying $Q_{0} x_{7}=Q_{1} x_{5}$ and $Q_{0} x_{9}=Q_{1} x_{7}=x_{10}$. It has a Q_{0}-homology class x_{5} and a $Q_{1^{-}}$ homology class x_{9}. A picture of N is in Figure 3.7.

Figure 3.7. An E_{1}-module N.

The E_{1}-submodule $P\left[u_{2}^{2}\right] \oplus P\left[u_{2}^{2}\right] \otimes N$ carries the Q_{0}-homology of $H^{*} K_{2}$, while the remaining Q_{1}-homology is, written in our usual way as an associated graded version,

$$
P\left[u_{2}^{2}\right] \otimes E\left[x_{9}\right] \otimes \bar{E}\left[x_{17}, u_{2^{j}+1}^{2}, j>2\right] .
$$

We will exhibit a Q_{0}-free E_{1}-submodule R whose Q_{1}-homology is exactly this \bar{E}. Moreover, $N \otimes R$ contains an E_{1}-split summand S which maps isomorphically to $\left\langle x_{9}\right\rangle \otimes R$.

It is premature to state this because we haven't defined R and S yet, but for the record:

Proposition 3.8. As an E_{1} module, $\widetilde{H}^{*} K_{2}$ is isomorphic to $T \oplus F$ where F is a free over E_{1} and T is

$$
P\left[u_{2}^{2}\right] \otimes\left(\left\langle u_{2}^{2}\right\rangle \oplus N \oplus R \oplus S\right)
$$

A start on R and S.

For this to make sense, we need to find R and S. The module R is a direct sum of shifted versions of modules $L_{k}, k \geq 0$, which have generators $g_{2 i}, 0 \leq i \leq k$, with $Q_{1} g_{2 i}=Q_{0} g_{2 i+2}$ for $0 \leq i<k, Q_{0} g_{0} \neq 0$, and $Q_{1} g_{2 k}=0$. For example, L_{3} is depicted in Figure 3.9.

Figure 3.9. The E_{1}-module L_{3}.

A splitting map, $\left\langle x_{9}\right\rangle \otimes L_{k} \longrightarrow N \otimes L_{k}$, for the epimorphism $N \otimes L_{k} \rightarrow\left\langle x_{9}\right\rangle \otimes L_{k}$ is defined by

$$
\begin{gathered}
x_{9} g_{2 i} \longrightarrow x_{9} \otimes g_{2 i}+x_{7} \otimes g_{2 i+2}+x_{5} \otimes g_{2 i+4} \text { for } 0 \leq i \leq k-2, \\
x_{9} g_{2 k-2} \longrightarrow x_{9} \otimes g_{2 k-2}+x_{7} \otimes g_{2 k}, \text { and } x_{9} \otimes g_{2 k} \longrightarrow x_{9} \otimes g_{2 k}
\end{gathered}
$$

The E_{1}-module M_{j}
Let

$$
x_{2^{j}+1}=u_{2^{j}+1}+\left\{\begin{array}{ll}
u_{2} u_{5}^{3} & j=4 \\
u_{2} u_{3} u_{5}^{2} u_{9}^{2} & j=5 \\
u_{3} u_{5}^{2} u_{9}^{2} u_{17}^{2} & j=6 \\
0 & j>6
\end{array} \text { and } w_{2^{j}-1}= \begin{cases}u_{2} u_{3} u_{5}^{2} & j=4 \\
u_{3} u_{5}^{2} u_{9}^{2} & j=5 \\
0 & j>5 .\end{cases}\right.
$$

Then $Q_{0} x_{2^{j+1}}=u_{2^{j-1}+1}^{2}+Q_{1} w_{2^{j-1}}$, so $Q_{0} x_{2^{j+1}}$ and $u_{2^{j-1}+1}^{2}$ represent the same $Q_{1^{-}}$ homology class. Define E_{1}-modules M_{j} inductively by $M_{3}=0$, and for $j \geq 4$ there is a short exact sequence of E_{1}-modules

$$
\begin{equation*}
0 \rightarrow u_{2^{j-2}+1}^{2} M_{j-1} \rightarrow M_{j} \rightarrow M_{j}^{\prime} \rightarrow 0 \tag{3.10}
\end{equation*}
$$

where $M_{j}^{\prime}=\left\langle x_{2^{j+1}}, Q_{0} x_{2^{j+1}}\right\rangle$ and $Q_{1} x_{2^{j+1}}=u_{2^{j-2}+1}^{2} Q_{0} x_{2^{j-1}+1}$. The above definitions of the $x_{2^{j}+1}$ are necessary to get this formula to work right.

There is an isomorphism of E_{1}-modules $M_{j} \approx \Sigma^{2^{j}+1} L_{j-4}$ given by

$$
\Sigma^{2^{j}+1} g_{2 i} \longrightarrow \begin{cases}x_{2^{j+1}} & i=0 \tag{3.11}\\ u_{2^{j-2}+1}^{2} x_{2^{j-1}+1} & i=1 \\ u_{2^{j-2}+1}^{2} u_{2^{j-3}+1}^{2} x_{2^{j-2}+1} & i=2 \\ u_{2^{j-2}+1}^{2} u_{2^{j-3}+1}^{2} \cdots u_{2^{j-i-1}+1}^{2} x_{2^{j-i}+1} & 2<i \leq j-4\end{cases}
$$

And we have

$$
H_{*}\left(M_{j} ; Q_{1}\right)= \begin{cases}\left\langle u_{9}^{2}, u_{17}\right\rangle & j=4 \tag{3.12}\\ \left\langle u_{17}^{2}, u_{9}^{2} u_{17}\right\rangle & j=5 \\ \left\langle u_{33}^{2}, u_{17}^{2} u_{9}^{2} u_{17}\right\rangle & j=6 \\ \left\langle u_{2^{j-1}+1}^{2}, u_{2^{j-2}+1}^{2} \cdots u_{9}^{2} x_{17}\right\rangle & j>6\end{cases}
$$

The E_{1}-module R
Let

$$
\begin{equation*}
R=\bigoplus_{j \geq 4} M_{j} \otimes E\left[u_{2^{j}+1}^{2}, u_{2^{j+1}+1}^{2}, \ldots\right] . \tag{3.13}
\end{equation*}
$$

Then $H_{*}\left(R ; Q_{1}\right)=\bar{E}\left[x_{17}, u_{9}^{2}, u_{17}^{2}, \ldots\right]$, since monomials in \bar{E} without x_{17} appear from a first term (of the two in (3.12)) in $H_{*}\left(M_{j} \otimes E ; Q_{1}\right)$, where j is minimal such that $u_{2^{j-1}+1}^{2}$ appears in the monomial, while those with x_{17}, and also containing a product $u_{9}^{2} \cdots u_{2^{j-2}+1}^{2}$ of maximal length, occur as a second term in $H_{*}\left(M_{j} \otimes E ; Q_{1}\right)$.
Proof of Proposition 3.8. We have the E_{1}-submodule given in Proposition 3.8. Because this contains all of the Q_{0} and Q_{1} homology, what remains must be free over E_{1} by [10].

Proof of Theorem 3.2. We compute $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, T\right)$ with T as in Proposition 3.8. We will not be concerned with the free E_{1}-module F but later we will give the Poincaré series for it. Each copy of E_{1} in F gives a \mathbb{Z}_{2} in $G^{*, 0}$ that corresponds to $Q_{0} Q_{1}$.

That

$$
\operatorname{Ext}_{E_{1}}^{* * *}\left(\mathbb{Z}_{2}, P\left[u_{2}^{2}\right]\right)=P\left[v, h_{0}, x_{4}\right]
$$

with $x_{4} \in G_{2}^{4,0}$ should be clear, given our labeling conventions. We normally work with the reduced cohomologies, so the x_{4}^{0} generator above would be ignored.

We compute $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, N\right)$ in two ways using two different filtrations of N. From this we see that the generator of the towers can be thought of either as $v^{2} x_{9}$ or $h_{0}^{2} x_{5}$.

Using Figure (3.7) as our guide, our first filtration is $\left\langle x_{5}, x_{8}\right\rangle,\left\langle x_{7}, x_{10}\right\rangle$, and $\left\langle x_{9}\right\rangle$. The Ext on $x_{9} \in G^{9,0}$ is just $P\left[v, h_{0}\right]$. For the other two, we get h_{0}-towers on $x_{10} \in$ $G^{10,0}$ and $x_{8} \in G^{8,0}$. The extensions in N show these two h_{0}-towers are connected by multiplication by v. In addition, a d_{1} is forced on us by the extensions. Figure 3.14 describes this completely.

Figure 3.14. The first computation of $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, N\right)$

Again referring to the picture (3.7), our second filtration is $\left\langle x_{9}, x_{10}\right\rangle,\left\langle x_{7}, x_{8}\right\rangle$, and $\left\langle x_{5}\right\rangle$. Now our Ext groups are $P\left[v, h_{0}\right]$ on $x_{5} \in G^{5,0}, P[v]$ on $x_{8} \in G^{8,0}$ and $x_{10} \in G^{10,0}$. Again, the d_{1} is forced by the extensions in N. Figure 3.15 describes the result.

Figure 3.15. The second computation of $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, N\right)$

This concludes the computation of Ext for $P\left[u_{2}^{2}\right] \otimes\left(\left\langle u_{2}^{2}\right\rangle \oplus N\right)$ of Proposition 3.8. The result is the second line of Theorem 3.2.

We need to compute Ext for $P\left[u_{2}^{2}\right] \otimes(R \oplus S)$ and show it is the same as the top line in Theorem 3.2. Since $S \approx\left\langle x_{9}\right\rangle \otimes R$, all we need to do is $P\left[u_{2}^{2}\right] \otimes R$ and ignore the $E\left[x_{9}\right]$. Similarly we can ignore the $P\left[u_{2}^{2}\right]$ and the $P\left[x_{4}\right]$ because for every power of u_{2}^{2} we will have a copy of the answer indexed by powers of x_{4}. All we have left now is R, but R is just many copies of the various M_{j} and the indexing for the number of copies is given by the Λ_{j+1}.

All that remains is to show that $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, M_{j}\right) \approx P[v] \otimes W_{j}$. Recall that $M_{j}=$ $\Sigma^{2^{j}+1} L_{j-4}$. We can filter L_{j-4} into pairs of elements $g_{2 i}, Q_{0} g_{2 i}$, for $0 \leq i \leq j-4$. Ext for each of these gives a $P[v]$ on the element $Q_{0} g_{2 i}$ represented by $z_{j-i, j} \in G^{2^{j}+2+2 i, 0}$. There is no d_{1}, but undoing the filtration does solve the extension problem and gives us $h_{0} z_{k, j}=v z_{k-1, j}$. This completes our computation and thus our proof.

Remark 3.16. To illustrate the last computation in the proof, consider the generators of the v-towers for $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, M_{7}\right)$. They are $z_{7}, z_{6}^{2}, z_{5}^{2} z_{6}$, and $z_{4}^{2} z_{5} z_{6}$, which is what we have called $z_{7,7}, z_{6,7}, z_{5,7}$, and $z_{4,7}$, as pictured in Figure 3.1. For future reference, we note that (with \sim meaning homologous)

$$
\begin{equation*}
z_{j}=Q_{0} x_{2^{j}+1} \sim u_{2^{j-1}+1}^{2}=Q_{0} u_{2^{j}+1}=Q_{0} Q_{j} \iota_{2}=Q_{j} Q_{0} \iota_{2} \tag{3.17}
\end{equation*}
$$

We depict the E_{1}-module M_{7} in Figure 3.18.
Figure 3.18. The E_{1}-module M_{7}.

More on the E_{1}-free part

If we compute the $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, F\right)$ for the E_{1}-free part of $H^{*} K_{2}$, we just get a \mathbb{Z}_{2} corresponding to the top element for each copy of E_{1}. If we find the Poincaré series (PS) for the free part, all we have to do to get the PS for these elements is multiply by $\frac{x^{4}}{(1+x)\left(1+x^{3}\right)}$. The Poincaré series for free part is obtained by subtracting the PS for the non-free part of Proposition 3.8 from that of $H^{*} K_{2}$. This is:

$$
\begin{gathered}
\prod_{k \geq 0} \frac{1}{\left(1-x^{2^{k}+1}\right)}-\frac{1}{\left(1-x^{4}\right)}\left(1+x^{5}+x^{7}+x^{8}+x^{9}+x^{10}\right) \\
-\frac{1}{\left(1-x^{2}\right)\left(1-x^{4}\right)}\left(\bigoplus_{j \geq 4}\left(x^{2^{j}+1}\left(1+x^{9}\right)(1+x)\left(1-x^{2 j-6}\right) \prod_{k \geq j}\left(1+x^{2^{k+1}+2}\right)\right)\right)
\end{gathered}
$$

The first term is the PS for $H^{*} K_{2}$. The second is the PS for $P\left[u_{2}^{2}\right] \otimes(\langle 1\rangle \oplus N)$. The last term is more complicated but does the S and R terms. The ($1-x^{4}$) in the denominator is for the $P\left[u_{2}^{2}\right]$. The x^{9} is the shift that takes R to S. The $(1+x)$ is because they are Q_{0} free. The $x^{2^{j}+1}\left(1-x^{2 j-6}\right) /\left(1-x^{2}\right)$ is for the odd part of M_{j} and the remainder is for Λ.

