THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE
SPACE K (Z,,2)

DONALD M. DAVIS AND W. STEPHEN WILSON

ABSTRACT. We compute ku*(K(Zs,2)) and ku,(K(Zs,2)), the connective KU-
cohomology and connective K U-homology groups of the mod 2 Eilenberg-MacLane
space K (Zs,2), using the Adams spectral sequence. The mod-2 connective KU-
cohomology groups, k(1)*(K(Zs,2)), computed elsewhere, are needed in order to
establish higher differentials and exotic extensions in the integral groups.

1. MAIN RESULTS

In [11] and [5], the authors initiated a partial computation of the connective KU-
homology groups, ku.(K>), of the mod 2 Eilenberg-MacLane space Ky = K(Z5,2) in
separate studies of Stiefel-Whitney classes of manifolds. We eventually turned to the
associated cohomology groups, ku*(K3), and here we give a complete determination,
via the Adams spectral sequence (ASS). Subsequently the first author noticed a du-
ality result ([4]) relating these homology and cohomology groups, and in Section 2,
we discuss the resulting ku, (Ks).

The bulk of this introductory section is a discussion of the result of our ASS com-
putation of (reduced) ku*(K3). There are nice families of exotic extensions. We
depict the ASS with cohomological (co)degrees increasing from right-to-left. The
Bott element v € ku* = Z)[v] decreases grading by 2.

In ku*(Ks), there is an infinite family of split Z,’s whose Poincaré series is described
at the end of Section 3. Ignoring these from now on, as a ku*-module, ku*(K>) is
generated by certain products of elements of ES*, x4, xq, and xs, with |z;| = i, and
z; for j > 3 with |z;| = 27 4+ 2. We let A; denote the exterior algebra Elz; : i > j],
and A and F the augmentation ideal in an exterior algebra.
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We will show that there are closely-related ku*-modules A, and By for & > 3 such
that in even gradings! there is an isomorphism of ku*-modules
u® (o) ~ P Zol2? )@ (A @2t Bizelis ® Biliy). (1.1)
k>3
The notation xik_SBkzkAkH means that all elements of By are multiplied by a:?lk_gzk,
and this is tensored with Ay, ;. Note that By never appears alone.

We give three descriptions of A, and By, and discuss how Figure 1.10 depicts A,
and By, for all £ < 7, and enables one to envision them for all k. As a preview, the
dashed lines in Figure 1.10 connect elements of Ay which are not in By, and the red
lines (sometimes slightly curved) are exotic extensions (multiplication by 2, not seen
in Ext).

We first give an inductive description. Let B3 = 0, and A3 have as its only nonzero

classes® zs, 23, and 2xg = vz5. Let
Zij = 2z 2o for 4 <P < j—1, (1.2)
while z;; = z;. These classes occur in consecutive even gradings from 27 + 25 — 6
down to 27 + 2 as i goes from 4 to j. For k > 4, there are ku*-modules T{* and TP
generated by z;, for 4 < j <k, with relations
22z =vzj_qy for 5 < j <k, (1.3)

"2x = 0in T2, and otherwise v¥ ~U=2z,;, = 0 in both T{* and

TE. In Figure 1.10, the batch of v-towers going up from gradings 130 to 136 are T3

224 = 0, v?

and TP, with the dashed part (whose slope was changed for typographical reasons)
representing the elements v'z; for 27 < i < 31, which are in 75, but not in T:2.
The inductive description is that, for k& > 4, there are short exact sequences of

ku*-modules

k-1
0— T — By, — @xij_gBijH o zp-1 = 0 (1.4)
j=4
and
k=2
0T = A — 22 A @ @xZFSszjH ez 0 (1.5)
j=4

10dd gradings will be described in (1.11).
2The three elements in the lower right corner of Figure 1.10 are 215 As.
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with extensions given by

(2 23 =vz3) @ Pl
(2-23=0) ® Plai]
(2- w423 = v%z) ® Plad]
(2-2,=0) ® Plzj]®A,
(2-z=vZ,) ® Plj J@A;, j>5
(2 Tizy = v'2) ® Plri ® As
(227 =v? 2 Z g+ v z) ® PE¥TI@AL, =5, (1.6)

These formulas can be also multiplied by powers of v, as long as the elements are
nonzero. The extension formulas can be visualized in Figure 1.10. For example, in
grading 116, 2x4252¢ = vrj2326 + v°2¢, and in grading 114, vzjzsze + v®27 has order
2, and v?® times it is nonzero in A;. As another example, Figure 1.10 shows that A
contributes a Zg®Zy summand to ku'?%(Ky) with generators v?z; and 3242526 +v323.

In Figure 1.10, the v-towers emanating from gradings < 102 comprise Ag (if dashed
arrows are included) and Bg (if not), after dividing the labels by z%. Those from

gradings < 84 are As and Bj after dividing by z}?

Remark 1.7. A simpler inductive description is that By, (resp. Ax) is built from
Bovzioy, (z1)/(2,0% %) and 2] By

k—2 k—4
resp.  Br_1zk—1, (z)/(2,0% ), and 25 A1,
with exotic extensions from viz2" " z,_; to v/t 2, 0 < i < 283 — (k—1) (resp. 0 <

i < 2873 — 1), and hg-extensions from viz; to vit122 | 0 <i <283 — (k—1).

The non-inductive analogue of (1.4) is

By =TP @@ TP H {2,277} - TP, (1.8)

Jj=i+1
with extensions from 77 to T}, determined by (1.6). Here H] L {27 "Y s
the sum over all ways of choosing one or the other of the two expressions and taking

the product of the selected expressions. For example, this says that

B; = TP @ 28T @ 032TE © 2T © 232526 T @ 182TF © 202 TF @ TP, (1.9)
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as can be seen in Figure 1.10. The analogue of (1.8) for Ay, is that TP is replaced by

. . o, k—3_
TA whenever no zj’s accompany it, and there is an additional x5 1A,
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Figure 1.10. B; and A;.
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We now define ku*-modules Sy, for 3 < k < ¢ such that the odd-grading portion
of ku*(Ks) is
u(Kz) = @@ DT Lol e Skehes. (1.11)

k>3 >k

Definition 1.12. For 3 < k < {, the ku*-module Sy, has v-towers of v-height k — 1
with generators z; o for 4 <i < {—k+ 3, with hy (the Ext analogue of multiplication

by 2) nonzero wherever possible.

Thus 20z, = vmﬂzi_u iff i > 4 and m < k — 3. For example, S7,¢ is depicted in
Figure 1.13.
Figure 1.13. 57

24,10 26,10
Recapitulating into theorem form, our main result is

Theorem 1.14. In addition to the split Zo’s, which are enumerated at the end of
Section 3, the ku*-module ku*(K3) is as in (1.1) and (1.11), where Ay and By are

given either inductively or explicitly as above, and Sy, s as in Definition 1.12.
The non-visual, formulaic form of our result is as follows, where T'P,,,[v] = P[v]/(v™).

Theorem 1.15. The ku*-module ku*(Ks) is isomorphic to a trivial ku*-module plus

Plxs)zs & EB T Pyes1[v] ® Pla? )24 (1.16)
t>0
® P TPy 11[v] ® Plag Jzishigs (1.17)
t>1
& PTPl] @ Plai el oe @ @ 2427 Ao, (1.18)

e>1 Jj=4
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where ijf+ef2 = 2 Zjye—2. Multiplication by 2 in (1.16) and (1.17) is given in
(1.6), while in (1.18) it is determined by

2 M >
2.z =M 20 e,
0 j=4

The most direct route to this result is via the right-hand-side of equations (4.3), (4.4),
and (4.5).

The structure of the rest of the paper is as follows. As already noted, Section 2
presents the results for ku.(K3). In Section 3, we compute the Fs-term of the ASS
for ku*(K3). In Section 4 we determine the differentials in this ASS. In order to do so,
we need to compare with k(1)*(K3), where k(1) is the spectrum for mod-2 connective

KU-theory, using the exact sequence
= k(1)K = kut(Ks) — kut(K) — k(1) (Ky) — ku*™ (Ky) = . (1.19)

In Section 4, we restate results about k(1)*(K3) from [6]. At the end of Section 4, we
show how the descriptions of ku*(K3) in (1.1) and (1.11) are obtained once we know
the differentials. This exact sequence is also used in determining the exotic extensions
of (1.6), which is done in Section 5. In Section 6, we propose complete formulas for
the exact sequence (1.19), and then in Section 7, we show that our proposed formulas
exactly account for all elements of k(1)*(K3). In the optional Section 8, we discuss
in more detail how the charts are obtained and explain a surprising duality in the By
charts.

The main point of Section 7 is to prove that there are no additional exotic extensions
in ku*(K3). An exotic extension 2 - A = B implies that A is not in the image from
k(1)*"}(K3), and B does not map nontrivially to k(1)*(K3), so once we have shown
that all elements are accounted for, there can be no more extensions. Many of our
formulas in Section 6 are forced by naturality. However, many others occur in regular
families, but with surprising filtration jumps. We could probably show that the
homomorphisms must be as we claim, by showing that there are no other possibilities,

but we prefer to forgo doing that.
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2. RESULTS FOR ku,(K>)

Our initial interest in this project was ku,(K3) ([11],[5]), but here we first achieved
success in computing ku*(Ks3). In [4, Corollary 1.3], the first author proved the

following result.
Theorem 2.1. There is an isomorphism of ku,-modules ku,(Ky) ~ (ku*t1K,)Y.

Here MY = Hom(M,Z/2%), the Pontryagin dual, localized at 2. A homotopy chart
for ku.(Ksy) could be thought of as a shifted version of the homotopy chart of ku*(K>)
viewed upside-down and backwards.

A remarkable property, for which one explanation is given in Section 8, is that Bj
is self-dual as a ku*-module. One way of stating this is to let Ek denote By with its

indices negated. Then there is an isomorphism of ku,-modules
22k+2k—1+2k+2§k ~ BIZ' (2.2)

For example, the second generator Y of 28 B; is in grading 208 — 134 = 74 and has
2Y # 0 and v'Y # 0. (See Figure 1.10.) The second generator Z of BY is dual to the
class in position (74,4) in Figure 1.10, and also satisfies 27 # 0 and v*Z # 0. The
isomorphism (2.2) can be proved by induction on k using Remark 1.7.

