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DONALD M. DAVIS AND W. STEPHEN WILSON

Abstract. We compute ku∗(K(Z2, 2)) and ku∗(K(Z2, 2)), the connective KU -
cohomology and connective KU -homology groups of the mod 2 Eilenberg-MacLane
space K(Z2, 2), using the Adams spectral sequence. The mod-2 connective KU -
cohomology groups, k(1)∗(K(Z2, 2)), computed elsewhere, are needed in order to
establish higher differentials and exotic extensions in the integral groups.

1. Main results

In [11] and [5], the authors initiated a partial computation of the connective KU -

homology groups, ku∗(K2), of the mod 2 Eilenberg-MacLane space K2 = K(Z2, 2) in

separate studies of Stiefel-Whitney classes of manifolds. We eventually turned to the

associated cohomology groups, ku∗(K2), and here we give a complete determination,

via the Adams spectral sequence (ASS). Subsequently the first author noticed a du-

ality result ([4]) relating these homology and cohomology groups, and in Section 2,

we discuss the resulting ku∗(K2).

The bulk of this introductory section is a discussion of the result of our ASS com-

putation of (reduced) ku∗(K2). There are nice families of exotic extensions. We

depict the ASS with cohomological (co)degrees increasing from right-to-left. The

Bott element v ∈ ku∗ = Z(2)[v] decreases grading by 2.

In ku∗(K2), there is an infinite family of split Z2’s whose Poincaré series is described

at the end of Section 3. Ignoring these from now on, as a ku∗-module, ku∗(K2) is

generated by certain products of elements of E0,∗
2 , x4, x9, and x8, with |xi| = i, and

zj for j ≥ 3 with |zj| = 2j + 2. We let Λj denote the exterior algebra E[zi : i ≥ j],

and Λ and E the augmentation ideal in an exterior algebra.
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We will show that there are closely-related ku∗-modules Ak and Bk for k ≥ 3 such

that in even gradings1 there is an isomorphism of ku∗-modules

kuev(K2) ≈
⊕
k≥3

Z2[x
2k−2

4 ]⊗ (Ak ⊕ x2k−3

4 BkzkΛk+1 ⊕BkΛk+1). (1.1)

The notation x2k−3

4 BkzkΛk+1 means that all elements of Bk are multiplied by x2k−3

4 zk,

and this is tensored with Λk+1. Note that Bk never appears alone.

We give three descriptions of Ak and Bk, and discuss how Figure 1.10 depicts Ak

and Bk for all k ≤ 7, and enables one to envision them for all k. As a preview, the

dashed lines in Figure 1.10 connect elements of Ak which are not in Bk, and the red

lines (sometimes slightly curved) are exotic extensions (multiplication by 2, not seen

in Ext).

We first give an inductive description. Let B3 = 0, and A3 have as its only nonzero

classes2 x8, z3, and 2x8 = vz3. Let

zi,j = z2i zi+1 · · · zj−1 for 4 ≤ i ≤ j − 1, (1.2)

while zj,j = zj. These classes occur in consecutive even gradings from 2j + 2j − 6

down to 2j + 2 as i goes from 4 to j. For k ≥ 4, there are ku∗-modules TA
k and TB

k

generated by zj,k for 4 ≤ j ≤ k, with relations

2zj,k = vzj−1,k for 5 ≤ j ≤ k, (1.3)

2z4,k = 0, v2
k−2

zk,k = 0 in TA
k , and otherwise v2

j−2−(j−2)zj,k = 0 in both TA
k and

TB
k . In Figure 1.10, the batch of v-towers going up from gradings 130 to 136 are TA

7

and TB
7 , with the dashed part (whose slope was changed for typographical reasons)

representing the elements viz7 for 27 ≤ i ≤ 31, which are in TA
7 , but not in TB

7 .

The inductive description is that, for k ≥ 4, there are short exact sequences of

ku∗-modules

0 → TB
k → Bk →

k−1⊕
j=4

x2j−3

4 Bjzj+1 · · · zk−1 → 0 (1.4)

and

0 → TA
k → Ak → x2k−4

4 Ak−1 ⊕
k−2⊕
j=4

x2j−3

4 Bjzj+1 · · · zk−1 → 0 (1.5)

1Odd gradings will be described in (1.11).
2The three elements in the lower right corner of Figure 1.10 are x15

4 A3.
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with extensions given by

(2 · x8 = vz3) ⊗ P [x4]

(2 · z3 = 0) ⊗ P [x2
4]

(2 · x4z3 = v2z4) ⊗ P [x2
4]

(2 · z4 = 0) ⊗ P [x4
4]⊗ Λ4

(2 · zj = vz2j−1) ⊗ P [x2j−2

4 ]⊗ Λj, j ≥ 5

(2 · x2
4z4 = v4z5) ⊗ P [x4

4]⊗ Λ5

(2 · x2j−3

4 zj = vx2j−3

4 z2j−1 + v2
j−2

zj+1) ⊗ P [x2j−2

4 ]⊗ Λj+1, j ≥ 5. (1.6)