This is easy to put into a computer and calculate. For example, the number of free generators in degree 79 is 245 .

4. Differentials in the ASS of $k u^{*}\left(K_{2}\right)$

The main theorem of this section determines the differentials in the ASS for $k u^{*}\left(K_{2}\right)$.
Theorem 4.1. The differentials in the spectral sequence whose E_{2}-term was given in Theorem 3.2 are as follows. All v-towers are involved, either as source or target, in exactly one of these. Here $\nu(i)$ denotes the exponent of 2 in the integer i, and M refers to any monomial (possibly $=1$) in the specified exterior algebra.

$$
\begin{align*}
d_{\nu(i)+2}\left(x_{4}^{i}\right)= & h_{0}^{\nu(i)} v^{2} x_{4}^{i-1} x_{9}, i \geq 1 . \tag{4.2}\\
d_{\nu(i)+2}\left(x_{4}^{i} z_{j} M\right)= & v^{\nu(i)+2} x_{4}^{i-1} x_{9} z_{j-\nu(i), j} M, \tag{4.3}\\
& j \geq 4+\nu(i), M \in \Lambda_{j} . \\
d_{2^{t+1}-t-1}\left(h_{0}^{t-1} v^{2} x_{4}^{2^{t} k+2^{t}-1} x_{9}\right)= & v^{2^{t+1}} x_{4}^{2^{t} k} z_{t+3}, t \geq 1, k \geq 0 . \tag{4.4}\\
d_{2^{t+1}-t-1}\left(x_{4}^{2^{t} k+2^{t}-1} x_{9} z_{j-(t-1), j} M\right)= & v^{2^{t+1}-t-1} x_{4}^{2^{t} k} z_{t+3} z_{j} M, \tag{4.5}\\
& j \geq t+3, M \in \Lambda_{j+1} .
\end{align*}
$$

The proof occupies the rest of this section, except that at the end of the section we explain briefly how this leads to our description of $k u^{*}\left(K_{2}\right)$ in Section 1, except for the exotic extensions.

By [9, Theorem A], $Q_{j} Q_{0} \iota_{2}$ is in the image from $B P^{*}\left(K_{2}\right)$, and hence must be a permanent cycle in our ASS. Thus by (3.17), z_{j} is a permanent cycle, and so (4.3) follows from (4.2), and (4.5) follows from (4.4), using (1.3).

The differentials (4.2) follow from the result of [2] or [3, Proposition 1.3.5] that $H^{4 i+1}\left(K_{2} ; \mathbb{Z}\right) \approx \mathbb{Z} / 2^{\nu(i)+2} \oplus \bigoplus \mathbb{Z}_{2}$. The ASS converging to $H^{*}\left(K_{2} ; \mathbb{Z}\right)$ has $E_{2}=$ $\operatorname{Ext}_{A_{0}}\left(\mathbb{Z}_{2}, H^{*} K_{2}\right)$, where $A_{0}=\left\langle 1, Q_{0}\right\rangle$. We depict this E_{2} similarly to our ASS for $k u^{*}\left(K_{2}\right)$. It has an h_{0}-tower for each element of $H_{*}\left(H^{*} K_{2}, Q_{0}\right)$, which was described in Lemma 3.4. These come in pairs in grading $4 i$ and $4 i+1$ corresponding to $u_{2}^{2 i}$ and $u_{2}^{2 i-2} u_{5}$. There must be a $d_{\nu(i)+2^{-}}$-differential, as pictured on the right hand side of Figure 4.6.

Similarly to Figures 3.14 and 3.15 , we have, for $i \geq 1$, an h_{0}-tower in the ASS for $k u^{*}\left(K_{2}\right)$ arising from $G^{4 i+1,2}$, called either $h_{0}^{2} x_{4}^{i-1} x_{5}$ or $v^{2} x_{4}^{i-2} x_{9}$. There is also an h_{0}-tower arising from $x_{4}^{i} \in G^{4 i, 0}$. The classes x_{4} and x_{5} correspond to cohomology classes u_{2}^{2} and $u_{5}+u_{2} u_{3}$. Under the morphism $k u^{*}\left(K_{2}\right) \rightarrow H^{*}\left(K_{2} ; \mathbb{Z}\right)$, these towers map across, as suggested in Figure 4.6. We deduce the $d_{\nu(i)+2}$-differential claimed in (4.2), promulgated by the action of v.

Figure 4.6. $k u^{*}\left(K_{2}\right) \rightarrow H^{*}\left(K_{2} ; \mathbb{Z}\right)$

In Figure 4.7, we depict many of the differentials asserted in Theorem 4.1 in grading ≤ 36. Not included in this is the $P\left[x_{4}\right] \otimes\left\langle x_{8}, x_{10}, h_{0} x_{8}=v x_{10}\right\rangle$ portion of Theorem 3.2. (The classes called x_{10} here are sometimes called z_{3}, because that fits nicely in (1.6).) Also not included are the portions involving (4.2) and (4.3) when i is odd, as this portion self-annihilates. What is shown is (4.2) for $i=2,4$, and 6 , (4.4) for $(t, k)=(1,0),(1,1),(1,2)$, and $(2,0)$, and (4.5) with $t=1, k=0$, and $j=4$.

Figure 4.7. Some differentials.

In order to establish some of the differentials, we will need the following description of $k(1)^{*}\left(K_{2}\right)$, which is proved in [6, Theorem 9.3]. It involves classes x_{4}, x_{8}, and z_{j}
for $j \geq 3$, which are reductions of the corresponding classes in $k u^{*}\left(K_{2}\right)$, an element p_{3} which is the reduction of x_{9}, and an additional class p_{4} with $\left|p_{4}\right|=17$. There are composite elements p_{e} for $e>4$ defined recursively by $p_{e+2}=x_{4}^{2^{e-3}} p_{e} z_{e+1}$. For $5 \leq e \leq 8,\left|p_{e}\right|$ is $31,59,113,221$.

We introduce functions h and h^{\prime} whose first few values are given in Table 1. Successive values can be obtained using $h(e+2)-h(e)=2^{e}+1$ and $h^{\prime}(e+2)-h^{\prime}(e)=2^{e+1}-1$.

e	1	2	3	4	5	6	7	8	9
$h(e)$	0	2	4	7	13	24	46	89	175
$h^{\prime}(e)$	1	2	4	9	19	40	82	167	337

Table 1: The functions h and h^{\prime}
Our description of $k(1)^{*}\left(K_{2}\right)$ is given in the following theorem.
Theorem 4.8. $k(1)^{*}\left(K_{2}\right)$ consists of the following three types of elements.
a For each split \mathbb{Z}_{2} in $k u^{*}\left(K_{2}\right)$ in grading d, there are split \mathbb{Z}_{2} 's in $k(1)^{*}\left(K_{2}\right)$ in gradings d and $d-1$.
b Additionally, there are split \mathbb{Z}_{2} 's, also of v-height 1 , corresponding to a basis of $\mathbb{Z}_{2}\left[x_{4}\right] \otimes E\left[p_{3}\right] \otimes \bigoplus_{j \geq 4} z_{j}^{2} \Lambda_{j+1}$, and also $\left\{x_{8}, z_{3}\right\} \otimes \mathbb{Z}_{2}\left[x_{4}\right]$.
c For $e \geq 2$, there are summands $\bar{E}\left[p_{e+1}\right] \otimes E\left[p_{e+2}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \otimes \Lambda_{e+2}$ and $\bar{E}\left[z_{e+2}\right] \otimes E\left[p_{e+2}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \otimes \Lambda_{e+3}$, consisting of classes of v-height $h(e)$ and $h^{\prime}(e)$, respectively.

Proof. Part (c) was proved in [6, Theorem 9.3], with the following correspondence of notation. Our z_{j} is their z_{j-1}, our p_{j} is their w_{j-1}, our $h(j)$ is their $r(j-1)$, and our $x_{4}^{2^{j}}$ is their y_{j+1}. Part (a) is true since a copy of E_{1} with top class in grading d is the sum of copies of $E\left[Q_{1}\right]$ with top classes in grading d and $d-1$. The classes in part (b) play an important role in Sections 6 and 7. The E_{1}-module N in Figure 3.7 has free $E\left[Q_{1}\right]$-summands with top classes in gradings 8 and 10 , and so the N-part of Proposition 3.8 yields the second part of (b) in the theorem. In Remark 3.16, we illustrate how M_{7} has free $E\left[Q_{1}\right]$-summands with top classes corresponding to z_{6}^{2}, $z_{5}^{2} z_{6}$, and $z_{4}^{2} z_{5} z_{6}$. Thus the $j=7$ summand in (3.13) contributes to the R-part of Proposition 3.8 all monomials in $\bigoplus_{j \geq 4} z_{j}^{2} \Lambda_{j+1}$ whose first omitted factor is z_{7}, and
so consideration of all $j \geq 4$ in (3.13) yields all of $\bigoplus_{j \geq 4} z_{j}^{2} \Lambda_{j+1}$. For the S-part of Proposition 3.8, this is just tensored with $x_{9}=p_{3}$.

Elements of the first few v-heights in $k(1)^{*}\left(K_{2}\right)$ are listed in Table 2.

v-height	elements
$h(2)=2$	$\bar{E}\left[p_{3}\right] \otimes E\left[p_{4}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2}\right] \otimes \Lambda_{4}$
$h^{\prime}(2)=2$	$\bar{E}\left[z_{4}\right] \otimes E\left[p_{4}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2}\right] \otimes \Lambda_{5}$
$h(3)=4$	$\bar{E}\left[p_{4}\right] \otimes E\left[p_{5}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{4}\right] \otimes \Lambda_{5}$
$h^{\prime}(3)=4$	$\bar{E}\left[z_{5}\right] \otimes E\left[p_{5}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{4}\right] \otimes \Lambda_{6}$
$h(4)=7$	$\bar{E}\left[p_{5}\right] \otimes E\left[p_{6}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{8}\right] \otimes \Lambda_{6}$
$h^{\prime}(4)=9$	$\bar{E}\left[z_{6}\right] \otimes E\left[p_{6}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{8}\right] \otimes \Lambda_{7}$
$h(5)=13$	$\bar{E}\left[p_{6}\right] \otimes E\left[p_{7}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{16}\right] \otimes \Lambda_{7}$
$h^{\prime}(5)=19$	$\bar{E}\left[z_{7}\right] \otimes E\left[p_{7}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{16}\right] \otimes \Lambda_{8}$
$h(6)=24$	$\bar{E}\left[p_{7}\right] \otimes E\left[p_{8}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{32}\right] \otimes \Lambda_{8}$

Table 2: Elements of $k(1)^{*}\left(K_{2}\right)$

Two things from Theorem 4.8 that will be important in proving the differentials in the ASS of $k u^{*}\left(K_{2}\right)$ are summarized in the following corollary.

Corollary 4.9. (1) In the morphism of ASSs induced by $k u^{*}\left(K_{2}\right) \xrightarrow{\rho} k(1)^{*}\left(K_{2}\right)$, the v-towers on $x_{4}^{2^{e-3} j} z_{e}$ map across. The target tower is truncated at height $h^{\prime}(e-2)$, and so $\rho\left(v^{s} x_{4}^{2^{e-3} j} z_{e}\right)=0$ for $s \geq h^{\prime}(e-2)$, as there are no higherfiltration elements for it to hit.
(2) In $k(1)^{*-1}\left(K_{2}\right) \rightarrow k u^{*}\left(K_{2}\right),\left|v^{h(e-1)} p_{e}\right|=\left|v^{2^{e-2}} z_{e}\right|-1$, which will be important in deducing that $v^{2^{e-2}} z_{e}$ is hit by a differential.

Now we continue the proof of Theorem 4.1. We have already proved (4.2) and (4.3). As noted earlier, the z_{j} 's are infinite cycles by [9], and so the differentials in (4.5) are implied as soon as the corresponding differential in (4.4) is proved. We start with the case $t=1$ of (4.4). In even gradings $\leq 14, k(1)^{*}\left(K_{2}\right)=0$ in positive filtration, using Table 2. Thus the map $k u^{*}\left(K_{2}\right) \rightarrow k(1)^{*}\left(K_{2}\right)$ implies that in $k u^{*}\left(K_{2}\right), v^{s} z_{4}$ is either hit by a differential or divisible by 2 for $s \geq 2$. In grading <8, there is nothing
that can divide it, and the only odd-grading v-tower in that range is on $v^{2} x_{4} x_{9}$. Thus $d_{2}\left(v^{2} x_{4} x_{9}\right)=v^{4} z_{4}$, the case $t=1, k=0$ of (4.4). Since $d_{2}\left(x_{4}^{2 k}\right)=0$ by (4.2), the case $t=1$ of (4.4) follows for any k by the derivation property.