A complete description of the ku.,-module ku,(K3) is immediate from Theorems
1.14 and 2.1. However, one might like a complete description of its ASS. We can
write formulas for the Es-term and differentials, but will not do so here. In Theorem
2.4 we give a complete description of the E,-term of the ASS of ku.(K3) with exotic
extensions included, in terms of the charts described in Section 1.

In [4], a comparison was made of the chart for A; and its ku, analogue. Here we
present in Figure 2.3 the ku, analogue of Figure 1.10. This presents the portion of
the ASS of ku.(K3) dual to A7 under the isomorphism of Theorem 2.1. The chart
dual to By is obtained from this by removing the classes connected by dashed lines,
and lowering the remaining tower so that the bottom is in filtration 0. The resulting

chart is isomorphic to the B; part of Figure 1.10.
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Figure 2.3. Portion of ku.(K>) corresponding to B; and A;.
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We observe that in even gradings of the ASS for ku.(K3), ho-extensions exactly
correspond to exotic extensions in the ASS of ku***(K>), and vice versa. As a typical
example of the duality, the summands of ku®?(Ky), ku®*(K3)Y, and kurs(K») in Fig-
ures 1.10 and 2.3 are all isomorphic to Zg®Z,. But for the ku,-module structure, it is
kuP?(K,)"Y and kuzs(K») that correspond, since in both, the element that is divisible
by 4, in position (82,0) and (78,7), resp., is also divisible by v for A; and by v* for
Br..

Theorem 2.4. The E-term of the ASS of ku.(K3) with exotic extensions included

contains exactly the following.

e There are Zs’s annihilated by v corresponding to those enumerated at the end
of Section 3 with gradings decreased by 4.

e For every summand of (1.11), there is a chart of the same form as Figure 1.13
with v-towers of height k — 1 on generators in gradings described as follows.
Corresponding to the factor Sy, itself, they are in gradings 2° + 2i — 4 for
0<i</l¢—k—1. One must add to this the grading of the other factors
accompanying Sk in (1.11).

e For each occurrence of By in (1.1), there is a summand N2 TR 2 B ith,
gradings increased by those of other factors accompanying By in (1.1). Here
By, is as defined prior to (2.2).

e For each summand x" " Ay, in (1.1), there is a variant of L2 +2" ' +2k—2p,
with gradings increased by c2¥. In this variant, the initial TP is pushed up by
k—2 filtrations and surrounded with a triangle of classes of the sort appearing

in the lower left corner of Figure 2.3. See Remark 2.5.

Proof. Theorem 2.1 and our results for ku*(K3) give the ku,-module structure of
ku.(K3), but that is not the same as the ASS picture. Expanding on work done
in [5] and [11] and using methods such as those in Section 3, we were able to write
the Fy-term of the ASS for ku,(K3), and had conjectured the differentials (but not
the extensions) prior to embarking on our ku-cohomology project. We were unable
to prove the differentials, probably because we had not taken sufficient advantage of
the exact sequence with k(1).(K3). Now that we know the 2-orders and v-heights

of generators (by grading, at least, if not by name), it is straightforward to see that
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the differentials and extensions must be as claimed. The isomorphism (2.2) plays an
important role here; the left hand side gives the ASS form of the right hand side. 1

Remark 2.5. Regarding the unusual portion of the ASS chart for part of ku.(Ks)
in the lower left of Figure 2.3, this is obtained from [5, Fig. 4.2] with ds-differentials
on all odd-graded towers. For Ay, it will be a triangle going up to filtration k& — 2,
with all but the first two dots on the top row being part of Bj.

3. THE E5-TERM OF THE ASS FOR ku*(K3)

We will need some notation. By H*K,, we understand H*(K(Zs,2);Zs). Let
E denote an exterior algebra, P a polynomial algebra, and TP,[z] = Plz]/(z")
the truncated polynomial algebra. In all cases these will be over Z,, the integers
mod 2, and we also use Zy[—| notation for polynomial algebras. Let E denote the
augmentation ideal of an exterior algebra, and F; = E[Qq, Q.], where Qo = Sq'
and Q1 = Sq*Sq' +Sq' Sq*. Because Q? = 0 we have homology groups, H.(—;Q;),
defined for Ej-modules. We let (y1, v, ...) denote the Zs-span of classes y;.

The ASS for ku*(Ks) has Ey' = Ext%' (H*(bu), H*K,), where A is the mod 2
Steenrod algebra and H*(bu) ~ A/A(Qo,@1). Using a standard change of rings
theorem, [7], this is Ext} (Zs, H*K,). This converges to ku~("*)(K;). We depict
this with E3* in position (t — s, s) as usual, but label the axis with codegrees, the
negative of the homotopical degree, so the left side of the chart will have positive
gradings. In an attempt to avoid confusion, we rewrite this as G, (=905 " With this
notation, the differentials are d, : G¢* — G147 multiplication by the element
v € ku~? (also considered in G, %1), is v : G%* — G* 251 and multiplication by
the element representing 2 € ku®, (hg € G*'), is hg : G#* — G@FL,

We will later define elements z; € G§j+2’0 for j > 4 and elements z; ; € G§j+2+2(j_i)’0

as
j—i—1

Zij = ZZQ H Zi+t
t=1
for 4 <i < j with z; ; = z;, the Ext analogues of (1.2). They will have the properties:

hon = UZ]271 for j Z 5, and ]’L()Z4 = 0. Addltlonally, ]’L()Z,"j = VZi-1,4, and h0247j = 0.
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For j > 4, we define W; = (z;,,%j-1,,-..,24;). We also have z; € G50 for i =
4,8,9,10. One last definition, let Aj 1 = Ez; : ¢ > j+1].
A picture of Plv] ® Wy as a Plv, ho]-module appears in Figure 3.1.

Figure 3.1. A depiction of P[v] ® W;

136 134 132 130
Za7  R57T R6,7 R0

The remainder of this section is devoted to proving the following result.

Theorem 3.2. The Ey term of the Adams spectral sequence for the reduced ku*(K>)
is isomorphic as a Phg,v]-module to
Plv,24] @ Elzo] @ (D(W; @ Aj2))
j=>4
& (Plho, v, 74] ® Ev*xg]) & (Plr4] ® (w3, 210, hots = v10))
plus the family of filtration-0 Zs’s annihilated by hy and v enumerated at the end of

this section.

Some of the algebra structure of this Fy will be useful later. For example, the

product structure among the z;’s will be clear, and also the formula
(v2mg)? = vz, (3.3)

holds since, as we shall see, in H*(K3), 2 — Qoz17 € im(Q1).

There are two parts to proving this theorem. First, we must give a complete descrip-
tion of the Ej-module structure of H*K,. Second, we have to compute Exty(Zs, —)
of this. We begin the first part.

Serre ([8]) showed that H*K, is a polynomial algebra on classes uy,; in degree

27 +1 for j > 0 defined by uy = 15 and ugj+1,, = Sq2j Ugiyq for j > 0. We easily have

Qolus) = us, Qo(us) =0, Qolugii1) = uji—1,, for j > 2,
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and
Q1(u2) = uz, Q1(uz) =u3, Qi(us) =0, Q1(ugis1) = uy—2,, for j > 3.
Let x5 = us + usuz and write H* K, as an associated graded object:
Plu3] ® Elz5] ® (Elus] ® Plus]) ®jz2 (Elugi+141] @ Pl(ugi41)?])

From this, we can read off

Lemma 3.4.
H.(H*K»; Qo) = Plu3] ® Elxs]

Letting ¢ = ug + u3 and z17 = uy7 + ugu?, we rewrite again as
9 = Ug + uj 7 7 5

Plus] @ T Pylwg] @ TPylw17] @54 Bl (ugi11)]
®(Elug] ® Plus]) ® (Elus] ® Plu3]) @54 (Elug 1] © Pl(ugi-211)").

Again we read off

Lemma 3.5.
H.(H*Ky; Q1) = Plu3] @ TPy[xg] © TPi[w17] )54 E[(u2i41)”]
An associated graded version of this is

Lemma 3.6.
H,(H*Ky; Q1) = Plu3] @ Elxg] @ Elx17] Q)52 El(ugi41)°]

The bulk of the work here is finding a nice splitting of H* K5 as an Fj-module.

Let N be the E;-submodule with single nonzero elements in gradings 5, 7, 8, 9,
and 10 with generators x5 = us + ugus, r7 = usus, and xr9 = ug + ug, satisfying
Qor7 = Qx5 and Qorg = Q1x7 = x19. It has a Qp-homology class x5 and a Q-

homology class zg. A picture of N is in Figure 3.7.

Figure 3.7. An EF;-module N.

5 7
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The E;-submodule P[u3] @ Plu3] ® N carries the Qg-homology of H* K5, while the

remaining ();-homology is, written in our usual way as an associated graded version,
P[ug] ® E[Z'g] ®E[x177 ungrl? ] > 2]

We will exhibit a Qo-free E;-submodule R whose @;-homology is exactly this E.
Moreover, N ® R contains an Fi-split summand S which maps isomorphically to
(xg) ® R.

It is premature to state this because we haven’t defined R and S yet, but for the

record:

Proposition 3.8. As an E;, module, f[*Kg 1s isomorphic to T ® F where F is a free
over By and T 1is
Pludl® ((u3) N @ R S)

A start on R and S.

For this to make sense, we need to find R and S. The module R is a direct sum
of shifted versions of modules L, k > 0, which have generators g9;, 0 < ¢ < k, with
Q192i = Qogairo for 0 < i < k, Qogo # 0, and Q1g2x = 0. For example, L is depicted
in Figure 3.9.

Figure 3.9. The E;-module L;.

94
9o g2 9e

A splitting map, (xg) ® Ly — N & Ly, for the epimorphism N ® Ly — (z9) ® Ly
is defined by

ToGoi — Tg @ Goi + T7 @ Gaitra + T5 @ goipa for 0 < i <k — 2,

T9Gok—2 — T9 @ Gok—2 + T7 @ go, and Tg & gop — Tg @ Gog.

The E;-module M;

Let
3 o
UgUs j=4 5
9 9 - 5 U2U3U5 ] =
o UgUzUsUy ] = d wer .+ — 2,2
Toip1 = Ugiy1 + 9 9 o . andwy_j = UsUzly J =
UzUzUgUiy J = 0 ji>5

0 i>6



THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE SPACE K(Z.,2) 15

Then QoZip1 = uyj—1yy + Q1wai_1, 50 QoTgiyy and uj,_, ., represent the same Q-
homology class. Define Ei-modules M; inductively by Mz = 0, and for j > 4 there is

a short exact sequence of Fj-modules
0 — uy; 2 Mj_y — M; — M, — 0, (3.10)
where M} = (2341, Qogi1) and Q129541 = ugj,QHQoxgj_lH. The above definitions

of the 551 are necessary to get this formula to work right.

There is an isomorphism of Ej-modules M; ~ X¥*1L, , given by

Tojt1 =0
2041 u%j—2+1$2j—1+1 i=1
uZ; U2, 4 Xoj-2 1=2

2724172341V 2 2 +1

2 2 2 L . .
Ugj—24qUgj—s1q " Ugj—i—1 1 T2i—iq1 2<1<j—4
And we have

<u£2)7 Uy > J=4

(uiy, ugur) J=95
H, (Mj; Q1) = . (3.12)

(uls, u17u9u17) J=6

<U§J 1+1>u27 241" cugriz) j>6

The Ei-module R
Let
R=EDM; & Elud;,y, u3i1,,, .. (3.13)
>4

Then H.(R;Q,) = E[z17,u2,u2,,...], since monomials in E without 7 appear from

a first term (of the two in (3.12)) in H.(M; ® E;Q1), where j is minimal such that
ugj,l .1 appears in the monomial, while those with z;7, and also containing a product
ug - - s, 5, of maximal length, occur as a second term in H,(M; ® E;Q1).

Proof of Proposition 3.8. We have the Fj-submodule given in Proposition 3.8. Be-
cause this contains all of the )y and ); homology, what remains must be free over

E by [10. =
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Proof of Theorem 3.2. We compute Extg, (Zo,T) with T" as in Proposition 3.8. We
will not be concerned with the free Ej-module F' but later we will give the Poincaré
series for it. Each copy of E; in F gives a Zy in G*° that corresponds to QQ;.

That

Ext};" (Zy, Plu3]) = Plv, ho, 4]

with x4 € G;"O should be clear, given our labeling conventions. We normally work
with the reduced cohomologies, so the x9 generator above would be ignored.

We compute Extg, (Zs, N) in two ways using two different filtrations of N. From
this we see that the generator of the towers can be thought of either as v?zg or hiws.

Using Figure (3.7) as our guide, our first filtration is (s, xs), (z7,x10), and (xg).
The Ext on xg € G?° is just P[v, hg]. For the other two, we get ho-towers on 19 €
G0 and xg € G0, The extensions in N show these two ho-towers are connected by
multiplication by v. In addition, a d; is forced on us by the extensions. Figure 3.14

describes this completely.
Figure 3.14. The first computation of Extg, (Zy, N)

= 1}2.7,'9
10 8 5 3 10 8 5 3
Again referring to the picture (3.7), our second filtration is (xg, z10), (x7,zs), and

x5). Now our Ext groups are PP|v, hg| on x5 € , Flujon xg € “and g € s
N E Plv, h G0, P G®Y and G110

Again, the d; is forced by the extensions in N. Figure 3.15 describes the result.
Figure 3.15. The second computation of Extg, (Z,, N)
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This concludes the computation of Ext for P[u3] ® ((u3) & N) of Proposition 3.8.
The result is the second line of Theorem 3.2.

We need to compute Ext for Plu3] ® (R @ S) and show it is the same as the top
line in Theorem 3.2. Since S & (x9) ® R, all we need to do is P[u3] ® R and ignore
the E[xg]. Similarly we can ignore the P[u3] and the P[z,] because for every power
of u2 we will have a copy of the answer indexed by powers of x4. All we have left now
is R, but R is just many copies of the various M; and the indexing for the number of
copies is given by the A, .

All that remains is to show that Extpg, (Ze, M;) ~ Plv] ® W;. Recall that M; =
22j+1Lj_4. We can filter L;_, into pairs of elements go;, Qog2i, for 0 <17 < j —4. Ext
for each of these gives a P[v] on the element Qoga; represented by z;_;; € G +2+2:.0,
There is no dy, but undoing the filtration does solve the extension problem and gives

us hozpj = v2k—1,,. This completes our computation and thus our proof. W

Remark 3.16. To illustrate the last computation in the proof, consider the generators
of the v-towers for Extg, (Za, M7). They are 27, 22, 2226, and 232526, which is what
we have called 277, 267, 257, and 247, as pictured in Figure 3.1. For future reference,

we note that (with ~ meaning homologous)

zj = QoTaip1 ~ Usj—1 1 = QoUai 11 = QoQjta = Q;Qola. (3.17)
We depict the Ej-module M; in Figure 3.18.
Figure 3.18. The E;-module M;.

26,7
277 257 24,7

More on the F,-free part

If we compute the Extg, (Zo, F') for the Ej-free part of H*K,, we just get a Zy
corresponding to the top element for each copy of F;. If we find the Poincaré series
(PS) for the free part, all we have to do to get the PS for these elements is multiply

4

by (IJFJC)“:(—HZ,?,) The Poincaré series for free part is obtained by subtracting the PS for
the non-free part of Proposition 3.8 from that of H*Ky. This is:
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H (1 —;kﬂ) N (1 _1x4>(1+x5+$7+:c8+9c9+x10)
_ (1 — x2)1(1 — x4) (@ (x2j+1(1 + x9)(1 + $)(1 _ ij_G) H(l X $2k+1+2)))

j=4 k>j
The first term is the PS for H*K,. The second is the PS for Plu3] ® ((1) & N).
The last term is more complicated but does the S and R terms. The (1 — z*) in the
denominator is for the P[u3]. The z° is the shift that takes R to S. The (1 + z) is
because they are Qg free. The 22 T1(1 —2%79) /(1 — 22) is for the odd part of M; and
the remainder is for A.
This is easy to put into a computer and calculate. For example, the number of free

generators in degree 79 is 245.

4. DIFFERENTIALS IN THE ASS OF ku*(K)
The main theorem of this section determines the differentials in the ASS for ku*(K>).

Theorem 4.1. The differentials in the spectral sequence whose FEs-term was given
in Theorem 3.2 are as follows. All v-towers are involved, either as source or target,
in ezxactly one of these. Here v(i) denotes the exponent of 2 in the integer i, and M

refers to any monomial (possibly = 1) in the specified exterior algebra.

dyiysa(l) = hyPvPai e, i > 1. (4.2)
dyysa(ahz M) = v ez 0, M, (4.3)
Jg>4+v(i), M e,
dorsr gy (G 0222 FH2 1 0) = a2, 6> 1, k> 0. (4.4)
dorsr g (222~ Yozj_o1y ;M) = P2t F sz M, (4.5)

Jg>t+3, MeAj.

The proof occupies the rest of this section, except that at the end of the section we
explain briefly how this leads to our description of ku*(K5) in Section 1, except for
the exotic extensions.

By [9, Theorem A], Q;Qot2 is in the image from BP*(K,), and hence must be a
permanent cycle in our ASS. Thus by (3.17), z; is a permanent cycle, and so (4.3)
follows from (4.2), and (4.5) follows from (4.4), using (1.3).
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The differentials (4.2) follow from the result of [2] or [3, Proposition 1.3.5] that
HYY Ky Z) ~ 7/2"0%2 @ @ Zy. The ASS converging to H*(Ky;7Z) has Ey =
Exta,(Zo, H*K5), where Ag = (1,Qo). We depict this E, similarly to our ASS for
ku*(Ks). It has an ho-tower for each element of H,(H*Ks, (y), which was described
in Lemma 3.4. These come in pairs in grading 4i and 4i + 1 corresponding to u3" and
ugi_ng). There must be a d,(;)1o-differential, as pictured on the right hand side of
Figure 4.6.

Similarly to Figures 3.14 and 3.15, we have, for ¢ > 1, an hg-tower in the ASS
for ku*(K>) arising from G**12, called either h2z’ 'z or vz’ ?x9. There is also an
ho-tower arising from z% € G**°. The classes x4 and x5 correspond to cohomology
classes u3 and us + upuz. Under the morphism ku*(Ky) — H*(Ks;Z), these towers
map across, as suggested in Figure 4.6. We deduce the d,;);o-differential claimed in

(4.2), promulgated by the action of v.
Figure 4.6. ku*(K,) — H*(Ks;7)

4i+1 4 Li+1 4
ku* (Ks) H*(K»; Z)

In Figure 4.7, we depict many of the differentials asserted in Theorem 4.1 in grading
< 36. Not included in this is the P[z4] ® (xs, 210, hors = vz19) portion of Theorem
3.2. (The classes called z1o here are sometimes called z3, because that fits nicely in
(1.6).) Also not included are the portions involving (4.2) and (4.3) when ¢ is odd,
as this portion self-annihilates. What is shown is (4.2) for ¢ = 2, 4, and 6, (4.4) for
(t,k) = (1,0), (1,1), (1,2), and (2,0), and (4.5) with ¢t =1, k =0, and j = 4.
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Figure 4.7. Some differentials.

12

20

T4T92y 28 2324

32

T2y

36

In order to establish some of the differentials, we will need the following description

of k(1)*(K3), which is proved in [6, Theorem 9.3]. It involves classes x4, xg, and z;
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for j > 3, which are reductions of the corresponding classes in ku*(Ks), an element
ps which is the reduction of xg, and an additional class ps with |ps| = 17. There
are composite elements p, for e > 4 defined recursively by peio = xie_spezeﬂ. For
5 <e<8, |p|is 31, 59, 113, 221.

We introduce functions h and A’ whose first few values are given in Table 1. Succes-
sive values can be obtained using h(e+2)—h(e) = 2°+1 and I/ (e+2)—1(e) = 271 —1.

6\12345 6 7 8 9
he) [0 2 4 7 13 24 46 89 175
Wie)|1 2 4 9 19 40 82 167 337

Table 1: The functions h and A’
Our description of k(1)*(K3) is given in the following theorem.

Theorem 4.8. k(1)*(K5) consists of the following three types of elements.
a For each split Zo in ku*(Ksy) in grading d, there are split Zy’s in k(1)*(Ks) in
gradings d and d — 1.
b Additionally, there are split Zs’s, also of v-height 1, corresponding to a basis

of Zs[x4] ® Elps] ® @ 2 Nji1, and also {xs, 23} ® Zo[x).
>4
¢ For e > 2, there are summands E[pes1] @ E[pess] ® Zo[z> '] @ Aeyo and
FEl2er2] ® E[pesa) © Zo[13 | @ Aeys, consisting of classes of v-height h(e) and
I (e), respectively.