Similarly $v^{s} z_{5}$ must be hit or divisible for $s \geq 4$, and examination of options in Figure 4.7 shows that we must have $d_{5}\left(h_{0} v^{2} x_{4}^{3} x_{9}\right)=v^{8} z_{5}$, preceded by extensions. Since $d_{5}\left(x_{4}^{8}\right)=h_{0}^{3} v^{2} x_{4}^{7} x_{9}$, we deduce the case $t=2, k$ even of (4.4) using the derivation property, (3.3), and $h_{0} z_{4}=0$. We do not have a priori knowledge that $x_{4}^{4} z_{5}$ is a permanent cycle in the ASS of $k u^{*}\left(K_{2}\right)$. However, if it supported a nonzero differential, then the tower of v-height 4 on $x_{4}^{4} z_{5}$ in the ASS of $k(1)^{*}\left(K_{2}\right)$ would have to map to $v^{t} C$ for $0 \leq t \leq 3$ for some C in positive filtration in grading 51 in the ASS of $k u^{*}\left(K_{2}\right)$. Then $v^{4} C$ must be $d_{r}(B)$ with $r \geq 5$ and B in filtration 0 in grading 42. (B cannot have higher filtration since everything is v-towers, and $v^{3} C$ cannot be hit.) But the only possible B is $x_{4}^{6} z_{4}$, and we already know that $v^{4} x_{4}^{6} z_{4} \in \operatorname{im}\left(d_{4}\right)$. (Ordinarily this would not preclude the possibility of B supporting a differential, but it does since everything is v-towers.) Thus $x_{4}^{4} z_{5}$ is a permanent cycle, and consideration of its image in $k(1)^{*}\left(K_{2}\right)$ implies that $v^{s} x_{4}^{4} z_{5}$ is hit by a differential for some $s \geq 4$. The only element in odd grading <42 not yet accounted for is $h_{0} v^{2} x_{4}^{7} x_{9}$ in grading 33. This is the case $t=2, k=1$ of (4.4). The validity for all odd k (and $t=2$) now follows similarly to what we did for even k at the beginning of this paragraph.

The proof of (4.4) for $t \geq 3$ is much more delicate. For all non-2-powers n, write $n=2^{p}(2 k+1)$ and let $T(n)=v^{2} h_{0}^{p+2} x_{4}^{2^{p+3} k-1} x_{9}$ and $M(n)=x_{4}^{2^{p+3}(k-1)} z_{p+6}$. We will prove $d_{2^{p+4}-p-4}(T(n))=v^{2^{p+4}} M(n)$, which is (4.4), with a new k. From now on, we will denote such a differential as $T(n) \rightarrow M(n)$. If we write $T(n) \rightarrow M(m)$, then the exponent of v accompanying $M(m)$ will be $\frac{1}{2}(|M(m)|-|T(n)|-1)$. In Table 3, we consider the range $33 \leq n \leq 63$. We also include $n=96$ for future reference. We omit writing the $v^{2} x_{9}$ factors of $T(n)$, and write x instead of x_{4}. The values $M^{\prime}(n)=|M(n)|-2 h^{\prime}(p+4)$ will be important, as we shall explain later.

There are two main constraints. Constraint (1) says that if $T(n) \rightarrow M(m)$, then $|T(n)|<M^{\prime}(m)$. This is true since the image of $M(m)$ in $k(1)^{*}\left(K_{2}\right)$ has v-height $h^{\prime}(p+4)$, with $p=\nu(m)$. Thus the v-tower on $M(m)$ cannot be hit by a differential in grading $>|M(m)|-2 h^{\prime}(p+4)=M^{\prime}(m)$. This also requires that we know, as in

n	$p \quad k$	$\|T(n)\|$	$\|M(n)\|$	$M^{\prime}(n)$	$T(n)$	$v^{2^{p+4}} M(n)$
33	$\begin{array}{ll}0 & 16\end{array}$	513	546	528	$h_{0}^{2} x^{127}$	$v^{16} x^{120} z_{6}$
34	18	513	578	540	$h_{0}^{3} x^{127}$	$v^{32} x^{112} z_{7}$
35	$\begin{array}{ll}0 & 17\end{array}$	545	578	560	$h_{0}^{2} x^{135}$	$v^{16} x^{128} z_{6}$
36	$2 \quad 4$	513	642	562	$h_{0}^{4} x^{127}$	$v^{64} x^{96} z_{8}$
37	$\begin{array}{ll}0 & 18\end{array}$	577	610	592	$h_{0}^{2} x^{143}$	$v^{16} x^{136} z_{6}$
38	19	577	642	604	$h_{0}^{3} x^{143}$	$x^{128} z_{7}$
39	$\begin{array}{ll}0 & 19\end{array}$	609	642	624	$h_{0}^{2} x^{151}$	${ }^{144} z_{6}$
40	$3 \quad 2$	513	770	606	$h_{0}^{5} x^{127}$	${ }^{128} x^{64} z_{9}$
41	$0 \quad 20$	641	674	656	$h_{0}^{2} x^{159}$	$v^{16} x^{152} z_{6}$
42	$1 \begin{array}{ll}1 & 10\end{array}$	641	706	668	$h_{0}^{3} x^{159}$	$v^{32} x^{144} z_{7}$
43	$0 \quad 21$	673	706	688	$h_{0}^{2} x^{167}$	$v^{16} x^{160} z_{6}$
44	25	641	770	690	$h_{0}^{4} x^{159}$	$v^{64} x^{128} z_{8}$
45	$0 \quad 22$	705	738	720	$h_{0}^{2} x^{175}$	$v^{16} x^{168} z_{6}$
46	$\begin{array}{ll}1 & 11\end{array}$	705	770	732	$h_{0}^{3} x^{175}$	$v^{32} x^{160} z_{7}$
47	$0 \quad 23$	737	770	752	$h_{0}^{2} x^{183}$	$v^{16} x^{176} z_{6}$
48	41	513	1026	692	$h_{0}^{6} x^{127}$	$v^{256} z_{10}$
49	$0 \quad 24$	769	802	784	$h_{0}^{2} x^{191}$	$v^{16} x^{184} z_{6}$
50	$1 \begin{array}{ll}1 & 12\end{array}$	769	834	796	$h_{0}^{3} x^{191}$	$v^{32} x^{176} z_{7}$
51	$0 \quad 25$	801	834	816	$h_{0}^{2} x^{199}$	$v^{16} x^{192} z_{6}$
52	$2 \quad 6$	769	898	818	$h_{0}^{4} x^{191}$	$v^{64} x^{160} z_{8}$
53	0	833	866	848	$h_{0}^{2} x^{207}$	$v^{16} x^{200} z_{6}$
54	$1 \begin{array}{ll}1 & 13\end{array}$	833	898	860	$h_{0}^{3} x^{207}$	$v^{32} x^{192} z_{7}$
55	$\begin{array}{ll}0 & 27\end{array}$	865	898	880	$h_{0}^{2} x^{215}$	$v^{16} x^{208} z_{6}$
56	$3 \quad 3$	769	1026	862	$h_{0}^{5} x^{191}$	$v^{128} x^{128} z_{9}$
57	0 28	897	930	912	$h_{0}^{2} x^{223}$	$v^{16} x^{216} z_{6}$
58	$1 \begin{array}{ll}1 & 14\end{array}$	897	962	924	$h_{0}^{3} x^{223}$	$v^{32} x^{208} z_{7}$
59	$0 \quad 29$	929	962	944	$h_{0}^{2} x^{231}$	$v^{16} x^{224} z_{6}$
60	27	897	1026	946	$h_{0}^{4} x^{223}$	$v^{64} x^{192} z_{8}$
61	$0 \quad 30$	961	994	976	$h_{0}^{2} x^{239}$	$v^{16} x^{232} z_{6}$
62	$\begin{array}{ll}1 & 15\end{array}$	961	1026	988	$h_{0}^{3} x^{239}$	$v^{32} x^{224} z_{7}$
63	0	993	1026	1008	$h_{0}^{2} x^{247}$	$v^{16} x^{240} z_{6}$
96	51	1025	2050	1376	$h_{0}^{7} x^{255}$	$v^{512} z_{11}$

Table 3: Differentials
the case of $x_{4}^{4} z_{5}$ discussed earlier, that each $M(n)$ is a permanent cycle. We prove this in Lemma 4.10. Constraint (2) says that if $n_{1}<n_{2}$ and $\left|T\left(n_{1}\right)\right|=\left|T\left(n_{2}\right)\right|$ and $T\left(n_{1}\right) \rightarrow M\left(m_{1}\right)$ and $T\left(n_{2}\right) \rightarrow M\left(m_{2}\right)$, then $\left|M\left(m_{1}\right)\right|<\left|M\left(m_{2}\right)\right|$. This is true since moving up an h_{0}-tower requires higher differentials.

Lemma 4.10. In the algorithm described in this section, $M(n)$ is a permanent cycle. Proof. Recall that $M(n)=x_{4}^{2^{p+3}(k-1)} z_{p+6}$. We present the proof when $p=1$, and then explain how it generalizes. The algorithm illustrated in Table 3 purports to prove that $d_{27}\left(v^{2} h_{0}^{3} x_{4}^{16 k-1} x_{9}\right)=v^{32} x_{4}^{16(k-1)} z_{7}$, and an important part of the argument is that, by consideration of the image of $x_{4}^{16(k-1)} z_{7}$ in the ASS for $k(1)^{*}\left(K_{2}\right)$, the v-tower on $x_{4}^{16(k-1)} z_{7}$ is hit by a d_{r}-differential with $r \geq 19$. This argument would go awry if $x_{4}^{16(k-1)} z_{7}$ supported a differential in the ASS of $k u^{*}\left(K_{2}\right)$. If it did support a differential, then in the ASS morphism of $k(1)^{*}\left(K_{2}\right) \rightarrow k u^{*+1}\left(K_{2}\right)$, the height-19 v-tower on $x_{4}^{16(k-1)} z_{7}$ will map nontrivially, increasing filtration by at least 1 . The target v-tower must be truncated by a d_{r}-differential with $r \geq 20$ emanating from filtration 0 in grading $64(k-1)+130-38=64 k+28$. We seek to show that no such differential is possible.

The class supporting such a differential cannot be an $M(m)$ with $m<n$, since they have already been shown to be targets of differentials, nor can it be a product of z_{j} 's times such $M(m)$, for the same reason. It can't be an $M(m)$ with $m \geq n$ because their grading is too large.

We must also rule out the possibility that this unwanted differential is one of the (4.3) differentials. If so, the i in (4.3) must satisfy $\nu(i) \geq 18$, and the class supporting the differential is $x_{4}^{i} Z$, where Z is a product of z_{j} 's with $j \geq 22$ and all j 's distinct, except that the smallest one might occur twice. Since $\left|z_{j}\right|=2^{j}+2,\left|x_{4}^{i} Z\right|=64 k+28$ implies that there must be $14 z_{j}$'s, with the largest j being ≥ 34. Hence $64 k>2^{34}$.

If k is minimal such that $d_{27}\left(v^{2} h_{0}^{3} x_{4}^{16 k-1} x_{9}\right)=v^{32} x_{4}^{16(k-1)} z_{7}$ does not hold due to the problem we have been describing, then we have just seen that $16 k>2^{32}$. By the minimality assumption, the d_{27} formula is valid if $16 k$ is replaced by $16 k-2^{32}$. By (4.2), $d_{27}\left(x_{4}^{2^{32}}\right)=0$. Hence by the derivation property, the formula holds as stated.

For arbitrary p, the above argument goes through with

$$
\left(16 k, 7,27,19 \pm 1,64 k, 28,22,14,34,2^{32}\right)
$$

replaced by

$$
\begin{aligned}
& \left(2^{p+3} k, 6+p, 2^{p+4}-(p+4), h^{\prime}(p+4) \pm 1,2^{p+5} k, 2^{p+5}+2-2 h^{\prime}(p+4),\right. \\
& \left.h^{\prime}(p+4)+3,2^{p+4}+1-h^{\prime}(p+4), 2^{p+4}+2,2^{2^{p+4}}\right)
\end{aligned}
$$

The final step follows from $d_{2^{p+4}-(p+4)}\left(x_{4}^{2^{p+4}}\right)=0$.

Now we can explain how the description of $k u^{\text {od }}$ in (1.11) is obtained from (4.3) and Lemma 4.10. We illustrate with the case $k=7$ in (1.11), so we want $x_{4}^{15} x_{9} S_{7, \ell}$ for $\ell \geq 8$. It is formed from $P[v] x_{4}^{15} x_{9} W_{\ell}$ (with W_{ℓ} as in Theorem 3.2) by truncating the first (leftmost) $\ell-7 v$-towers at height 6 , while the last four support differentials. The differentials from (4.3) are

$$
\begin{align*}
d_{6}\left(x_{4}^{16} z_{j} \cdot z_{j} \cdots z_{\ell-1}\right) & =v^{6} x_{4}^{15} x_{9} z_{j-4, j} z_{j} \cdots z_{\ell-1} \\
& =v^{6} x_{4}^{15} x_{9} z_{j-4, \ell}, \quad 8 \leq j \leq \ell-1 \tag{4.11}\\
d_{6}\left(x_{4}^{16} z_{\ell}\right) & =v^{6} x_{4}^{15} z_{\ell-4, \ell} .
\end{align*}
$$

After tensoring with $P\left[x_{4}^{2^{k-2}}\right] \otimes \Lambda_{\ell+1}$, all of (1.11) is obtained in this way.
The last $\nu(e+1) v$-towers in $x_{4}^{e} W_{\ell}$ support differentials. To see this, first note that, similarly to (4.11), the image of (4.3) hits v-towers on all $x_{4}^{e} x_{9} z_{s, j} \Lambda_{j+1}$ with $j-s \geq \nu(e+1)$. In $P\left[v, x_{4}\right] x_{9} \bigoplus_{j \geq 4} W_{j} \otimes \Lambda_{j+1}$ of Theorem 3.2, this is all but the last $\nu(e+1) v$-towers in the W_{j} 's. By Lemma 4.10 and the fact that z_{j} 's are permanent cycles, all the v-towers on the right-hand side of (4.4) and (4.5) are permanent cycles. Thus there is nothing which can hit these last $\nu(e+1)$ odd-graded v-towers, and since no infinite v-towers are present in E_{∞} by [1], we deduce the claim of this paragraph. Thus the elements of (1.11), which were obtained in the preceding paragraph, are the totality of $k u^{\text {od }}\left(K_{2}\right)$.

Now we proceed with the proof of (4.4) for $t \geq 3$. We begin by showing that if we have proved $T(n) \rightarrow M(n)$ for all non-2-power $n \leq 8 a$, then $T(8 a+b) \rightarrow M(8 a+b)$ for $1 \leq b \leq 3$. We show this for $a=4$, and then note that the same argument works for any a since $n \not \equiv 0 \bmod 8$ implies that increasing n by 8 increases each of $|T(n)|$, $|M(n)|$, and $M^{\prime}(n)$ by 128. Refer to Table 3. Constraint (1) implies that $M(33)$ and $M(34)$ must be hit by some $T(n)$ with $|T(n)|<540$ so $|T(n)|=513$, and by Constraint (2) this must be $T(33) \rightarrow M(33)$ and $T(34) \rightarrow M(34)$. Constraint (1) says that $M(35)$ must be hit by some $T(n)$ with $|T(n)|=513$ or 545 , and Constraint (2)
says it cannot be hit by one with $|T(n)|=513$ since $|M(35)|=|M(34)|$. Therefore $T(35) \rightarrow M(35)$.

Constraints (1) and (2) allow a possibility of $T(16 i+4) \rightarrow M(16 i+5), T(16 i+5) \rightarrow$ $M(16 i+6), T(16 i+6) \rightarrow M(16 i+8)$, and $T(16 i+8) \rightarrow M(16 i+4)$ for $i \geq 1$. Since this alternative involves an aberration of a d_{12}-differential, and $x_{4}^{2^{10}}$ survives to E_{12}, multiplicativity implies that the first time that this alternative might occur must be in grading $<2^{12}$. If $i=2 j+1$ is odd, this alternative would say that $v^{96} x_{4}^{128 j} z_{9}$ is hit by a differential. Theorem 4.8 says that $k(1)^{*}\left(K_{2}\right)$ has classes $x_{4}^{128 j} p_{9}$ with v-height 89. We have $\left|v^{89} x_{4}^{128 j} p_{9}\right|=257+512 j=\left|v^{128} x_{4}^{128 j} z_{9}\right|-1$, and the expectation is that in the $k(1)^{*-1}\left(K_{2}\right) \rightarrow k u^{*}\left(K_{2}\right)$ portion of the exact sequence, $v^{89-s} x_{4}^{128 j} p_{9}$ maps to $v^{128-s} x_{4}^{128 j} z_{9}$ for $1 \leq s \leq 32$. In the alternative scenario, with $v^{96} x_{4}^{128 j} z_{9}=0$, there is nothing for $v^{89-s} x_{4}^{128 j} p_{9}$ to hit for $1 \leq s \leq 32$. (This is easy to check because of our order of listing the classes. For example, letting $j=1$, all subsequent $|T(n)|$'s are >833, so all the higher v-towers are truncated before they get to grading 833.) So these classes must be in the image from $k u^{*-1}\left(K_{2}\right) / 2$. In odd gradings, these are just the $S_{k, \ell}$ classes, ${ }^{3}$ which have v-heights $k-1$ arising from filtration 0 in gradings $>2^{k+1}$, roughly. In grading $<2^{12}$, which is where we noted the first case of the alternative scenario must occur, the maximum v-height in $S_{k, \ell}$'s is 10 , which is not nearly large enough to map onto the portion of the p_{9}-tower that needs to be hit. This shows that this alternative scenario cannot occur when i is odd.

Combining this with the previous observation about the first few values of n yields the desired $T(n) \rightarrow M(n)$ for $32 j+17 \leq n \leq 32 j+27$, and the result for $32 j+28 \leq$ $n \leq 32 j+31$ follows easily from Constraints (1) and (2), as can be seen in lines 60 to 62 of Table 3 .

When i is even, a different argument must be used because $x_{4}^{64} p_{9}$ does not exist in $k(1)^{*}\left(K_{2}\right)$. For $i=2$, we will be considering values of n in Table 3 from 36 to 48, and a similar argument applies for any $i=4 j+2$. There are various scenarios consistent with Constraints (1) and (2) for which it is not the case that $T(n) \rightarrow M(n)$ for all n in this range.

[^1]Assume first that there is an odd number n in this range for which it is not the case that $T(n) \rightarrow M(n)$. Then there is a deviation from a d_{12}-differential, and so, as above, we can assert that the first such deviation occurs in grading $<2^{12}$. (For $i=2$, we are clearly in grading $<2^{12}$, but this argument is applying to all $i=4 j+2$.) If it is not the case that $T(48) \rightarrow M(48)$, then $v^{s} z_{10}$ is hit by a differential for some $s \leq 224$, since the only $|T(n)|$'s not yet handled are ≥ 577. The $v^{175-t} p_{10}$ which wanted to map to $v^{256-t} z_{10}$ will be mapping to 0 for $t \leq 32$. It must be hit by a v-tower of height ≥ 32 in some $S_{k, \ell}$, but these have v-height <12 in grading $<2^{12}$. Thus we conclude that $T(48) \rightarrow M(48)$, and $v^{255} z_{10} \neq 0$ in $k u^{*}\left(K_{2}\right)$.

However, the image of $v^{s} z_{10}$ in $k(1)^{*}\left(K_{2}\right)$ is 0 for $s \geq 167$, as there is nothing for it to hit. Thus these elements must be divisible by 2 , and so there is an element C in $k u^{692}\left(K_{2}\right)$ (with $2 C=v^{167} z_{10}$) such that $v^{88} C \neq 0$. The only possible C is $v^{39} x_{4}^{64} z_{9}$, and so $v^{127} x_{4}^{64} z_{9} \neq 0$. Therefore $M(40)$ must be hit by $T(40)$. It is easy to check that this, together with Constraints (1) and (2), implies that $T(n) \rightarrow M(n)$ for $33 \leq n \leq 48$, and similarly for any $33+64 j \leq n \leq 48+64 j$, contradicting the assumption that $T(n) \nrightarrow M(n)$ for some odd n in this range.

Now we may assume that $T(n) \rightarrow M(n)$ for all odd n in the range under consideration. One easily checks that Constraints (1) and (2) then imply that either $T(n) \rightarrow M(n)$ for all n in $[33,48]$ or else there is a deviation from a d_{27}-differential. Hence the first such deviation must occur in grading $<2^{27}$ (since $x_{4}^{25} \in E_{27}$). Since $27<32$, the same argument as above applies. But for subsequent continuation of the argument, we strengthen it. Under this assumption about $T(n) \rightarrow M(n)$ for all odd n, some ranges in the previous argument can be doubled. If $T(48) \nrightarrow M(48)$, then $v^{s} z_{10}$ is hit for some $s \leq 256-64$. Then part of the v-tower on p_{10} must be hit by a v-tower of height ≥ 64 in an $S_{k, \ell}$, but, for the first occurrence, these heights are ≤ 27. Hence $v^{255} z_{10} \neq 0$ in $k u^{*}\left(K_{2}\right)$. The second part of the argument, involving $M(40)$, goes through exactly as above, and so we have proved $T(n) \rightarrow M(n)$ for $33+64 j \leq n \leq 48+64 j$.

Next we consider the cases where $n \in[65,80] \cup\{96\}$, the only remaining cases less than 128. For $n \in[65,80]$, the values of $|T(n)|,|M(n)|$, and $M^{\prime}(n)$ are 512 greater than those for $n-32$ tabulated in Table 3, and the $v^{2^{p+4}} M(n)$ column has an extra factor of x^{128}. The entries for $n=96$ are in the last line of Table 3 .

A direct adaptation of the argument used for $n \in[33,48]$ breaks down where it said "the $v^{175-t} p_{10}$ which wanted to map to $v^{256-t} z_{10}$ " because the z_{10} is now multiplied by x_{4}^{128}, and there is not a corresponding class $x_{4}^{128} p_{10}$ in $k(1)^{*}\left(K_{2}\right)$.

If it is not the case that $T(96) \rightarrow M(96)$, then $v^{s} z_{11}$ is hit by a differential for some $s \leq 512-2^{\rho}$, where $\rho=5$ if $T(n) \nrightarrow M(n)$ for some odd n, else $\rho=6$ if $T(n) \nrightarrow M(n)$ for some $n \equiv 2 \bmod 4$, else $\rho=7$. Similarly to the earlier argument, the last 2^{ρ} classes on the v-tower on p_{11} will have to be hit by a v-tower from some $S_{k, \ell}$, but, for the first such occurrence, the maximum v-heights in any $S_{k, \ell}$ are $\leq 2^{\rho-1}-(\rho-1)$. (Here we are again using the derivation property and (4.2).) Thus $T(96) \rightarrow M(96)$, and the v-tower on z_{11} in $k u^{*}\left(K_{2}\right)$ has height 512.

The image of z_{11} in $k(1)^{*}\left(K_{2}\right)$ has v-height 337, and there is nothing else for the end of the v-tower on z_{11} in $k u^{*}\left(K_{2}\right)$ to hit. Thus there is a class C in $k u^{*}\left(K_{2}\right)$ with $2 C=v^{337} z_{11}$ and $v^{174} C \neq 0$. The only possible C is $v^{81} x_{4}^{128} z_{10}$, and so $v^{255} x_{4}^{128} z_{10} \neq 0$, and hence $T(80) \rightarrow M(80)$. (Constraint (2) implies that $M(80)$ could not be hit by $T(72)$, since there would be nothing with larger $|M(m)|$ for $T(80)$ to hit.)

Now we do a similar step to show that $T(72) \rightarrow M(72)$. Indeed, the image of $x_{4}^{128} z_{10}$ in $k(1)^{*}\left(K_{2}\right)$ has v-height 167 , and so $v^{167} x_{4}^{128} z_{10}$ must be $2 C^{\prime}$ with $v^{88} C^{\prime} \neq 0$, and the only possibility is $v^{39} x_{4}^{192} z_{9}$. Hence $v^{127} x_{4}^{192} z_{9} \neq 0$, and $T(72) \rightarrow M(72)$. We now easily deduce using Constraints (1) and (2) that $T(n) \rightarrow M(n)$ for all n in $[65,80] \cup\{96\}$, and similarly for shifts of this by multiples of 128 .

We have now shown that $T(n) \rightarrow M(n)$ for all non-2-power $n \leq 127$, and in the range $[129,255]$ all are done except for $[129,144] \cup\{160,192\}$. These can be handled by the same method as used above, with one extra step. If these values are increased by multiples of 256 , the same argument applies. This procedure can be continued for all n.

We discuss briefly how Theorems 3.2 and 4.1 lead to (1.1), modulo exotic extensions. We have already seen, in the discussion surrounding (4.11), how the description of $k u^{\text {od }}\left(K_{2}\right)$ in (1.11) follows from Theorems 3.2 and 4.1.

The part of Theorem 3.2 called $\left\langle x_{8}, x_{10}, h_{0} x_{8}=v x_{10}\right\rangle$ is A_{3}. (Recall that $x_{10}=z_{3}$.) Then $x_{4}^{2^{i}-1} x_{4}^{c 2^{i+1}} A_{3}$ is a subset of $x_{4}^{c 2^{i+1}} A_{3+i}$. Thus the second half of the second displayed line of Theorem 3.2 exactly yields the A_{3}-portion of (1.5) tensored with $\mathbb{Z}_{2}\left[x_{4}^{2 k-2}\right]$.

All elements in the part of Theorem 3.2 called $P\left[h_{0}, v, x_{4}\right] v^{2} x_{9}$ are either targets in (4.2) or support differentials in (4.4), while the $P\left[h_{0}, v, x_{4}\right]$ part of Theorem 3.2 supports differentials in (4.2).

This leaves the v-towers on monomials $x_{4}^{t} z_{i, j} \Lambda_{j+1}$ with $4 \leq i \leq j$. Those with $i \geq 4+\nu(t)$ support differentials (4.3). Those with $\nu(t) \geq i-3$ are hit by differentials (4.4) and (4.5), and the v-heights are as in our definitions of T_{k}^{A} and T_{k}^{B} in Section 1. It remains to see how these monomials occur in the summands of (1.1).