Proof. Part (c) was proved in [6, Theorem 9.3], with the following correspondence of
notation. Our z; is their z;_;, our p; is their w;_y, our h(j) is their r(j — 1), and
our x?lj is their y;.1. Part (a) is true since a copy of E; with top class in grading d
is the sum of copies of F[Q] with top classes in grading d and d — 1. The classes in
part (b) play an important role in Sections 6 and 7. The F;-module N in Figure 3.7
has free E[Q:]-summands with top classes in gradings 8 and 10, and so the N-part
of Proposition 3.8 yields the second part of (b) in the theorem. In Remark 3.16,
we illustrate how My has free E[Q;]-summands with top classes corresponding to 22,
2226, and 23252¢. Thus the 7 = 7 summand in (3.13) contributes to the R-part of

Proposition 3.8 all monomials in € >4 Z?Aj_t'_l whose first omitted factor is z7, and
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so consideration of all j > 4 in (3.13) yields all of @, 2jA;y1. For the S-part of

Proposition 3.8, this is just tensored with x9 =p3. M

Elements of the first few v-heights in k(1)*(K3) are listed in Table 2.

v-height | elements

h(2) =2 | Elps] ® Elps] ® Zs[2%] @ A4
W (2) =2 | Elzs] ® Elpa) ® Zo[23] ® As

h(3) =4 | Elps] ® E[ps] ® Zs[z}] ® As
(3) =4 | Elz] ® Elps| @ Zs[z]] ® Ag

h(4) =7 | Elps] ® E[ps] ® Zs[25] @ Ag

h(4) =9 | Elz] ® Elps] ® Zola§] ® A
h(5) = 13 | Elps] ® Elpr] © Zo[zl®] @ A;
K(5) =19 | E[27] @ Epr] ® Zo[z}®] @ As
h(6) = 24 | Elp;] @ Elps] ® Zo[232] @ As

Table 2: Elements of k(1)*(K3)

Two things from Theorem 4.8 that will be important in proving the differentials in
the ASS of ku*(Ks,) are summarized in the following corollary.

Corollary 4.9. (1) In the morphism of ASSs induced by ku*(Ky) -2 k(1)*(K>),

e_gjze map across. The target tower is truncated at height

the v-towers on 4
h(e—2), and so p(vsxikgjze) =0 for s > (e —2), as there are no higher-
filtration elements for it to hit.

(2) In k(1)1 (Ky) = ku*(K2), [0 Dp,| = [0 2| — 1, which will be important

in deducing that v2° "z, is hit by a differential.

Now we continue the proof of Theorem 4.1. We have already proved (4.2) and (4.3).
As noted earlier, the z;’s are infinite cycles by [9], and so the differentials in (4.5) are
implied as soon as the corresponding differential in (4.4) is proved. We start with
the case t = 1 of (4.4). In even gradings < 14, k(1)*(K3) = 0 in positive filtration,
using Table 2. Thus the map ku*(K;) — k(1)*(K,) implies that in ku*(Ks), v°z4 is
either hit by a differential or divisible by 2 for s > 2. In grading < 8, there is nothing
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that can divide it, and the only odd-grading v-tower in that range is on v2x4z9. Thus
do(vir4mg) = v12y, the case t = 1, k = 0 of (4.4). Since do(23%) = 0 by (4.2), the case
t =1 of (4.4) follows for any k by the derivation property.

Similarly v°z5 must be hit or divisible for s > 4, and examination of options in
Figure 4.7 shows that we must have ds(hov?z3zg) = v®25, preceded by extensions.
Since ds(z%) = h3v3xizy, we deduce the case t = 2, k even of (4.4) using the deriva-
tion property, (3.3), and hgzy = 0. We do not have a priori knowledge that z}z5 is
a permanent cycle in the ASS of ku*(K,). However, if it supported a nonzero differ-
ential, then the tower of v-height 4 on z}zs in the ASS of k(1)*(K,) would have to
map to v'C for 0 < ¢t < 3 for some C in positive filtration in grading 51 in the ASS
of ku*(Ky). Then v*C must be d,.(B) with r > 5 and B in filtration 0 in grading 42.
(B cannot have higher filtration since everything is v-towers, and v3C' cannot be hit.)
But the only possible B is x5z, and we already know that v*z$z, € im(dy). (Ordi-
narily this would not preclude the possibility of B supporting a differential, but it
does since everything is v-towers.) Thus z}z5 is a permanent cycle, and consideration
of its image in k(1)*(K>) implies that v®z}z5 is hit by a differential for some s > 4.
The only element in odd grading < 42 not yet accounted for is hov?z}rg in grading
33. This is the case t = 2, k =1 of (4.4). The validity for all odd & (and ¢ = 2) now
follows similarly to what we did for even k at the beginning of this paragraph.

The proof of (4.4) for ¢ > 3 is much more delicate. For all non-2-powers n, write
n =22k +1) and let T'(n) = vzhg”xiwgk_lmg and M(n) = xip+3(k_1)zp+6. We will
prove dopta_p_s(T(n)) = v¥" M(n), which is (4.4), with a new k. From now on, we
will denote such a differential as T'(n) — M(n). If we write T'(n) — M (m), then
the exponent of v accompanying M (m) will be (|M(m)| — |T'(n)| — 1). In Table 3,
we consider the range 33 < n < 63. We also include n = 96 for future reference.
We omit writing the v?zy factors of T'(n), and write z instead of 4. The values
M'(n) = |M(n)| — 2 (p 4+ 4) will be important, as we shall explain later.

There are two main constraints. Constraint (1) says that if 7'(n) — M (m), then
|T(n)] < M'(m). This is true since the image of M(m) in k(1)*(K;) has v-height
h'(p+4), with p = v(m). Thus the v-tower on M (m) cannot be hit by a differential
in grading > |M(m)| — 2k’ (p+4) = M'(m). This also requires that we know, as in
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wlp k|ITO) M@ M) | Te) o M)
3310 16| 513 546 528 | hAx?T 101204
34|11 8| 513 578 540 | hjx'? o¥2pliZz,
3510 17| 545 578 560 | haz!?® o012z
362 4| 513 642 562 | hgz!?T  0512%
3710 18| 577 610 592 | haz'3 t6p1304
381 9| 577 642 604 | K3z 032128,
3910 19| 609 642 624 | hax'Pl  plOplHzg
4013 2| 513 770 606 | hjx'?T 01280z
4110 20| 641 674 656 | h3z'™  vl0z192z4
4211 10| 641 706 668 | hix'®®  v32ptHz,
4310 21| 673 706 688 | h3z'67T  pl0x100%,
4412 5| 641 770 690 | hga'®® 0012824
4510 22| 705 738 720 | B2z 101085
461 11| 705 770 732 | h3xlT 03221602,
4710 23| 737 770 752 | hAx!® pl0p1T04
4814 1 013 1026 692 | Az 05z
4910 24| 769 802 784 | BAxOt M08y
50 (1 12| 769 834 796 | hgx'9 032170,
5110 25| 801 834 816 | hax'®  ol0z1922
522 6 | 769 898 818 | hgz'9  ub4x1004g
53|10 26| 833 866 848 | hax®T 10200z
54 |1 13| 833 898 860 | A3z u32x1922,
55 |0 27| 865 898 880 | hax?t w0208z
56 |3 3| 769 1026 862 | Azt !l
57 |0 28| 897 930 912 | hax®®  pl0g0
58 |1 14| 897 962 924 | a3 0322084,
5910 29| 929 962 944 | h3x?L pl0p22
602 7 | 897 1026 946 | hax?23 084192
610 30| 961 994 976 | hax®¥  vl0r?2z
621 15| 961 1026 988 | hgx®? 325221z,
630 31| 993 1026 1008 | h2z*T o020
96 |5 1 | 1025 2050 1376 | hjz®® P12z

Table 3: Differentials
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the case of x}z5 discussed earlier, that each M(n) is a permanent cycle. We prove
this in Lemma 4.10. Constraint (2) says that if ny < ny and |T'(ny)| = |T'(ng)| and
T(ny) — M(my) and T'(ng) — M(msy), then |M(mq)| < |M(ms)|. This is true since

moving up an hg-tower requires higher differentials.

Lemma 4.10. In the algorithm described in this section, M(n) is a permanent cycle.

Proof. Recall that M(n) = xiHS(k_l)szrG. We present the proof when p = 1, and

then explain how it generalizes. The algorithm illustrated in Table 3 purports to

prove that dar(v2h3zi% '24) = v322,°* V2. and an important part of the argument

is that, by consideration of the image of :v}f(k_l)% in the ASS for k(1)*(K,), the

16(k—
v-tower on x,

awry if a:f(k*l)z? supported a differential in the ASS of ku*(K3). If it did support
a differential, then in the ASS morphism of k(1)*(K,) — ku**'(K>), the height-19

16(k—1)
v-tower on I,

1)27 is hit by a d,-differential with » > 19. This argument would go

z7 will map nontrivially, increasing filtration by at least 1. The
target v-tower must be truncated by a d,-differential with » > 20 emanating from
filtration 0 in grading 64(k — 1) + 130 — 38 = 64k + 28. We seek to show that no such
differential is possible.

The class supporting such a differential cannot be an M (m) with m < n, since they
have already been shown to be targets of differentials, nor can it be a product of z;’s
times such M(m), for the same reason. It can’t be an M(m) with m > n because
their grading is too large.

We must also rule out the possibility that this unwanted differential is one of the
(4.3) differentials. If so, the ¢ in (4.3) must satisfy v(i) > 18, and the class supporting
the differential is 2,7, where Z is a product of z;’s with j > 22 and all j’s distinct,
except that the smallest one might occur twice. Since |z;| = 27 4 2, |24 Z| = 64k + 28
implies that there must be 14 z;’s, with the largest j being > 34. Hence 64k > 234,

If k is minimal such that doy(v2R325% '2g) = v322,°" V2. does not hold due to
the problem we have been describing, then we have just seen that 16k > 232, By the
minimality assumption, the dy; formula is valid if 16k is replaced by 16k — 232, By
(4.2), dy7(22”) = 0. Hence by the derivation property, the formula holds as stated.