It is convenient to let $y_{i}=x_{4}^{2^{i-3}}$ and $E_{i}=E\left[y_{j}, z_{j}: j \geq i\right]$. The monomials in question are all those of the form $z_{i} M$ with $M \in E_{i}, i \geq 4$. Let k be the smallest integer $\geq i$ such that either both or neither of y_{k} and z_{k} are factors of M. If we divide (1.1) into its three parts, including the $\mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right]$ in each, then the first (resp. third) part has those monomials containing neither y_{k} nor z_{k} in M, and no (resp. some) factors z_{p} with $p>k$, while the second part is those with both y_{k} and z_{k}. Moreover, the k in (1.1) agrees with the k in this paragraph.

For example, we consider the second part of (1.1) with $k=7$. All terms have factors $y_{7} z_{7}$, and possibly some factors y_{j} and z_{j} with $j>7$. The $z_{4} E_{4}$ terms have, in addition to these and the z_{4}, the following factors corresponding to the successive summands in (1.9).

```
z
```

These can be seen in Figure 1.10 in gradings 126, 102, 118, 84, 126, 108, 92, and 74, respectively. There are also monomials in $z_{5} E_{5}, z_{6} E_{6}$, and z_{7}.

5. The exotic extensions

The extensions in (1.6) are established in various A_{k}. They are then promulgated under multiplication by products of one or more z_{j} 's. Parts of the formula are implied by h_{0} in Ext. The rest are deduced using the exact sequence (1.19).

The first exotic extension, $2 x_{4} z_{3}=v_{1}^{2} z_{4}$, can be seen in the lower right corner of Figure 1.10, after dividing by x_{4}^{14}. To prove it, first note that the v-tower on $z_{4} \in k u^{18}\left(K_{2}\right)$ has height 4 . The elements $v^{2} z_{4}$ and $v^{3} z_{4}$ map to 0 in $k(1)^{*}\left(K_{2}\right)$, since it contains no elements in even grading ≤ 18 in filtration >1. Table 2 is useful in seeing this. Thus $v^{2} z_{4}$ and $v^{3} z_{4}$ must be in the image of $\xrightarrow{2}$, hence the extension. Figure 5.1 shows the relevant elements in this portion of the exact sequence (1.19).

Figure 5.1. Portion of exact sequence.

A similar argument works to prove

$$
\begin{equation*}
2 \cdot x_{4}^{2^{j-3}} z_{j}=v x_{4}^{2^{j-3}} z_{j-1}^{2}+v^{2^{j-2}} z_{j+1} \tag{5.2}
\end{equation*}
$$

which was the last equation in (1.6). The first term is seen in Ext. To see the second term, we consider $j=6$ as a typical example. It has the advantage that we can refer to Figure 1.10. The v-heights of z_{7} in $k u^{*}\left(K_{2}\right)$ and $k(1)^{*}\left(K_{2}\right)$ are 32 and 19, respectively. The elements $v^{m} z_{7}$ for $20 \leq m \leq 31$ are in filtration ≥ 20 in gradings ≤ 90. It is easy to check that $k(1)^{*}\left(K_{2}\right)$ is 0 in this range. Thus these $v^{m} z_{7}$ must all be divisible by 2 in $k u^{*}\left(K_{2}\right)$. The elements $v^{m-16} x_{4}^{8} z_{6}$ are the only possible classes that can do this. 【If $2 \cdot C=v^{20} z_{7}$, then $2 \cdot v^{11} C=v^{31} z_{7} \neq 0$. But $v^{4} x_{4}^{8} z_{6}$ is the only class C with $|C|=90$ and $v^{11} C \neq 0$. Other multiples of z_{6} are not in this range, and the v-height of z_{5} is 8.】Knowing that $v^{20} z_{7}=2 v^{4} x_{4}^{8} z_{6}$ implies (5.2) for $j=6$, as is easily seen in Figure 1.10. Essentially the same argument works for all z_{j}.

A similar argument applies to deduce that (5.2) is valid after multiplication by $x_{4}^{c^{j}-2}$. The same comparison of v-heights applies as when $c=0$. This was discussed in part (1) of Corollary 4.9. Thus $v^{m} x_{4}^{c^{j-2}} z_{j+1}$ is divisible by 2 for $m \geq h^{\prime}(j-1)$. It is convenient to also be in the range where $h_{0} x_{4}^{c^{j-2}} x_{4}^{2^{j-3}} z_{j}=0$. This will occur for $v^{m} x_{4}^{c 2^{j-2}} z_{j+1}$ with $m \geq 2^{j-2}+2^{j-3}-j+2$. This requires slightly larger values of m than did the $h^{\prime}(j-1)$ condition. For example, the values are 19 and 20 when $j=6$, and are 40 and 43 when $j=7$. For $m=2^{j-2}+2^{j-3}-j+2$, there must be an element Y in $k u^{*}\left(K_{2}\right)$ with $2 Y=v^{m} x_{4}^{c^{2 j-2}} z_{j+1}$ and $v^{2^{j-1}-1-m} Y \neq 0$ (since $v^{2^{j-1}-1} x_{4}^{c^{j-2}} z_{j+1} \neq 0$). The only possible Y is $v^{m-2^{j-2}} x_{4}^{2^{j-2}} x_{4}^{2^{j-3}} z_{j}$.

Table 3 can help us see this. We consider a specific case, $j=7, c=6$, but it should be clear that it generalizes. The relevant lines of Table 3 are $57 \leq n \leq 60$. The nice thing is that the table shows all ${ }^{4}$ classes that are not products ${ }^{5}$ of more than one z,

[^2]and it lists the towers roughly in order of grading. Figure 5.3 depicts the only four relevant v-towers in this range, labeled by their n-value. The class Y has $|Y|=940$.

The key thing is that tower 57 lies outside grading 940, and tower 59 does not extend far enough back to support the extension all the way back, as must occur. It must be the class in tower 58 which supports the extension. In general, ignoring the $x_{4}^{c^{j-2}}$, the extension occurs into $v^{2^{j-2}+2^{j-3}-j+2} z_{j+1}$, and the next lower v-tower (after the one that works) is $x_{4}^{2^{j-3}+2^{j-4}} z_{j-1}$, whose grading is lower than that of the extension.

Figure 5.3. Depiction of some v-towers.

Remark 5.4. Because z_{i} 's are elements of $k u^{*}\left(K_{2}\right)$, multiplication by z_{i} preserves extension formulas. This explains why the class which extends into $v^{m} x_{4}^{c^{2-2}} z_{j+1}$ cannot be divisible by more than one z_{i}. This is because the first such occurrence would be on a class $z_{i} C$ for which $2 \cdot C$ has already been seen to be compatible with our extension formulas.

6. Proposed formulas for the exact sequence (1.19)

In this section, we propose what we feel must be correct complete formulas for the exact sequence (1.19). Some homomorphisms are forced by naturality, but many others involve significant filtration jumps. However, they all occur in several families with nice properties. The 10 -term exact sequence (6.2) shows how the $S_{k, \ell}$ portions and the exotic extensions yield compatibility of the differing v-tower heights in $k u^{*}\left(K_{2}\right)$ and $k(1)^{*}\left(K_{2}\right)$. In Section 7, we show that all elements of $k(1)^{*}\left(K_{2}\right)$ are accounted for exactly once in these homomorphisms, which implies that there can be no more
exotic extensions. This does not require us to prove that our formulas are actually correct, as discussed at the end of Section 1.

We propose that (1.19) can be split into exact sequences of length 4 and 10 (not including 0's at the end). There are subgroups of $k(1)^{*}\left(K_{2}\right)$ called G_{k}^{1} and G_{k}^{2} for $k \geq 3$ and $G_{k, \ell}^{i}$ for $3 \leq i \leq 6$ and $3 \leq k<\ell$ such that there are exact sequences

$$
\begin{equation*}
0 \rightarrow G_{k}^{1} \rightarrow A_{k} \xrightarrow{2} A_{k} \rightarrow G_{k}^{2} \rightarrow 0 \tag{6.1}
\end{equation*}
$$

for $k \geq 3$, and, for $3 \leq k<\ell$,

$$
\begin{align*}
0 & \rightarrow \quad G_{k, \ell}^{3} \rightarrow x_{4}^{2^{k-3}} B_{k} \prod_{k}^{\ell-1} z_{i} \xrightarrow{2} x_{4}^{2^{k-3}} B_{k} \prod_{k}^{\ell-1} z_{i} \rightarrow G_{k, \ell}^{4} \rightarrow x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell} \\
& \xrightarrow{2} \quad x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell} \rightarrow G_{k, \ell}^{5} \rightarrow B_{k} z_{\ell} \xrightarrow{2} B_{k} z_{\ell} \rightarrow G_{k, \ell}^{6} \rightarrow 0 . \tag{6.2}
\end{align*}
$$

The sequence (6.1) can be tensored with $\mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right]$, while (6.2) can be tensored with $\mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \otimes \Lambda_{\ell+1}$. Note that $B_{3}=0$, so that (6.2) only has four nontrivial terms when $k=3$. We will study these exact sequences by breaking them up into short exact sequences and isomorphisms involving kernels and cokernels of $\cdot 2$.

In studying these exact sequences, $K_{k}^{A}:=\operatorname{ker}\left(2 \mid A_{k}\right)$ and $K_{k}^{B}:=\operatorname{ker}\left(2 \mid B_{k}\right)$ are very important. Important elements of each are given in Table 4.

k	g_{k}
3	z_{3}
4	z_{4}
5	$v z_{5}$
6	$x_{4}^{2} z_{4} z_{5}+v^{3} z_{6}$
7	$v x_{4}^{4} z_{5} z_{6}+v^{8} z_{7}$
8	$x_{4}^{10} z_{4} z_{5} z_{7}+v^{3} x_{4}^{8} z_{6} z_{7}+v^{18} z_{8}$
9	$v x_{4}^{20} z_{5} z_{6} z_{8}+v^{8} x_{4}^{16} z_{7} z_{8}+v^{39} z_{9}$
10	$x_{4}^{42} z_{4} z_{5} z_{7} z_{9}+v^{3} x_{4}^{40} z_{6} z_{7} z_{9}+v^{18} x_{4}^{32} z_{8} z_{9}+v^{81} z_{10}$

Table 4: Elements g_{k} in K_{k}
For example g_{7} can be seen in Figure 1.10 in grading 114, and can be verified using (1.6) to see that $2 g_{7}=v^{9} z_{6}^{2}+v^{9} z_{6}^{2}=0$. A recursive formula is

$$
\begin{equation*}
g_{k+2}=x_{4}^{2^{k-3}} g_{k} z_{k+1}+v^{h^{\prime}(k-1)-1} z_{k+2} \tag{6.3}
\end{equation*}
$$

Note that the first part of this formula is analogous to the recursive formula for p_{e}. The occurrence of $h^{\prime}(k-1)$ here is a bridge between $k u^{*}\left(K_{2}\right)$ and $k(1)^{*}\left(K_{2}\right)$.

The isomorphisms $G_{k}^{1} \rightarrow K_{k}^{A}$ and $G_{k, \ell}^{3} \rightarrow x_{4}^{2^{k-3}} K_{k}^{B} \prod_{k}^{\ell-1} z_{i}$ are determined, on elements of v-height >1, by $p_{i} \mapsto g_{i}$, multiplied by various things. The main place where the A - and B-versions differ is in the element of largest v-height. This is g_{k} for each. However, its v-height in K_{k}^{A} (resp. K_{k}^{B}) is $2^{k-2}-\left(h^{\prime}(k-3)-1\right.$) (resp. $2^{k-2}-$ $(k-2)-\left(h^{\prime}(k-3)-1\right)$. In $k(1)^{*}\left(K_{2}\right)$, the v-height of p_{k} is $h(k-1)$ if it is not accompanied by z_{k}, as will be the case when mapping to K_{k}^{A}, while its v-height is $h^{\prime}(k-2)$ if it is accompanied by z_{k}, as will be the case for the map out of $G_{k, \ell}^{3}$. One can verify that these v-heights match, i.e., $2^{k-2}-h^{\prime}(k-3)+1=h(k-1)$ and $2^{k-2}-(k-2)-h^{\prime}(k-3)+1=h^{\prime}(k-2)$.

Other elements of v-height >1 will have the same v-height in the A - and B-versions. We just list it when $k=7$, where we have Figure 1.10 to look at. These elements are
hit by v-towers in $k(1)^{*}\left(K_{2}\right)$ of the same height as follows:

$$
\begin{array}{ll}
\text { ht } h^{\prime}(2)=2 & \left(p_{4} \mapsto g_{4}\right) \cdot z_{4}\left\{z_{5}, x_{4}^{4}\right\}\left\{z_{6}, x_{4}^{8}\right\} \\
\text { ht } h^{\prime}(3)=4 & \left(p_{5} \mapsto g_{5}\right) \cdot z_{5}\left\{z_{6}, x_{4}^{8}\right\} \tag{6.4}\\
\text { ht } h^{\prime}(4)=9 & \left(p_{6} \mapsto g_{6}\right) \cdot z_{6} .
\end{array}
$$

The notation such as $\left\{z_{5}, x_{4}^{4}\right\}$ means that the homomorphism is multiplied by either z_{5} or x_{4}^{4}. For example, (6.4) means that $p_{5} z_{5} z_{6} \mapsto g_{5} z_{5} z_{6}$ and also $p_{5} z_{5} x_{4}^{8} \mapsto g_{5} z_{5} x_{4}^{8}$. You can see all of the target elements in Figure 1.10, and can verify that the preimage elements occur in Table 2 with the prescribed v-height. This generalizes to arbitrary k in an obvious way. In the B case, these formulas must be multiplied by $x_{4}^{2^{k-3}}$ and by $\prod_{k}^{\ell-1} z_{i}$, or by z_{ℓ} with $\ell>k$. In both the A - and B-cases, they can also be multiplied by the things which we said the exact sequences can be multiplied by. None of this changes any of the v-heights.

There are elements of v-height 1 in K_{k}^{A} and K_{k}^{B}. When $k=7$, you can see these in Figure 1.10 in gradings $124,108,106,90$, and (for B but not A) 76,74 , and 72 . The basic formulas for the morphisms from G_{k}^{1} and $G_{k, \ell}^{3}$ follow a pattern which should be clear from the first three:

$$
\begin{align*}
x_{4}^{3} p_{3} z_{4,5} & \mapsto x_{4}^{2} v z_{4} z_{5} \tag{6.5}\\
x_{4}^{7} p_{3}\left(\left(z_{4,6}, z_{5,6}\right)\right) & \mapsto x_{4}^{4}\left(\left(v^{4} z_{5}, v x_{4}^{2} z_{4}\right)\right) z_{6} \tag{6.6}\\
x_{4}^{15} p_{3}\left(\left(z_{4,7}, z_{5,7}, z_{6,7}\right)\right) & \mapsto x_{4}^{8}\left(\left(v^{11} z_{6}, v^{4} x_{4}^{4} z_{5}, v x_{4}^{6} z_{4}\right)\right) z_{7} . \tag{6.7}
\end{align*}
$$

We use ((-)) notation to indicate an ordered list. For example, (6.6) means that $x_{4}^{7} p_{3} z_{4,6} \mapsto x_{4}^{4} v^{4} z_{5} z_{6}$ and $x_{4}^{7} p_{3} z_{5,6} \mapsto v x_{4}^{6} z_{4} z_{6}$. It is different than the set symbols that we used to mean "choose one." The v-exponents in the targets are various $2^{t}-t-1$. The preimage elements are of the second type in Theorem 4.8. Note that this morphism involves large filtration jumps.

The formula (6.5) occurs in G^{1} and G^{3} in many ways. Later we will list additional ways that it occurs in G^{5}.

- as stated in $G_{6}^{1} \rightarrow A_{6}$;
- multiplied by x_{4}^{4} in $G_{5,6}^{3} \rightarrow x_{4}^{4} B_{5} z_{5}$;
- multiplied by $x_{4}^{8} z_{6}$ in $G_{6,7}^{3} \rightarrow x_{4}^{8} B_{6} z_{6}$;
- multiplied by $\left\{z_{6}, x_{4}^{8}\right\}$ in $G_{7}^{1} \rightarrow A_{7}$;
- multiplied by $x_{4}^{16}\left\{z_{6}, x_{4}^{8}\right\} z_{7}$ in $G_{7,8}^{3} \rightarrow x_{4}^{16} B_{7} z_{7}$;
- multiplied by $\left\{z_{6}, x_{4}^{8}\right\}\left\{z_{7}, x_{4}^{16}\right\}$ in $G_{8}^{1} \rightarrow A_{8}$;
- etc.

For $G_{k, \ell}^{3} \rightarrow x_{4}^{2^{k-3}} B_{k} \prod_{k}^{\ell-1} z_{i}$ with $\ell>k+1$, multiply the formula by an additional $z_{k+1} \cdots z_{\ell-1}$. Of course, formulas (6.6) and (6.7) and subsequent formulas have similar manifestations. For the subsequent formulas after (6.7), increase subscripts of A, B, G, and z and i in $x_{4}^{2^{i}}$ by appropriate amounts, and extend the vectors. In Figure 1.10, multiples of (6.5) apply to the elements in 124 and 90 , while (6.6) applies to elements in 108 and 106 , and (6.7) to z_{7} times elements in 76,74 , and $72 .{ }^{6}$

Next we describe the isomorphisms $C_{k} \rightarrow G_{k}^{2}$ and $C_{k} z_{\ell} \rightarrow G_{k, \ell}^{6}$, where $C_{k}:=$ $\operatorname{coker}\left(2 \mid A_{k}\right)=\operatorname{coker}\left(2 \mid B_{k}\right)^{7}$ and $\ell \geq k+1$. These isomorphisms are defined simply by sending an element to one with the same name. Perusal of Figure 1.10 makes it quite clear that the elements of C_{7} with v-height >1 are as listed below with their v-heights, in a pattern whose generalization to any k should be clear.

$$
\begin{align*}
\text { ht } 19=h^{\prime}(5) & z_{7} \tag{6.8}\\
\text { ht } 9=h^{\prime}(4) & x_{4}^{8} z_{6} \\
\text { ht } 4 & =h^{\prime}(3) \\
& x_{4}^{4} z_{5}\left\{z_{6}, x_{4}^{8}\right\} \\
\text { ht } 2 & =h^{\prime}(2)
\end{align*} x_{4}^{2} z_{4}\left\{z_{5}, x_{4}^{4}\right\}\left\{z_{6}, x_{4}^{8}\right\} .
$$

We explain the v-height of z_{7}, again referring to Figure 1.10. In grading 92, we have

$$
\begin{equation*}
2\left(x_{4}^{10} z_{4} z_{5}+v^{3} x_{4}^{8} z_{6}\right)=v^{19} z_{7} \tag{6.9}
\end{equation*}
$$

so $v^{19} z_{7}=0$ in C_{7}, corresponding to the v-height of z_{7} in $k(1)^{*}\left(K_{2}\right)$. Note that $v^{18} z_{7} \neq 0$ in C_{7}, since $2 \cdot v^{2} x_{4}^{8} z_{6}=v^{18} z_{7}+v^{3} x_{4}^{8} z_{5}^{2}$. The relation (6.9) is closely related to the formula for g_{8} in Table 4: if (6.9) is multiplied by z_{7}, then $v z_{7}^{2}=2 z_{8}$ implies the relation $2 g_{8}=0$.

The elements of v-height 1 in C_{7} are

$$
\begin{array}{rl}
z_{j, 7} & 4 \leq j \leq 6 \\
x_{4}^{8} z_{j, 6} & 4 \leq j \leq 5 \tag{6.10}\\
x_{4}^{4} z_{j, 5}\left\{z_{6}, x_{4}^{8}\right\} & j=4 .
\end{array}
$$

[^3]Note that these have v-height 1 in C_{7} because v times them is divisible by 2 in $k u^{*}\left(K_{2}\right)$. This generalizes to any k.

Let $S_{k, \ell}^{K}=\operatorname{ker}\left(2 \mid S_{k, \ell}\right)$ and $S_{k, \ell}^{C}=\operatorname{coker}\left(2 \mid S_{k, \ell}\right)$. We study the short exact sequence

$$
\begin{equation*}
0 \rightarrow x_{4}^{2^{k-3}} C_{k} z_{k} P_{k+1}^{\ell} \rightarrow G_{k, \ell}^{4} \rightarrow x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}^{K} \rightarrow 0 \tag{6.11}
\end{equation*}
$$

where $P_{k+1}^{\ell}:=\prod_{k+1}^{\ell-1} z_{i}$. Note that $S_{k, \ell}^{K}$ contains just the v-tower of height $k-1$ on $z_{4, \ell}$, and classes of v-height 1 for each $v^{k-2} z_{i, \ell}$ with $5 \leq i \leq \ell-k+3$. We deal with the latter elements first. The map from $G_{k, \ell}^{4}$ sends

$$
\begin{equation*}
x_{4}^{2^{k-3}} z_{i+k-4, \ell} \mapsto v^{k-2} x_{4}^{2^{k-3}-1} x_{9} z_{i, \ell}, \quad 5 \leq i \leq \ell-k+3 . \tag{6.12}
\end{equation*}
$$

The classes of v-height 1 in C_{k}, described in the preceding paragraph, when multiplied by $x_{4}^{2^{k-3}} z_{k} P_{k+1}^{\ell}$, map to elements with the same name in $G_{k, \ell}^{4} \subset k(1)^{*}\left(K_{2}\right)$.

Of the v-towers in C_{k} of v-height >1, after multiplication by $x_{4}^{2^{k-3}} z_{k} P_{k+1}^{\ell}$, all except the one on z_{k} map to v-towers with the same name. The only tower of v-height >1 in $x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}^{K}$ is $x_{4}^{2^{k-3}-1} x_{9} z_{4, \ell}$, with v-height $k-1$. It is hit by $p_{k} p_{k+1} P_{k+1}^{\ell}$, which has v-height $h(k-1)$. The class which hits $v^{k-1} p_{k} p_{k+1} P_{k+1}^{\ell}$ is $v x_{4}^{2^{k-3}} z_{k, \ell}$, which has v-height $h^{\prime}(k-2)-1$ in $x_{4}^{2^{k-3}} C_{k} z_{k} P_{k+1}^{\ell}$, as it corresponds to $z_{k} \in C_{k}$. (See (6.8) for the v-height.) These match since

$$
h(k-1)-(k-1)=h^{\prime}(k-2)-1 .
$$

The generator of the v-tower $x_{4}^{2^{k-3}} z_{k, \ell}$ in $x_{4}^{2^{k-3}} C_{k} z_{k} P_{k+1}^{\ell}$ maps to the class with the same name in $k(1)^{*}\left(K_{2}\right)$. A schematic when $k=7$ and $\ell=8$ appears in Figure 6.13. Elements with \circ,, , or $X=x_{4}^{16} z_{7}^{2}$ map to elements with the same symbol, and numbers indicate filtration.

Figure 6.13. Towers in exact sequence.

Finally, we study the short exact sequence

$$
\begin{equation*}
0 \rightarrow x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}^{C} \rightarrow G_{k, \ell}^{5} \rightarrow K_{k}^{B} z_{\ell} \rightarrow 0 \tag{6.14}
\end{equation*}
$$

with $\ell \geq k+1$. First, $S_{k, \ell}^{C}$ has classes $z_{i, \ell}$ for $4 \leq i \leq \ell-k+3$, which, after multiplying by $x_{4}^{2^{k-3}-1} x_{9}$, map to classes with the same name (except that x_{9} is replaced by p_{3}) in $G_{k, \ell}^{5} \subset k(1)^{*}\left(K_{2}\right)$. The target classes have v-height 1 , as do the domain classes in $x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}^{C}$, except the one with $i=\ell-k+3$, which has v-height $k-1$. Similarly to the discussion following $(6.3)^{8}, K_{k}^{B} z_{\ell}$ has summands of v-height $h^{\prime}(e-2)$ for $4 \leq e \leq k-1$ with generators $g_{e} P$, with

$$
P:=z_{e} \prod_{j=e+1}^{k-1}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} z_{\ell}
$$

and $g_{k} z_{\ell}$ of v-height $h^{\prime}(k-2)$. The classes $g_{e} P$ are mapped to by $p_{e} P$ in $G_{k, \ell}^{5}$ with the same v-height. However, $g_{k} z_{\ell}$ is hit by $p_{k} z_{\ell}$ of v-height $h(k-1)=h^{\prime}(k-2)+k-2$. To compensate, $v^{h^{\prime}(k-2)} p_{k} z_{\ell}$ is hit by $v x_{4}^{2^{k-3}-1} x_{9} z_{3+\ell-k, \ell}$, which is v times the generator of the only part of $x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}^{C}$ of v-height >1. One can check that

$$
\left|v x_{4}^{2^{k-3}-1} x_{9} z_{3+\ell-k, \ell}\right|+1=\left|v^{h^{\prime}(k-2)} p_{k-1} z_{\ell}\right| .
$$

We illustrate this key phenomenon in Figure 6.15, which shows all of $x_{4}^{3} x_{9} S_{5,6}$ and $B_{5} z_{6}$, and part of $G_{5,6}^{5}$.

Figure 6.15. $x_{4}^{3} x_{9} S_{5,6} \rightarrow G_{5,6}^{5} \rightarrow B_{5} z_{6}$

There are also two families of elements of v-height 1 in $K_{k}^{B} z_{\ell}$ which are hit from $G_{k, \ell}^{5}$ similar to those described in (6.5)-(6.7). First, in $G^{5},(6.5)$ occurs as follows

[^4]- in $G_{6, \ell}^{5} \rightarrow B_{6} z_{\ell}$ for $\ell \geq 7$, multiplied by z_{ℓ},
- in $G_{7, \ell}^{5} \rightarrow B_{7} z_{\ell}$ for $\ell \geq 8$, multiplied by $\left\{z_{6}, x_{4}^{8}\right\} z_{\ell}$,
- in $G_{8, \ell}^{5} \rightarrow B_{8} z_{\ell}$ for $\ell \geq 9$, multiplied by $\left\{z_{6}, x_{4}^{8}\right\}\left\{z_{7}, x_{4}^{16}\right\} z_{\ell}$,
- etc.

These can also be tensored with $\Lambda_{\ell+1}$ and, for $G_{k, \ell}^{5}$, by $\mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right]$. There are analogous occurrences of (6.6), (6.7), and their successors.