For arbitrary p, the above argument goes through with

(16k,7,27,19 £ 1, 64k, 28,22, 14, 34, 2%?)
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replaced by
(2P+3]{7, 6 + p, op+4 _ (p + 4)7 h/(p+ 4) + 1’217—i-5k7 op+5 L9 Qh/(p—|— 4)7
h’(p+ 4) + 37 2p+4 +1— h/(p + 4)’ 2p+4 + 2722p+4)‘

The final step follows from dap+a_(p14) (x?pr

)=0. N

Now we can explain how the description of ku°? in (1.11) is obtained from (4.3)
and Lemma 4.10. We illustrate with the case k = 7 in (1.11), so we want x}°29S7
for ¢ > 8. It is formed from Plv|z°zoW, (with W, as in Theorem 3.2) by truncating
the first (leftmost) ¢ — 7 v-towers at height 6, while the last four support differentials.
The differentials from (4.3) are

16 6,15
de(zy 25 - 25+ 20-1) = V°x,°XTo2Zj_a % Z—1
= 02)%x92j 4y, 8<j<l-—1 (4.11)
16 6,.15
de(x,°z0) = V°w 20-a4.

After tensoring with P[z2" "] ® Ay, all of (1.11) is obtained in this way.

The last v(e + 1) v-towers in x{W, support differentials. To see this, first note
that, similarly to (4.11), the image of (4.3) hits v-towers on all zirgz, ;A1 with
j—s2>v(e+1). In Plo,z4]rg D;5, W; @ Ajy1 of Theorem 3.2, this is all but the last
v(e+ 1) v-towers in the W;’s. By Lemma 4.10 and the fact that z;’s are permanent
cycles, all the v-towers on the right-hand side of (4.4) and (4.5) are permanent cycles.
Thus there is nothing which can hit these last v(e+ 1) odd-graded v-towers, and since
no infinite v-towers are present in E., by [1], we deduce the claim of this paragraph.
Thus the elements of (1.11), which were obtained in the preceding paragraph, are the
totality of ku®d(Ky).

Now we proceed with the proof of (4.4) for ¢ > 3. We begin by showing that if we
have proved T'(n) — M (n) for all non-2-power n < 8a, then T'(8a + b) — M (8a + b)
for 1 < b < 3. We show this for a = 4, and then note that the same argument works
for any a since n # 0 mod 8 implies that increasing n by 8 increases each of |T'(n)],
|M(n)|, and M'(n) by 128. Refer to Table 3. Constraint (1) implies that M (33)
and M (34) must be hit by some T'(n) with |T'(n)| < 540 so |T'(n)| = 513, and by
Constraint (2) this must be 7'(33) — M (33) and T'(34) — M (34). Constraint (1) says
that M(35) must be hit by some T'(n) with |T(n)| = 513 or 545, and Constraint (2)
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says it cannot be hit by one with |T'(n)| = 513 since |M(35)| = |M(34)|. Therefore
T(35) — M(35).

Constraints (1) and (2) allow a possibility of T(16i+4) — M (16:+5), T'(16i+5) —
M(16i + 6), T(16i + 6) — M(16i +8), and T(16i +8) — M (16 +4) for i > 1. Since
this alternative involves an aberration of a dis-differential, and xiw survives to Fjo,
multiplicativity implies that the first time that this alternative might occur must be
in grading < 2'2. If i = 2j + 1 is odd, this alternative would say that v96x}128j29 is hit
by a differential. Theorem 4.8 says that k(1)*(K) has classes x;>”py with v-height
89. We have [v%1,* pg| = 257 4 5125 = |v'1%2,°¥ 29| — 1, and the expectation is that

in the k(1)*'(K3) — ku*(Ks) portion of the exact sequence, v3 ;" pg maps to
01287522 2 for 1 < s < 32. In the alternative scenario, with v%z,;°* zy = 0, there

is nothing for vgg_sxfgj po to hit for 1 < s < 32. (This is easy to check because of

our order of listing the classes. For example, letting j = 1, all subsequent |7'(n)|’s
are > 833, so all the higher v-towers are truncated before they get to grading 833.)
So these classes must be in the image from ku*'(K3)/2. In odd gradings, these are
just the Sy, classes,® which have v-heights k — 1 arising from filtration 0 in gradings
> 281 roughly. In grading < 2'2, which is where we noted the first case of the
alternative scenario must occur, the maximum v-height in Sy ,’s is 10, which is not
nearly large enough to map onto the portion of the po-tower that needs to be hit.
This shows that this alternative scenario cannot occur when 7 is odd.

Combining this with the previous observation about the first few values of n yields
the desired T'(n) — M(n) for 32j + 17 < n < 32j + 27, and the result for 325 + 28 <
n < 325 + 31 follows easily from Constraints (1) and (2), as can be seen in lines 60
to 62 of Table 3.

When i is even, a different argument must be used because 25*py does not exist in
k(1)*(K2). For i = 2, we will be considering values of n in Table 3 from 36 to 48, and
a similar argument applies for any ¢ = 45 4+ 2. There are various scenarios consistent
with Constraints (1) and (2) for which it is not the case that T'(n) — M(n) for all n

in this range.

3We introduce the term “Sk.e classes” to refer to the classes of (1.11), so they are accompanied

_371

k —
by xi xg9 and perhaps by powers of xﬁk * and monomials in Mgy
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Assume first that there is an odd number n in this range for which it is not the
case that T'(n) — M (n). Then there is a deviation from a d;o-differential, and so, as
above, we can assert that the first such deviation occurs in grading < 2'2. (For i = 2,
we are clearly in grading < 22, but this argument is applying to all i = 45 +2.) If it is
not the case that 7'(48) — M (48), then v®zyg is hit by a differential for some s < 224,
since the only |T'(n)|’s not yet handled are > 577. The v'™~'p;; which wanted to map

to ,02567t

210 will be mapping to 0 for ¢ < 32. It must be hit by a v-tower of height
> 32 in some Sy, but these have v-height < 12 in grading < 2'?. Thus we conclude
that T'(48) — M (48), and v*°21y # 0 in ku*(K3).

However, the image of v®z10 in k(1)*(K32) is 0 for s > 167, as there is nothing for
it to hit. Thus these elements must be divisible by 2, and so there is an element
C in ku%?(K,) (with 2C° = v'%7z14) such that v®3C # 0. The only possible C is
v¥978 29, and so v1272 29 # 0. Therefore M (40) must be hit by T'(40). It is easy to
check that this, together with Constraints (1) and (2), implies that T'(n) — M (n)
for 33 < n < 48, and similarly for any 33 4+ 645 < n < 48 + 647, contradicting the
assumption that T'(n) 4 M (n) for some odd n in this range.

Now we may assume that T'(n) — M(n) for all odd n in the range under con-
sideration. One easily checks that Constraints (1) and (2) then imply that either
T(n) — M(n) for all n in [33,48] or else there is a deviation from a dy7-differential.
Hence the first such deviation must occur in grading < 2*7 (since xi% € Ey7). Since
27 < 32, the same argument as above applies. But for subsequent continuation of
the argument, we strengthen it. Under this assumption about 7'(n) — M (n) for all
odd n, some ranges in the previous argument can be doubled. If T'(48) 4~ M(48),
then v®z19 is hit for some s < 256 — 64. Then part of the v-tower on p;p must be
hit by a v-tower of height > 64 in an Sj ¢, but, for the first occurrence, these heights
are < 27. Hence v*°21y # 0 in ku*(K3). The second part of the argument, involving
M (40), goes through exactly as above, and so we have proved T'(n) — M(n) for
33+ 647 < n < 48 + 64].

Next we consider the cases where n € [65,80] U {96}, the only remaining cases less
than 128. For n € [65,80], the values of |T'(n)|, |M(n)|, and M'(n) are 512 greater
than those for n — 32 tabulated in Table 3, and the v M(n) column has an extra

factor of x'?®. The entries for n = 96 are in the last line of Table 3.
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A direct adaptation of the argument used for n € [33, 48] breaks down where it said

“the v'™~!p;o which wanted to map to v?°¢~¢

by z}?®, and there is not a corresponding class z}*®pyo in k(1)*(K>).
If it is not the case that 7(96) — M (96), then v°z; is hit by a differential for some
s < 512—2° where p = 5if T'(n) 4 M(n) for some odd n, else p = 6 if T'(n) 4 M(n)

for some n = 2 mod 4, else p = 7. Similarly to the earlier argument, the last 2° classes

z10” because the z19 is now multiplied

on the v-tower on p;; will have to be hit by a v-tower from some Sj 4, but, for the
first such occurrence, the maximum v-heights in any Sy, are < 27~ — (p —1). (Here
we are again using the derivation property and (4.2).) Thus 7°(96) — M (96), and
the v-tower on zq; in ku*(K5) has height 512.

The image of z1; in k(1)*(K2) has v-height 337, and there is nothing else for the
end of the v-tower on z1; in ku*(Ks) to hit. Thus there is a class C' in ku*(K,) with
2C = v¥72; and v'™C # 0. The only possible C is v¥ 2?20, and so v?*z}*8215 # 0,
and hence T'(80) — M (80). (Constraint (2) implies that M (80) could not be hit by
T(72), since there would be nothing with larger |M (m)| for T'(80) to hit.)

Now we do a similar step to show that 7'(72) — M (72). Indeed, the image of
21%210 in k(1)*(K>) has v-height 167, and so v'%72}2%2,9 must be 2C” with v¥C" # 0,
and the only possibility is v3%z1%%29. Hence v'*"x}%29 # 0, and T(72) — M(72).
We now easily deduce using Constraints (1) and (2) that T'(n) — M(n) for all n in
[65,80] U {96}, and similarly for shifts of this by multiples of 128.

We have now shown that 7'(n) — M (n) for all non-2-power n < 127, and in the
range [129, 255] all are done except for [129, 144] U {160, 192}. These can be handled
by the same method as used above, with one extra step. If these values are increased
by multiples of 256, the same argument applies. This procedure can be continued for

all n.

We discuss briefly how Theorems 3.2 and 4.1 lead to (1.1), modulo exotic extensions.
We have already seen, in the discussion surrounding (4.11), how the description of
ku°d(Ks,) in (1.11) follows from Theorems 3.2 and 4.1.

The part of Theorem 3.2 called (xg, 10, hoxs = vx19) is As. (Recall that x19 = 23.)
Then 22 'z A3 is a subset of 22" Ay,;. Thus the second half of the second
displayed line of Theorem 3.2 exactly yields the As-portion of (1.5) tensored with

Loz 7).
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All elements in the part of Theorem 3.2 called P[hg, v, z4)v%zg are either targets
in (4.2) or support differentials in (4.4), while the P[hg,v,z4] part of Theorem 3.2
supports differentials in (4.2).

This leaves the v-towers on monomials xiziﬁjAjH with 4 < ¢ < j. Those with
i > 4+ v(t) support differentials (4.3). Those with v(t) > i — 3 are hit by differentials
(4.4) and (4.5), and the v-heights are as in our definitions of T{* and T} in Section
1. It remains to see how these monomials occur in the summands of (1.1).

It is convenient to let 3 = 2%~ and E; = Ely;, 2 : j > i]. The monomials in
question are all those of the form z;M with M € FE;, © > 4. Let k be the smallest
integer > 7 such that either both or neither of ¥, and z, are factors of M. If we divide
(1.1) into its three parts, including the Zy[22" ] in each, then the first (resp. third)
part has those monomials containing neither y; nor z, in M, and no (resp. some)
factors z, with p > k, while the second part is those with both y;, and z,. Moreover,
the k in (1.1) agrees with the & in this paragraph.

For example, we consider the second part of (1.1) with & = 7. All terms have
factors y7z7, and possibly some factors y; and z; with j > 7. The z,F, terms have,
in addition to these and the z4, the following factors corresponding to the successive

summands in (1.9).

242526, 2425Y6, Z4Y526, 24YsYe, Y4526, Ya¥Ys526, YaZ5Y6, YalYsYe-

These can be seen in Figure 1.10 in gradings 126, 102, 118, 84, 126, 108, 92, and 74,

respectively. There are also monomials in z5Es5, 2 Eg, and 27.

5. THE EXOTIC EXTENSIONS

The extensions in (1.6) are established in various A;. They are then promulgated
under multiplication by products of one or more z;’s. Parts of the formula are implied
by ho in Ext. The rest are deduced using the exact sequence (1.19).

The first exotic extension, 27423 = viz4, can be seen in the lower right corner
of Figure 1.10, after dividing by x}*. To prove it, first note that the v-tower on
24 € ku'®(K3) has height 4. The elements v?z; and v*z; map to 0 in k(1)*(K3), since
it contains no elements in even grading < 18 in filtration > 1. Table 2 is useful in
seeing this. Thus v%z; and v3z4 must be in the image of 2 , hence the extension.

Figure 5.1 shows the relevant elements in this portion of the exact sequence (1.19).



THE CONNECTIVE K-THEORY OF THE EILENBERG-MACLANE SPACE K(Z.,2) 31

Figure 5.1. Portion of exact sequence.

k(1)°%(Ky) ku®(K>) ku®(K>) k(1) (K)
— — —
/ / ZI S
b 1% . L

18 14
Z4

8
X423 Z4  T4Z3

A similar argument works to prove

213

203 _ 2 272
2-xy zp=wrp oz tUT zjy, (5.2)

which was the last equation in (1.6). The first term is seen in Ext. To see the second
term, we consider j = 6 as a typical example. It has the advantage that we can
refer to Figure 1.10. The v-heights of z; in ku*(K3) and k(1)*(K3) are 32 and 19,
respectively. The elements v™z; for 20 < m < 31 are in filtration > 20 in gradings
< 90. It is easy to check that k(1)*(K3) is 0 in this range. Thus these v 27 must all
be divisible by 2 in ku*(K,). The elements v™ 628z are the only possible classes
that can do this. [If 2- C' = v¥2z;, then 2 - v C' = v¥ 27 # 0. But v'z}z4 is the only
class C' with |C| = 90 and v'"'C' # 0. Other multiples of z are not in this range, and
the v-height of z5 is 8.] Knowing that v?°2; = 2vixfzs implies (5.2) for j = 6, as is
easily seen in Figure 1.10. Essentially the same argument works for all z;.

A similar argument applies to deduce that (5.2) is valid after multiplication by
fo. The same comparison of v-heights applies as when ¢ = 0. This was discussed
in part (1) of Corollary 4.9. Thus v™z$¥ " 2;4, is divisible by 2 for m > h'(j — 1).

. . . j—2 j—3 . .
It is convenient to also be in the range where hoz§?’ "z7 "z; = 0. This will occur

for UmeQj_szH with m > 2972 4 2773 — j + 2. This requires slightly larger values
of m than did the A'(j — 1) condition. For example, the values are 19 and 20 when
j = 6, and are 40 and 43 when j = 7. For m = 2972 + 2973 — j 4+ 2, there must
be an element Y in ku*(K,) with 2V = vz "z, and v¥ ' ~17™Y #£ 0 (since
0¥ 1Y 20 2 0). The only possible Y is vz a7 4,

Table 3 can help us see this. We consider a specific case, j = 7, ¢ = 6, but it should
be clear that it generalizes. The relevant lines of Table 3 are 57 < n < 60. The nice

thing is that the table shows all classes that are not products® of more than one z,

4The table does not include the short v-towers on z4 and zs. These could be filled in, at the
expense of greatly lengthening the table.
SRegarding other classes, see Remark 5.4.
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and it lists the towers roughly in order of grading. Figure 5.3 depicts the only four
relevant v-towers in this range, labeled by their n-value. The class Y has |Y| = 940.

The key thing is that tower 57 lies outside grading 940, and tower 59 does not
extend far enough back to support the extension all the way back, as must occur.
It must be the class in tower 58 which supports the extension. In general, ignoring

j—2 . . j—2 J—3 _ 4
the 2¢¥ ~, the extension occurs into v?’ 2" "~/ +2

(after the one that works) is xij73+2j74zj_1, whose grading is lower than that of the

Zj+1, and the next lower v-tower

extension.

Figure 5.3. Depiction of some v-towers.

1026 962 930 898
940

Remark 5.4. Because z;’s are elements of ku*(K5y), multiplication by z; preserves
extension formulas. This explains why the class which extends into vmxf]‘*?zjﬂ
cannot be divisible by more than one z;. This is because the first such occurrence
would be on a class z;C' for which 2 - C' has already been seen to be compatible with

our extension formulas.

6. PROPOSED FORMULAS FOR THE EXACT SEQUENCE (1.19)

In this section, we propose what we feel must be correct complete formulas for the
exact sequence (1.19). Some homomorphisms are forced by naturality, but many oth-
ers involve significant filtration jumps. However, they all occur in several families with
nice properties. The 10-term exact sequence (6.2) shows how the Sy, portions and
the exotic extensions yield compatibility of the differing v-tower heights in ku*(K>)
and k(1)*(K2). In Section 7, we show that all elements of k(1)*(K3) are accounted

for exactly once in these homomorphisms, which implies that there can be no more
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exotic extensions. This does not require us to prove that our formulas are actually
correct, as discussed at the end of Section 1.

We propose that (1.19) can be split into exact sequences of length 4 and 10 (not
including 0’s at the end). There are subgroups of k(1)*(K5) called Gi and G% for
k >3 and GZ,E for 3 <i <6 and 3 < k < /£ such that there are exact sequences

0— GL— Ay = A, — G2 =0 (6.1)

for k > 3, and, for 3 < k < ¢,

-1 -1
0o — Giz — :EikigBk H Z $ik73Bk H 2 — Gij — xikfg_lngM
k k
i) ZL’ikiS_lZEgShg — GZ,Z — Bk;Zg i) Bng — GZ,Z — 0. (62)
The sequence (6.1) can be tensored with Zy[z2" °], while (6.2) can be tensored with

Z[22°) @ Agyr. Note that Bs = 0, so that (6.2) only has four nontrivial terms when
k = 3. We will study these exact sequences by breaking them up into short exact
sequences and isomorphisms involving kernels and cokernels of -2.

In studying these exact sequences, K} := ker(2|A;) and KP := ker(2|By,) are very

important. Important elements of each are given in Table 4.
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k| gx

3 z3

4 Z4

5) VZy

6 | 222425 + 1326

7 vxﬁz526 + 082,

8 | 210242527 + V382627 + 0182

9 vxio%zﬁzg + vgx}l6z728 + 392

10 | 23224252729 + V3030 262729 + V18032 2529 + v¥1 210

Table 4: Elements g in Ky

For example g; can be seen in Figure 1.10 in grading 114, and can be verified using

(1.6) to see that 2g; = v?22 + v?22 = 0. A recursive formula is
D gt (6.3)

Note that the first part of this formula is analogous to the recursive formula for p,.
The occurrence of h'(k — 1) here is a bridge between ku*(Ks3) and k(1)*(Ks).

. . k—3 /—1 .
The isomorphisms Gi — Kj' and G3, — 22 "KZ[[,  z are determined, on

2k—3 R (k—
k2 = Ty GkZk+1 + U (

elements of v-height > 1, by p; — g¢;, multiplied by various things. The main place
where the A- and B-versions differ is in the element of largest v-height. This is g for
each. However, its v-height in K;* (vesp. KP) is 2872 — (h/(k — 3) — 1) (resp. 2F72 —
(k—2)— (W(k—3)—1)). In k(1)*(Ks), the v-height of p; is h(k — 1) if it is not
accompanied by 25, as will be the case when mapping to K;!, while its v-height is
h'(k — 2) if it is accompanied by zx, as will be the case for the map out of Gijg.
One can verify that these v-heights match, i.e., 2872 — b/(k — 3) + 1 = h(k — 1) and
P2 —(k—2)—=NW(k—=3)+1="N(k-2).

Other elements of v-height > 1 will have the same v-height in the A- and B-versions.

We just list it when k& = 7, where we have Figure 1.10 to look at. These elements are
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hit by v-towers in k(1)*(K3) of the same height as follows:

ht '(2) =2 (ps— ga) - 2a{25, 23} {6, 23}
ht h'(3) =4 (ps > g5) - 25{26, 3} (6.4)
ht h/(4) =9 (p6 — gﬁ) © 26

The notation such as {zs,r}} means that the homomorphism is multiplied by either
25 or x3. For example, (6.4) means that pszsz¢ — gs2526 and also pszsas — gszsas.
You can see all of the target elements in Figure 1.10, and can verify that the preimage
elements occur in Table 2 with the prescribed v-height. This generalizes to arbitrary
k in an obvious way. In the B case, these formulas must be multiplied by xik_3 and by

f;_l z;, or by z, with £ > k. In both the A- and B-cases, they can also be multiplied
by the things which we said the exact sequences can be multiplied by. None of this
changes any of the v-heights.

There are elements of v-height 1 in Kj' and K. When k = 7, you can see these in
Figure 1.10 in gradings 124, 108, 106, 90, and (for B but not A) 76, 74, and 72.  The
basic formulas for the morphisms from G}, and G3 , follow a pattern which should be

clear from the first three:

xip3z475 — T202425 (6.5)
371]03 ((24,67 2’5,6)) = xi ((U4Z57 vxiz@) 26 (6.6)
954115133 ((2’4,7, 25,75 26,7)) = 95481 ((UHZ& U4$?LZ57 Ux16124)) Z7. (6.7)

We use ((—)) notation to indicate an ordered list. For example, (6.6) means that
Tipszae > Tivizsze and xipszse > vrbzuze. It is different than the set symbols
that we used to mean “choose one.” The v-exponents in the targets are various
2! —t — 1. The preimage elements are of the second type in Theorem 4.8. Note that
this morphism involves large filtration jumps.