In G^{5}, there are also generalizations of (6.5)-(6.7) as follows.

$$
\begin{align*}
x_{4}^{3} p_{3} z_{\ell-1, \ell} \mapsto & x_{4}^{2} v z_{4} z_{\ell}, \ell \geq 6 \tag{6.17}\\
x_{4}^{7} p_{3}\left(\left(z_{\ell-2, \ell}, z_{\ell-1, \ell)}\right) \mapsto\right. & x_{4}^{4}\left(\left(v^{4} z_{5}, v x_{4}^{2} z_{4}\right)\right) z_{\ell}, \ell \geq 7 \tag{6.18}\\
& \text { etc. }
\end{align*}
$$

Formula (6.17) occurs in $G_{5, \ell}^{5} \rightarrow B_{5} z_{\ell}$ and can be tensored with $\mathbb{Z}_{2}\left[x_{4}^{8}\right] \Lambda_{\ell+1}$, and (6.18) occurs in $G_{6, \ell}^{5} \rightarrow B_{6} z_{\ell}$ and can be tensored with $\mathbb{Z}_{2}\left[x_{4}^{16}\right] \Lambda_{\ell+1}$.

7. All accounted for

In this section, we show that all elements of $k(1)^{*}\left(K_{2}\right)$ are involved in exactly one of the homomorphisms involving some G-group described in the preceding section. As discussed earlier, this implies that there can be no exotic extensions in $k u^{*}\left(K_{2}\right)$ other than those in (1.6), because such an extension would decrease the number of elements in $\operatorname{ker}\left(2 \mid k u^{*}\left(K_{2}\right)\right)$ and $\operatorname{coker}\left(2 \mid k u^{*}\left(K_{2}\right)\right)$, and these must correspond to the elements of G-groups.

Let

$$
G^{i}= \begin{cases}\bigoplus_{k \geq 3} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \otimes G_{k}^{i} & 1 \leq i \leq 2 \\ \bigoplus_{3 \leq k<\ell} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \otimes G_{k, \ell}^{i} \otimes \Lambda_{\ell+1} & 3 \leq i \leq 6\end{cases}
$$

This section is devoted to the proof of the following theorem.
Theorem 7.1. $G^{1} \oplus \cdots \oplus G^{6}$ consists precisely of classes of the following four types.
i. $\left\{x_{8}, z_{3}\right\} \otimes \mathbb{Z}_{2}\left[x_{4}\right]$.
ii. For $e \geq 2$, v-towers of height $h(e)$ on $\bar{E}\left[p_{e+1}\right] \otimes E\left[p_{e+2}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \otimes \Lambda_{e+2}$;
iii. For $e \geq 3$, v-towers of height $h^{\prime}(e-1)$ on $\bar{E}\left[z_{e+1}\right] \otimes E\left[p_{e+1}\right] \otimes \mathbb{Z}_{2}\left[x_{4}^{2^{e-2}}\right] \otimes \Lambda_{e+2}$;
iv. For $e \geq 4$, v-towers of height 1 on $\mathbb{Z}_{2}\left[x_{4}\right] \otimes E\left[p_{3}\right] \otimes \bar{E}\left[z_{e}^{2}\right] \otimes \Lambda_{e+1}$.

This and Theorem 4.8 immediately imply the following result.
Corollary 7.2. $G^{1} \oplus \cdots \oplus G^{6}$ exactly gives all of $k(1)^{*}\left(K_{2}\right)$ except for the split \mathbb{Z}_{2} 's (of the first type in Theorem 4.8) coming from free E_{1}-summands in $H^{*}\left(K_{2}\right)$.

Proof of Theorem 7.1. Case i. The mod-2 reduction of A_{3} is $\left\{x_{8}, z_{3}\right\}$, and, as noted near the end of Section $4, x_{4}^{2^{i}-1} x_{4}^{c^{2+1}} A_{3} \subset x_{4}^{c 2^{i+1}} A_{3+i}$. These map to classes with the same name in G^{2}.

Case ii. Our work in Section 6 showed that the v-towers of height $h(e)$ in the G 's are

- $p_{e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right]$ in G^{1},
- $p_{e+1} p_{e+2} \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2}$ in G^{4}, and
- $p_{e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \bar{\Lambda}_{e+2}$ in G^{5}.

The first and third combine to give the portion of Theorem 7.1(ii.) which does not contain the p_{e+2} in $E\left[p_{e+2}\right]$, while the second part contains the portion which does.

Case iii. The work in Section 6 showed that the v-towers of height $h^{\prime}(e-1)$ in the G's are

$$
\begin{aligned}
& \text { - } p_{e+1} z_{e+1} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \text { in } G^{1}, \\
& \text { - } \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] z_{e+1} \oplus x_{4}^{2^{e-2}} z_{e+1} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \text { in } G^{2}, \\
& \text { - } p_{e+1} z_{e+1}\left(x_{4}^{2^{e-2}} \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2} \oplus \bigoplus_{i \geq e+1} x_{4}^{2^{i-2}} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot z_{i+1} \Lambda_{i+2}\right)
\end{aligned}
$$

in G^{3},

- $x_{4}^{2^{e-2}} z_{e+1} \bigoplus_{i \geq e+1} x_{4}^{2^{i-2}} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot z_{i+1} \Lambda_{i+2}$ in G^{4},
- $p_{e+1} z_{e+1} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot \bar{\Lambda}_{i+2}$ in G^{5}, and
- $\mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] z_{e+1} \bar{\Lambda}_{e+2} \oplus x_{4}^{2^{e-2}} z_{e+1} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot \bar{\Lambda}_{i+2}$ in G^{6}.

The $G^{1} \oplus G^{3} \oplus G^{5}$ part is all divisible by $p_{e+1} z_{e+1}$. We remove those factors, and combine G^{1} into G^{5} to remove the bar over Λ. This combines with the G^{3}-part to
give

$$
\begin{equation*}
x_{4}^{2^{e-2}} \mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2} \oplus \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \otimes\left\{1, z_{i+1} x_{4}^{2^{i-2}}\right\} \prod_{j=e+2}^{i}\left\{z_{j}, x_{4}^{2^{j-3}}\right\} \cdot \Lambda_{i+2} \tag{7.3}
\end{equation*}
$$

We will show that the \bigoplus part equals $\mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2}$. Thus the entire expression equals $\mathbb{Z}_{2}\left[x_{4}^{2^{e-2}}\right] \Lambda_{e+2}$, and so this $G^{1} \oplus G^{3} \oplus G^{5}$ part gives the portion of Theorem 7.1(ii) which includes the p_{e+1} in $E\left[p_{e+1}\right]$. A very similar argument shows that the $G^{2} \oplus G^{4} \oplus G^{6}$ part gives the portion which includes just the 1 in $E\left[p_{e+1}\right]$, concluding the proof of Case iii, modulo the claim.

To prove the claim, it is convenient to think of $\mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right]$ as an exterior algebra of $\left\{x_{4}^{2^{t}}: t \geq i-1\right\}$. Any monomial in $\mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2}$ can be described by a sequence of choices: $\left(\left(\left(z_{e+2}, x_{4}^{2^{e-1}}\right),\left(z_{e+3}, x_{4}^{2^{e}}\right), \ldots\right)\right)$. In each pair, which was included: neither, both, or which one? Note that $\mathbb{Z}_{2}\left[x_{4}^{2^{i-1}}\right] \Lambda_{i+2}$ allows all possible choices beginning with $\left(z_{i+2}, x_{4}^{2^{i-1}}\right)$. A monomial corresponding to the i-term in the \bigoplus in (7.3) chooses exactly one of z_{j} and x_{4}^{2-3} in each position for $j<i+1$, then chooses neither or both of z_{i+1} and $x_{4}^{2^{i-2}}$, and then makes all possible choices after that. Thus all monomials in $\mathbb{Z}_{2}\left[x_{4}^{2^{e-1}}\right] \Lambda_{e+2}$ are chosen exactly once.

Case iv. Now we study the classes of v-height 1 . We begin with those not divisible by p_{3}. These are exactly those coming from G^{2}, G^{4}, and G^{6}, except that Case i handled a few from G_{2}. Now we list the terms in each which contain the factor z_{e}^{2}, for some $e \geq 4$. The desired answer is $z_{e}^{2} \mathbb{Z}_{2}\left[x_{4}\right] \Lambda_{e+1}$.

From G^{2}, we have

$$
z_{e}^{2} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-2}}\right] \prod_{j=e+2}^{i}\left\{z_{j-1}, x_{4}^{2^{j-4}}\right\}
$$

and from G^{6} the same thing with $\bar{\Lambda}_{i+1}$ appended, so that these combine to give

$$
\begin{equation*}
z_{e}^{2} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-2}}\right] \prod_{j=e+2}^{i}\left\{z_{j-1}, x_{4}^{2^{j-4}}\right\} \cdot \Lambda_{i+1} \tag{7.4}
\end{equation*}
$$

From G^{4}, there are three types. One, from (6.10), is

$$
\begin{equation*}
z_{e}^{2} \bigoplus_{i \geq e+1} \mathbb{Z}_{2}\left[x_{4}^{2^{i-2}}\right] z_{i} x_{4}^{2^{i-3}} \prod_{j=e+2}^{i}\left\{z_{j-1}, x_{4}^{2^{j-4}}\right\} \cdot \Lambda_{i+1} \tag{7.5}
\end{equation*}
$$

(The seven cases of (6.10) multiplied by $x_{4}^{16} z_{7}$ give the seven cases of (7.5) with $i=7$, prior to tensoring either with $\mathbb{Z}_{2}\left[x_{4}^{32}\right] \Lambda_{8}$.) This combines with (7.4) to give $z_{e}^{2} \mathbb{Z}_{2}\left[x_{4}^{2^{e-2}}\right] \Lambda_{e+1}$ in exactly the same way as was done two paragraphs above. The element X of Figure 6.13 and its generalizations give $z_{e}^{2} x_{4}^{2^{e-3}} \mathbb{Z}_{2}\left[x_{4}^{2^{e-2}}\right] \Lambda_{e+1}$, so now we have all $z_{e}^{2} x_{4}^{t} \Lambda_{e+1}$ with $\nu(t) \geq e-3$. The classes $z_{e}^{2} x_{4}^{t} \Lambda_{e+1}$ with $\nu(t) \leq e-4$ are exactly those in (6.12) since $\nu(t)=k-3, e=i+k-4$, and $i \geq 5$.

The terms divisible by p_{3} are a bit harder. Those with $x_{4}^{2 *}$ and $x_{4}^{4 *+1}$ are easily handled, as they all come from (6.14) with $k=3$ and 4 , since $S_{k, \ell}$ can be producted with $\mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \Lambda_{\ell+1}$. Note all $z_{i, \ell} \Lambda_{\ell+1}$ with $4 \leq i \leq \ell-1$ gives all of $\bigoplus_{e \geq 4} z_{e}^{2} \Lambda_{e+1}$.

The domain classes in G^{1} obtained from (6.5)-(6.7) and those in G^{5} related to the group (6.16) combine to give, for $e \geq 4$,

$$
\begin{equation*}
z_{e}^{2} p_{3} \bigoplus_{i \geq e+1} x_{4}^{2^{i-3}-1} \prod_{t=e+1}^{i-1} z_{t} \cdot \bigoplus_{j \geq i} \mathbb{Z}_{2}\left[x_{4}^{2^{j-1}}\right] \Lambda_{j+2} \prod_{s=i+1}^{j}\left\{z_{s}, x_{4}^{2^{s-3}}\right\} \tag{7.6}
\end{equation*}
$$

We first consider the terms in G^{3} of v-height 1 which are divisible by $p_{3} z_{e}^{2}$ with $e=5$. It may be helpful to refer to the paragraph following (6.5)-(6.7). From (6.6), we obtain

$$
\begin{equation*}
x_{4}^{7} p_{3} z_{5}^{2}\left(x_{4}^{8} \Lambda_{7} \mathbb{Z}_{2}\left[x_{4}^{16}\right] \oplus x_{4}^{16} z_{7} \Lambda_{8} \mathbb{Z}_{2}\left[x_{4}^{32}\right] \oplus x_{4}^{32} z_{8}\left\{z_{7}, x_{4}^{16}\right\} \Lambda_{9} \mathbb{Z}_{2}\left[x_{4}^{64}\right] \oplus \cdots\right) \tag{7.7}
\end{equation*}
$$

From (6.7), we obtain

$$
\begin{equation*}
x_{4}^{15} p_{3} z_{5}^{2} z_{6}\left(x_{4}^{16} \Lambda_{8} \mathbb{Z}_{2}\left[x_{4}^{32}\right] \oplus x_{4}^{32} z_{8} \Lambda_{9} \mathbb{Z}_{2}\left[x_{4}^{64}\right] \oplus x_{4}^{64} z_{9}\left\{z_{8}, x_{4}^{32}\right\} \Lambda_{10} \mathbb{Z}_{2}\left[x_{4}^{128}\right] \oplus \cdots\right) \tag{7.8}
\end{equation*}
$$

These extend in an obvious way, and the pattern for arbitrary $e \geq 4$ should be apparent, with all subscripts and 2-power exponents modified appropriately.