The formula (6.5) occurs in G and G® in many ways. Later we will list additional

ways that it occurs in G°.

e as stated in G§ — Ag;

multiplied by z} in G2 4 — x4 Bszs;

multiplied by 23z in G ; — 2§ Bgze;

multiplied by {zs, 2%} in G} — Az;
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e multiplied by 2;%{z, 23} 27 in G2 3 — }°Brzr;

e multiplied by {zg, 25}{27, 71} in G} — Ag;

e ctc.
For Gi’e — xik_gBk Hifl z; with ¢ > k + 1, multiply the formula by an additional
Zkt1 -+ 2ze—1. Of course, formulas (6.6) and (6.7) and subsequent formulas have similar
manifestations. For the subsequent formulas after (6.7), increase subscripts of A, B,
G, and z and 7 in :17?; by appropriate amounts, and extend the vectors. In Figure 1.10,
multiples of (6.5) apply to the elements in 124 and 90, while (6.6) applies to elements
in 108 and 106, and (6.7) to 27 times elements in 76, 74, and 72.°

Next we describe the isomorphisms Cy — G} and Cpzy — G} ,, where Cp =

coker(2|A;) = coker(2|B;)" and ¢ > k + 1. These isomorphisms are defined simply
by sending an element to one with the same name. Perusal of Figure 1.10 makes it
quite clear that the elements of C'; with v-height > 1 are as listed below with their

v-heights, in a pattern whose generalization to any k£ should be clear.

Dt 19 =H(5) 2 (6.8)
ht 9=h(4) 252
ht 4 =h'(3)  xizs{z, 2%}
ht 2 =h(2)  2iz{zs, 23z, 25}

We explain the v-height of 27, again referring to Figure 1.10. In grading 92, we have
2(x30 2425 + vPa826) = v 27, (6.9)
so v1%2; = 0 in C7, corresponding to the v-height of z; in k(1)*(K,). Note that
v827 #£ 0 in Cy, since 2 - v2xdzg = v'82; + v32922. The relation (6.9) is closely related
to the formula for gg in Table 4: if (6.9) is multiplied by 27, then vz2 = 225 implies
the relation 2gg = 0.
The elements of v-height 1 in C; are
zjz 4<75<6
2526 4<j<5 (6.10)
vtz oy J =4

6These elements do not exist as kernel elements without being multiplied by sone zj, with k& > 7.

k=3 k—3
Texcept for the elements z2 23 and 22 ~'zg in coker(2|Ay).
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Note that these have v-height 1 in C;7 because v times them is divisible by 2 in
ku*(Ks,). This generalizes to any k.

Let Si, = ker(2|Sk,) and Sy, = coker(2|S¢). We study the short exact sequence

O — ZC4 Ck-Zk-Pk+1 — szf — £C4 71%’955@ — O7 (611)
where P}, = i +11 zi. Note that Si¥, contains just the v-tower of height £ — 1 on

244, and classes of v-height 1 for each Uk_zzi,g with 5 < i < /¢ —k + 3. We deal with

the latter elements first. The map from G4’£ sends
ZL‘ik73Zi+k_47g — vk Qxi agzig, 5<i <l —k+ 3. (6.12)

The classes of v-height 1 in CY, described in the preceding paragraph, when multiplied
by xik%sz,fH, map to elements with the same name in G , C k(1)*(K).

Of the v-towers in C}, of v-height > 1, after multiplication by xikfszkp,f all except

41
the one on z; map to v-towers with the same name. The only tower of v-height > 1
in ZL‘Z -~ 1:1095M is 7} 73_1.11924757 with v-height & — 1. It is hit by pypys1 Py, which
has v-height h(k — 1). The class which hits vk_lpkpkHP,fH is U(L’ik732k7g, which has
v-height A/(k —2) — 1 in xiHCksz,fH, as it corresponds to z € C. (See (6.8) for

the v-height.) These match since
h(k—=1)—(k—1)=h(k—2) - 1.

The generator of the v-tower xi Tz in 334 CkaPk 41 maps to the class with the
same name in k(1)*(K3). A schematic when k¥ = 7 and ¢ = 8 appears in Figure
6.13. Elements with o, e, or X = z4%22 map to elements with the same symbol, and
numbers indicate filtration.

Figure 6.13. Towers in exact sequence.
23

18

5 4
J}}1607Z7 — G7,8 — 234 .7;98

> PP “* T1°Tozs 8
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Finally, we study the short exact sequence
0— a2 "TlagSS, = Gy, = KPPz — 0 (6.14)

with ¢ > k + 1. First, S,gé has classes z;y for 4 < ¢ < ¢ — k + 3, which, after
multiplying by xik_gflxg, map to classes with the same name (except that zg is
replaced by ps) in G}, C k(1)*(K3). The target classes have v-height 1, as do the
domain classes in xikig_lxgs,ge, except the one with ¢ = £ — k4 3, which has v-height
k — 1. Similarly to the discussion following (6.3)%, Kz, has summands of v-height
h'(e —2) for 4 < e <k — 1 with generators g.P, with

k-1

P.=z H {zj,mij_s}Zg,

j=e+1
and giz¢ of v-height 2'(k —2). The classes g. P are mapped to by p.P in G}, with the
same v-height. However, gxz is hit by pyz, of v-height h(k—1) = h'(k—2)+k—2. To

/ . . k—3_ . . .
W(k=2)p, 2, is hit by vr] '@92z31¢ ks, Which is v times the generator

compensate, v
of the only part of xik_s_lxgskc’g of v-height > 1. One can check that

W (k—2)

k—3_
v} ’ "ozapopi| +1=|v Pr—172e]-

We illustrate this key phenomenon in Figure 6.15, which shows all of 2329556 and

Bszg, and part of G .

Figure 6.15. ZEEIQS&G — Gg,(ﬁ — Bszg

AV

490 98 =90 98
VTYT9Z46 P56 V2526

There are also two families of elements of v-height 1 in Kz, which are hit from
G}, similar to those described in (6.5)-(6.7). First, in G°, (6.5) occurs

as follows (6.16)
8See especially (6.4).
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e in ng — Bgz, for £ > 7, multiplied by z,

e in G, — Brz for £ > 8, multiplied by {2z, 25} 2,

e in G}, — Bsz for £ > 9, multiplied by {26, 25 }{ 27, 2%} 2,

e ctc.
These can also be tensored with Ay, and, for G} ,, by Z, [z27*]. There are analogous
occurrences of (6.6), (6.7), and their successors.

In G°, there are also generalizations of (6.5)-(6.7) as follows.

xipgzg_u > xivzeze, £> 6 (6.17)
Tips ((Zg,g,g, Zg,u)) =z ((v4z5, vxiz4)) 20, 0 >7 (6.18)
etc.

Formula (6.17) occurs in G , — Bsz, and can be tensored with Z,[x§]Azy1, and (6.18)

occurs in G, — Bsz, and can be tensored with Zy[zj%]Agy.

7. ALL ACCOUNTED FOR

In this section, we show that all elements of k(1)*(K3) are involved in exactly one
of the homomorphisms involving some G-group described in the preceding section.
As discussed earlier, this implies that there can be no exotic extensions in ku*(K>)
other than those in (1.6), because such an extension would decrease the number of
elements in ker(2|ku*(K3)) and coker(2|ku*(K3)), and these must correspond to the

elements of G-groups.

Let
P z.l23 2 G 1<i<?
G =M= e
P z.l+7 1R G, ©Mn 3<i<6.
3<k<t

This section is devoted to the proof of the following theorem.

Theorem 7.1. G' @ --- & G® consists precisely of classes of the following four types.
1. {1'8, 23} 0% ZQ[.’L‘4] .
ii. Fore> 2, v-towers of height h(e) on E[pes1] @ E[pess] @ Zo[x2 | @ Aeyo;
iii. Fore > 3, v-towers of height h'(e—1) on E[zes1] ® E[pes1] @ Zo[22 ] @ Aeya;
iv. For e > 4, v-towers of height 1 on Zs[x4] ® Eps] @ B[22 @ Aey1.
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This and Theorem 4.8 immediately imply the following result.

Corollary 7.2. G* @ --- ® G ezactly gives all of k(1)*(K>) except for the split Zy’s
(of the first type in Theorem 4.8) coming from free Ey-summands in H*(Ks).

Proof of Theorem 7.1. Case i. The mod-2 reduction of Aj is {zs, 23}, and, as noted
near the end of Section 4, x2 g A, C xCQHIAgH. These map to classes with the
same name in G?.
Case ii. Our work in Section 6 showed that the v-towers of height h(e) in the G’s

are

° p6+1Z2|::C421671] in G,

® Det1PeraZolry JAeys in G4, and

® Des1Zo[z? |Aery in G
The first and third combine to give the portion of Theorem 7.1(ii.) which does not

contain the pei o in E[pes2], while the second part contains the portion which does.

Case iii. The work in Section 6 showed that the v-towers of height h'(e — 1) in the

G’s are

i
2l 1 2073 . 1
® Pet1Zetl @ Zylx H {z,zf "} in G,

i>e+1 j=e+2
A
ge— — 27, 1 2j*3 . 2
o Zslx; ]zeﬂ ® ¥ Ze+1 EB Loz H {#z,z7 "} in G*,
i>e+1 Jj=e+2
2672 2e— 21 2 21 1
® Det1Ze+1 ($4 Zz[% Aejo @ @ Ty H {Zg,$4 } Zz+1Az+2)
i>e+1 j=e+2
in G3,
A
257 9i— 2 21 1 2J— 3

b Ret1 @ Ty ZQ H {Zj, } Ziv1Nigo In G

i>e+1 Jj=e+2

A
21 1 2] 3

® Dei1Zei1 EB Zs|x H {zj,zy "}~ Aiyo in G°, and

i>e+1 j=e+2

%
ge— — 21 1 27—3
o Zsxg ]Ze+1Ae+2 ® x5 Ze+1 @ Zolxry |1® H {z,25 '}~ Ao in GC.
i>e+1 Jj=e+2

The G' ® G? @ G° part is all divisible by p.i12e+1. We remove those factors, and

combine G' into G° to remove the bar over A. This combines with the G3-part to
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give

2} Lofe ey ® @D Zola @ {1, 2l H {z2d ) Ao (73)

i>e+1 j=e+2

We will show that the EB part equals Zg[ﬁ%l]/\e“. Thus the entire expression
equals Zg[:cie_Q]AeH, and so this G' @ G? @ G® part gives the portion of Theorem
7.1(ii) which includes the p.1 in E[pey1]. A very similar argument shows that the
G? ® G* @ GS part gives the portion which includes just the 1 in E[p.,,], concluding
the proof of Case iii, modulo the claim.