In addition, the generalization of (6.17) and (6.18) contribute to G^{5}, for $e \geq 5$,

$$
\begin{equation*}
z_{e}^{2} p_{3} \bigoplus_{i \geq e-2} x_{4}^{2^{i-1}-1} \mathbb{Z}_{2}\left[x_{4}^{2^{i}}\right] \Lambda_{i+4} \prod_{j=e+1}^{i+2} z_{j} \tag{7.9}
\end{equation*}
$$

Finally, G^{5} contains image terms from the $S_{k, \ell}$ part of (6.14). We have already discussed how the part for $k=3$ and 4 gives all desired terms with factors $x_{4}^{2 *}$ and
$x_{4}^{4 *+1}$. The remaining terms combine to yield

$$
\begin{align*}
& \bigoplus_{e \geq 4} z_{e}^{2} p_{3} \bigoplus_{k \geq 5} x_{4}^{2^{k-3}-1} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \bigoplus_{\ell \geq k+e-3} \prod_{j=e+1}^{\ell-1} z_{j} \cdot \Lambda_{\ell+1} \\
= & \bigoplus_{e \geq 4} z_{e}^{2} p_{3} \bigoplus_{k \geq 5} x_{4}^{2^{k-3}-1} \mathbb{Z}_{2}\left[x_{4}^{2^{k-2}}\right] \prod_{j=e+1}^{k+e-4} z_{j} \cdot \Lambda_{k+e-3} . \tag{7.10}
\end{align*}
$$

Now we prove Case iv of Theorem 7.1 for classes divisible by p_{3}. To simplify exposition, we restrict our attention to the case $e=5$. We wish to show that all monomials in $x_{4}^{s} z_{5}^{2} p_{3} \Lambda_{6}$ are obtained exactly once in $G^{1} \oplus G^{3} \oplus G^{5}$, whose classes have been described in the previous several paragraphs. We let $\nu=\nu(s+1)$ and $Z(t)=z_{6} \cdots z_{t}$ for $t \geq 6$, and $Z(5)=1$. The cases $\nu<2$ have already been handled.

From (7.9), we obtain all $z_{5}^{2} p_{3} x_{4}^{s} Z(\nu+3) \Lambda_{\nu+5}$. From (7.10), we obtain all $z_{5}^{2} p_{3} x_{4}^{s} Z(\nu+$ 4) $\Lambda_{\nu+5}$. Combining these gives $z_{5}^{2} p_{3} x_{4}^{s} Z(\nu+3) \Lambda_{\nu+4}$. If $\nu=2$, this is as desired.

Now restrict to $\nu \geq 3$. We consider the family beginning with (7.7) and (7.8) but omit the first term of each sum. When these are combined with (7.6), we obtain expressions which can be simplified using exactly the same method that was used to simplify (7.3), and we obtain $x_{5}^{2} p_{3} x_{4}^{s} Z(\nu+2) \Lambda_{\nu+4}$. When this is combined with the previous combined expression, we obtain $z_{5}^{2} p_{3} x_{4}^{s} Z(\nu+2) \Lambda_{\nu+3}$. Finally, the first terms of the (7.7)-(7.8) family give all monomials in $z_{5}^{2} p_{3} x_{4}^{s} \Lambda_{6}$ not divisible by $Z(\nu+2)$. This and $z_{5}^{2} p_{3} x_{4}^{s} Z(\nu+2) \Lambda_{\nu+3}$ exactly fill out $x_{4}^{s} z_{5}^{2} p_{3} \Lambda_{6}$. To justify the claim about the "first terms," note that (7.7) and (7.8) are the first two of a succession of similar expressions, of which we are considering the first terms of each. Terms with a certain value of $\nu \geq 4$ will appear among the first $\nu-3$ of these. For example, with $\nu=6$, the first of these contains all terms with no z_{6}, the second those with z_{6} but no z_{7}, and the third those with $z_{6} z_{7}$ but no z_{8}. These comprise all terms not divisible by $Z(8)$.

The argument that we have illustrated when $e=5$ generalizes to arbitrary $e \geq 4$ in an obvious way.

8. An explanation of self-duality of B_{k}

In this optional section, we discuss some observations about the ASS of $k u^{*}\left(K_{2}\right)$ and $k u_{*}\left(K_{2}\right)$ which, among other things, provide an explanation of the self-dual nature of the B_{k} charts which occur in both $k u^{*}\left(K_{2}\right)$ and $k u_{*}\left(K_{2}\right)$.

We first observe that, for $k \geq 3$, there is an E_{1}-submodule, \mathcal{M}_{k}, of $H^{*}\left(K_{2}\right)$ such that $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, \mathcal{M}_{k}\right)\left(\right.$ resp. $\left.\operatorname{Ext}_{E_{1}}\left(\mathcal{M}_{k}, \mathbb{Z}_{2}\right)\right)$ is closed under the differentials in the ASS converging to $k u^{*}\left(K_{2}\right)$ (resp. $k u_{*}\left(K_{2}\right)$), yielding the chart A_{k} (resp. the homology analogue of A_{k} discussed in Theorem 2.4). For example, with M_{j} as in (3.10) and N as in Figure 3.7, \mathcal{M}_{5} is as depicted in Figure 8.1.

Figure 8.1. The E_{1}-module \mathcal{M}_{5}.

The two ASSs for \mathcal{M}_{5} will yield the charts for A_{5} and its homology analogue pictured in [4].

The situation for B_{k} is slightly more complicated. There is no E_{1}-submodule of $H^{*}\left(K_{2}\right)$ which, by itself, can give a chart B_{k} or $B_{k} z_{\ell}$. Some of the differentials that truncate v-towers in $B_{k} z_{\ell}$ come from classes that are part of a summand that includes $x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell}$. We find that, for $4 \leq k<\ell$, there is an E_{1}-submodule $\mathcal{M}_{k, \ell}$ of $H^{*} K_{2}$ such that $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, \mathcal{M}_{k, \ell}\right)$ is closed under the differentials in the ASS converging to $k u^{*}\left(K_{2}\right)$ and yields the chart

$$
B_{k} z_{\ell} \oplus x_{4}^{2^{k-3}-1} x_{9} S_{k, \ell} \oplus x_{4}^{2^{k-3}} B_{k} Z_{k}^{\ell-1}
$$

where $Z_{k}^{\ell-1}=z_{k} \cdots z_{\ell-1}$. Note that these three subsets of $k u^{*}\left(K_{2}\right)$ appeared together in the 10 -term exact sequence (6.2).

This $\mathcal{M}_{k, \ell}$ is symmetric; i.e., there is an integer D such that $\mathcal{M}_{k, \ell}^{*}$ and $\mathcal{M}_{k, \ell}$ are isomorphic E_{1}-modules, where $\mathcal{M}_{k, \ell}^{*}$ is obtained from $\mathcal{M}_{k, \ell}$ by negating gradings and reversing direction of Q_{0} and Q_{1}. This implies that the v-towers in $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, \mathcal{M}_{k, \ell}\right)$ and $\operatorname{Ext}_{E_{1}}\left(\mathcal{M}_{k, \ell}, \mathbb{Z}_{2}\right)$ correspond nicely. Moreover, the differentials in the two ASSs correspond, too, obtaining isomorphic charts, although the gradings in one decrease from left to right, while in the other they increase.

We illustrate with an example, $\mathcal{M}_{5,6}$, and then discuss the implication for selfduality of B_{k}, and finally discuss briefly the general case. In Figure 8.2, we depict $\mathcal{M}_{5,6}$.

Figure 8.2. The E_{1}-module $\mathcal{M}_{5,6}$.

In Figure 8.3, we depict the ASS chart for both $\operatorname{Ext}_{E_{1}}\left(\mathbb{Z}_{2}, \mathcal{M}_{5,6}\right)$ and $\operatorname{Ext}_{E_{1}}\left(\mathcal{M}_{5,6}, \mathbb{Z}_{2}\right)$. They are isomorphic except that, from left to right, the gradings start with 102 for the first and 70 for the second. We label the portions of the chart corresponding to the eight summands of $\mathcal{M}_{5,6}$ just by the M-factor, since accompanying factors differ for the two versions. For example, the M_{5} on the left-hand side is $z_{6} M_{5}$ for the first spectral sequence, and is $x_{4}^{7} x_{9} M_{5}$ for the second.

Figure 8.3. Two ASSs for $\mathcal{M}_{5,6}$.

For the $k u^{*}\left(K_{2}\right)$ version, $B_{5} z_{6}$ is on the left hand side of Figure 8.3, and $x_{4}^{4} B_{5} z_{5}$ on the right hand side, with $x_{4}^{3} x_{9} S_{5,6}$ separating them. The duality isomorphism in Theorem 2.1 says that the Pontryagin dual of $B_{5} z_{6}$ is isomorphic as a $k u_{*}$-module to Σ^{4} of the right hand side of the $k u_{*}\left(K_{2}\right)$ version of Figure 8.3, and we see that this is isomorphic to a shifted version of B_{5} with indices negated. This is the self-duality statement, that the Pontryagin dual of B_{k} is isomorphic as a $k u_{*}$-module to a shifted version of B_{k} with indices negated.

Finally, we explain how the eight summands in $\mathcal{M}_{5,6}$ in Figure 8.2 generalize. Note that (1.8) is the generalization of (1.9). We explain the general case using $k=7$ and (1.9). Let U_{i} be the coefficient of $x^{2 i}$ in (1.9) with T_{j}^{B} replaced by M_{j}. Then, for $\ell \geq 8, \mathcal{M}_{7, \ell}$ in backwards order is

$$
\begin{aligned}
& z_{\ell} M_{7} \oplus \bigoplus_{i=1}^{7}\left(x_{4}^{2 i-1} x_{9} U_{i} z_{\ell} \oplus x_{4}^{2 i} U_{i} z_{\ell}\right) \oplus x_{4}^{15} x_{9} M_{\ell} \\
\oplus & x_{4}^{16} M_{\ell} \oplus \bigoplus_{i=1}^{7}\left(x_{4}^{2 i+15} x_{9} U_{i} Z_{7}^{\ell-1} \oplus x_{4}^{2 i+16} U_{i} Z_{7}^{\ell-1}\right) \oplus x_{4}^{31} x_{9} Z_{7}^{\ell-1} M_{7}
\end{aligned}
$$

References

[1] D.W.Anderson and L.Hodgkin, The K-theory of Eilenberg-MacLane complexes, Topology 7 (1968) 317-329.
[2] W.Browder, Torsion in H-spaces, Annals of Math 74 (1961) 24-51.
[3] A.Clément, Integral cohomology of finite Postnikov towers, thesis, University of Lausanne, (2002), available online.
[4] D.M.Davis and J.P.C.Greenlees, Gorenstein duality and universal coefficient theorems, to appear.
[5] D.M.Davis and W.S.Wilson, Stiefel-Whitney classes and immersions of orientable and Spin manifolds, to appear in Topology and Appl, https://doi.org/10.1016/j.topol.2021.107780. .
[6] D.M.Davis, D.C.Ravenel, and W.S.Wilson, The connective Morava K-theory of the EilenbergMacLane space $K\left(\mathbb{Z}_{2}, 2\right)$, to appear.
[7] A.Liulevicius, Notes on homotopy of Thom spectra, Amer Jour Math 86 (1964) 1-16.
[8] J.P.Serre, Cohomologie modulo 2 des complexes d'Eilenberg MacLane, Comm Math Helv 27 (1953) 198-231.
[9] H.Tamanoi, The image of the BP Thom map for Eilenberg-MacLane spaces, Trans Amer Math Soc 349 (1997) 1209-1237.
[10] C.T.C.Wall, A characterization of simple modules ver the Steenrod algebra mod 2, Topology 1 (1962) 249-254.
[11] W.S.Wilson, A new relation on the Stiefel-Whitney classes of Spin manifolds, Ill Jour Math 17 (1973) 115-127.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
E-mail address: dmd1@lehigh.edu
Department of Mathematics, Johns Hopkins University, Baltimore, MD 01220, USA
E-mail address: wwilson3@jhu.edu

[^0]: ${ }^{1}$ Odd gradings will be described in (1.11).
 ${ }^{2}$ The three elements in the lower right corner of Figure 1.10 are $x_{4}^{15} A_{3}$.

[^1]: ${ }^{3}$ We introduce the term " $S_{k, \ell}$ classes" to refer to the classes of (1.11), so they are accompanied by $x_{4}^{2^{k-3}-1} x_{9}$ and perhaps by powers of $x_{4}^{2^{k-2}}$ and monomials in $\Lambda_{\ell+1}$.

[^2]: ${ }^{4}$ The table does not include the short v-towers on z_{4} and z_{5}. These could be filled in, at the expense of greatly lengthening the table.
 ${ }^{5}$ Regarding other classes, see Remark 5.4.

[^3]: ${ }^{6}$ These elements do not exist as kernel elements without being multiplied by sone z_{k} with $k \geq 7$. ${ }^{7}$ except for the elements $x_{4}^{2^{k-3}-1} z_{3}$ and $x_{4}^{2^{k-3}-1} x_{8}$ in $\operatorname{coker}\left(2 \mid A_{k}\right)$.

[^4]: ${ }^{8}$ See especially (6.4).