To prove the claim, it is convenient to think of Z,[z% '] as an exterior algebra of
{22 -t > i —1}. Any monomial in Zo[z2 '|A.4s can be described by a sequence
of choices: (((ze42,23 '), (2e13,23),...)). In each pair, which was included: neither,
both, or which one? Note that Zs[z] - I]AHZ allows all possible choices beginning
with (zi49, 22 ). A monomial corresponding to the i-term in the @ in (7.3) chooses
exactly one of z; and xijﬁ in each position for j < 741, then chooses neither or both
of z;11 and xiiﬂ, and then makes all possible choices after that. Thus all monomials

. e—1
in Zy[x3" |A.yo are chosen exactly once.

Case iv. Now we study the classes of v-height 1. We begin with those not divisible
by p3. These are exactly those coming from G2, G*, and G®, except that Case i
handled a few from G5. Now we list the terms in each which contain the factor 22,
for some e > 4. The desired answer is 22Zs[z4]Ac 1.

From G?, we have
i

2 @ Z2 21 2 H {Zj_1,{lfij 4}7

i>e+1 j=e+2
and from G° the same thing with A,;,; appended, so that these combine to give

22 @ Zaled ) [T fzimnad ) A (7.4)

i>e+1 j=e+2

From G*, there are three types. One, from (6.10) is

22 D Zolad e H {z-1,27 ) Aig (7.5)

i>e+1 Jj=e+2
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(The seven cases of (6.10) multiplied by xi°z; give the seven cases of (7.5) with
i = 7, prior to tensoring either with Zy[z3*]Ag.) This combines with (7.4) to give
ZZQ[ﬁE_Q]AeH in exactly the same way as was done two paragraphs above. The
element X of Figure 6.13 and its generalizations give 2223 Zy[22 “|Aet1, S0 now
we have all z2x{A.; with v(t) > e — 3. The classes z2z{A. 1 with v(t) < e — 4 are
exactly those in (6.12) since v(t) =k —3,e=1+k —4, and i > 5.

The terms divisible by p3 are a bit harder. Those with z2* and 7t are easily
handled, as they all come from (6.14) with £ = 3 and 4, since Sk, can be producted
with Zs [ac4 ]Ag_H Note all z; pApyq with 4 < < ¢ —1 gives all of @e>4 Net1.

The domain classes in G obtained from (6.5)-(6.7) and those in G® related to the
group (6.16) combine to give, for e > 4,

2ps @ 3 7 H % P Zola] TN H {227} (7.6)
i>e+1 t=e+1 j>i s=i+1
We first consider the terms in G* of v-height 1 which are divisible by p3z? with
e = 5. It may be helpful to refer to the paragraph following (6.5)-(6.7). From (6.6),
we obtain

w1325 (0§A7Lo[1°]) ® 2020 Ao 2] @ 2P 2827, 2} N L2 @ -+ ). (T.7)
From (6.7), we obtain

vy’ pszeze (23  NsZLo|237] ® 3 25 Mo Lo 2] ® 2§ 29{ 25, 13 Y A10Zo[z ] ® - -+ ). (7.8)

These extend in an obvious way, and the pattern for arbitrary e > 4 should be
apparent, with all subscripts and 2-power exponents modified appropriately.
In addition, the generalization of (6.17) and (6.18) contribute to G°, for e > 5,

i+2
22p3 @ ry _122 :E4 Niyy H 2;. (7.9)
i>e—2 Jj=e+1

Finally, G° contains image terms from the Sy, part of (6.14). We have already

discussed how the part for k& = 3 and 4 gives all desired terms with factors z* and
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23", The remaining terms combine to yield
-1
2 2k=3_1 2k—2
@Zepi‘*@% Lolry ] @ H zj - Mo
e>4 k>5 (>kte—3 j=e+1
k+e—4
o 2 2k—371 2k—2
= @ 25p3 @:{:‘4 Lolxy ] H 2+ Njpye—s. (7.10)
e>4 k>5 Jj=e+1

Now we prove Case iv of Theorem 7.1 for classes divisible by p3. To simplify
exposition, we restrict our attention to the case e = 5. We wish to show that all
monomials in z§2ZpsAg are obtained exactly once in G' & G* & G°, whose classes
have been described in the previous several paragraphs. We let v = v(s + 1) and
Z(t) =262 for t > 6, and Z(5) = 1. The cases v < 2 have already been handled.

From (7.9), we obtain all 22p3x5Z (v+3)A, 5. From (7.10), we obtain all 22pszZ (v+
4)A, 5. Combining these gives 22psz5Z(v + 3)A, 4. If v = 2, this is as desired.

Now restrict to v > 3. We consider the family beginning with (7.7) and (7.8) but
omit the first term of each sum. When these are combined with (7.6), we obtain
expressions which can be simplified using exactly the same method that was used to
simplify (7.3), and we obtain z2p3ziZ (v + 2)A, 4. When this is combined with the
previous combined expression, we obtain 2Zp3z5Z (v +2)A, 3. Finally, the first terms
of the (7.7)-(7.8) family give all monomials in zZpzx§A¢ not divisible by Z(v + 2).
This and 22p3x5Z (v + 2)A,.3 exactly fill out x5z2p3Ag. To justify the claim about
the “first terms,” note that (7.7) and (7.8) are the first two of a succession of similar
expressions, of which we are considering the first terms of each. Terms with a certain
value of v > 4 will appear among the first v — 3 of these. For example, with v = 6,
the first of these contains all terms with no zg, the second those with z¢ but no z7,
and the third those with zgz7 but no zg. These comprise all terms not divisible by
Z(8).

The argument that we have illustrated when e = 5 generalizes to arbitrary e > 4

in an obvious way. W
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8. AN EXPLANATION OF SELF-DUALITY OF B

In this optional section, we discuss some observations about the ASS of ku*(K3) and
ku,(K3) which, among other things, provide an explanation of the self-dual nature of
the By charts which occur in both ku*(K5) and ku,(K3).

We first observe that, for & > 3, there is an Ej-submodule, My, of H*(K3) such
that Extp, (Za, My) (resp. Extg, (My, Zs)) is closed under the differentials in the ASS
converging to ku*(K3) (resp. ku.(K3)), yielding the chart Aj (resp. the homology
analogue of A, discussed in Theorem 2.4). For example, with M; as in (3.10) and N
as in Figure 3.7, M is as depicted in Figure 8.1.

Figure 8.1. The F;-module M;.
Ce e .2 0. T
, 17 3 ) 33 36
i xy N xiM,y Tax9My M;
The two ASSs for M3 will yield the charts for A5 and its homology analogue pictured
in [4].

The situation for By, is slightly more complicated. There is no Ej-submodule of
H*(K3) which, by itself, can give a chart By or Bz, Some of the differentials that
truncate v-towers in B}z, come from classes that are part of a summand that includes
xik73’1$9$k,g. We find that, for 4 < k < ¢, there is an Ej-submodule My, of H* K,
such that Extg, (Z2, Myy) is closed under the differentials in the ASS converging to
ku*(K3) and yields the chart

2k=3_1 2k—3 -1
Bng D Ty {L‘gS]@g D Ty Bka s

where Z,ﬁ_l = 2k -+ - z¢—1. Note that these three subsets of ku*(Ks) appeared together
in the 10-term exact sequence (6.2).

This My, is symmetric; i.e., there is an integer D such that Mj , and My, are
isomorphic Ej-modules, where Mj , is obtained from Mj,, by negating gradings and
reversing direction of Qg and Q7. This implies that the v-towers in Extg, (Zg, My )
and Extg, (My.s, Z2) correspond nicely. Moreover, the differentials in the two ASSs
correspond, too, obtaining isomorphic charts, although the gradings in one decrease

from left to right, while in the other they increase.
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We illustrate with an example, Ms¢, and then discuss the implication for self-
duality of By, and finally discuss briefly the general case. In Figure 8.2, we depict
M.

Figure 8.2. The E;-module M;g.

o DN e - — g@’f’ T e
70 75 80 96 102
ZEZI’9M5 $225M4 ZL‘Z.I’925M4 JZZLMG l’i[EgM@ I226M4 I4.17926M4 ZGM5

In Figure 8.3, we depict the ASS chart for both Extg, (Zs, M5 6) and Extg, (Ms 6, Zs).
They are isomorphic except that, from left to right, the gradings start with 102 for
the first and 70 for the second. We label the portions of the chart corresponding to
the eight summands of M5 ¢ just by the M-factor, since accompanying factors differ

for the two versions. For example, the M5 on the left-hand side is zg M5 for the first

spectral sequence, and is zxgMs; for the second.
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Figure 8.3. Two ASSs for M;g.

M;

M,

76
96

M,

M,

86
86

Mg

M,

92
80

M,

Ms

102
70
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For the ku*(Ky) version, Bszs is on the left hand side of Figure 8.3, and x}Bszs
on the right hand side, with 32955 ¢ separating them. The duality isomorphism in
Theorem 2.1 says that the Pontryagin dual of Bs5zg is isomorphic as a ku,-module to
¥ of the right hand side of the ku,(K3) version of Figure 8.3, and we see that this
is isomorphic to a shifted version of By with indices negated. This is the self-duality
statement, that the Pontryagin dual of By, is isomorphic as a ku,-module to a shifted
version of Bj with indices negated.

Finally, we explain how the eight summands in Mj g in Figure 8.2 generalize. Note
that (1.8) is the generalization of (1.9). We explain the general case using k = 7 and
(1.9). Let U; be the coefficient of z* in (1.9) with 77 replaced by M;. Then, for
¢ > 8, My, in backwards order is

7
21—1 21 15
zeM7 B @(m! 29U;z ® IE4ZU1‘Z£) @Dz xoM,
=1

7
o M, ® @(mi“l%gmzé—l @ 2?0, ZE) @ adlag 25 My,

i=1
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