These formulas can be also multiplied by powers of v, as long as the elements are

nonzero. The extension formulas can be visualized in Figure 1.10. For example, in

grading 116, 2x4
4z5z6 = vx4

4z
2
4z6 + v8z26 , and in grading 114, vx4

4z5z6 + v8z7 has order

2, and v23 times it is nonzero in A7. As another example, Figure 1.10 shows that A7

contributes a Z8⊕Z2 summand to ku126(K2) with generators v2z7 and x2
4z4z5z6+v3z26 .

In Figure 1.10, the v-towers emanating from gradings ≤ 102 comprise A6 (if dashed

arrows are included) and B6 (if not), after dividing the labels by x8
4. Those from

gradings ≤ 84 are A5 and B5 after dividing by x12
4 .

Remark 1.7. A simpler inductive description is that Bk (resp. Ak) is built from

Bk−1zk−1, ⟨zk⟩/(2, v2
k−2−(k−2)), and x2k−4

4 Bk−1

resp. Bk−1zk−1, ⟨zk⟩/(2, v2
k−2

), and x2k−4

4 Ak−1,

with exotic extensions from vix2k−4

4 zk−1 to vi+2k−3
zk, 0 ≤ i ≤ 2k−3− (k−1) (resp. 0 ≤

i ≤ 2k−3 − 1), and h0-extensions from vizk to vi+1z2k−1, 0 ≤ i ≤ 2k−3 − (k − 1).

The non-inductive analogue of (1.4) is

Bk = TB
k ⊕

k−1⊕
i=4

x2i−3

4

⊕ k−1∏
j=i+1

{zj, x2j−3

4 } · TB
i , (1.8)

with extensions from TB
i to TB

i+1 determined by (1.6). Here
⊕∏k−1

j=i+1{zj, x2j−3

4 } is

the sum over all ways of choosing one or the other of the two expressions and taking

the product of the selected expressions. For example, this says that

B7 = TB
7 ⊕x8

4T
B
6 ⊕x4

4z6T
B
5 ⊕x12

4 TB
5 ⊕x2

4z5z6T
B
4 ⊕x6

4z6T
B
4 ⊕x10

4 z5T
B
4 ⊕x14

4 TB
4 , (1.9)
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as can be seen in Figure 1.10. The analogue of (1.8) for Ak is that TB
i is replaced by

TA
i whenever no zj’s accompany it, and there is an additional x2k−3−1

4 A3.
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Figure 1.10. B7 and A7.
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We now define ku∗-modules Sk,ℓ for 3 ≤ k < ℓ such that the odd-grading portion

of ku∗(K2) is

kuod(K2) =
⊕
k≥3

⊕
ℓ>k

x2k−3−1
4 Z2[x

2k−2

4 ]x9Sk,ℓΛℓ+1. (1.11)

Definition 1.12. For 3 ≤ k < ℓ, the ku∗-module Sk,ℓ has v-towers of v-height k − 1

with generators zi,ℓ for 4 ≤ i ≤ ℓ− k + 3, with h0 (the Ext analogue of multiplication

by 2) nonzero wherever possible.

Thus 2vmzi,ℓ = vm+1zi−1,ℓ iff i > 4 and m ≤ k − 3. For example, S7,10 is depicted in

Figure 1.13.

Figure 1.13. S7,10
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Recapitulating into theorem form, our main result is

Theorem 1.14. In addition to the split Z2’s, which are enumerated at the end of

Section 3, the ku∗-module ku∗(K2) is as in (1.1) and (1.11), where Ak and Bk are

given either inductively or explicitly as above, and Sk,ℓ is as in Definition 1.12.

The non-visual, formulaic form of our result is as follows, where TPm[v] = P [v]/(vm).

Theorem 1.15. The ku∗-module ku∗(K2) is isomorphic to a trivial ku∗-module plus

P [x4]x8 ⊕
⊕
t≥0

TP2t+1 [v]⊗ P [x2t

4 ]zt+3 (1.16)

⊕
⊕
t≥1

TP2t+1−t−1[v]⊗ P [x2t

4 ]zt+3Λt+3 (1.17)

⊕
⊕
e≥1

TPe+1[v]⊗ P [x2e

4 ]x2e−1−1
4 x9 ⊗

⊕
j≥4

zjZ
j+e−2
j Λj+e−1, (1.18)
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where Zj+e−2
j = zj · · · zj+e−2. Multiplication by 2 in (1.16) and (1.17) is given in

(1.6), while in (1.18) it is determined by

2 · zjM =

{
vz2j−1M j ≥ 5

0 j = 4
for M ∈ Λj.

The most direct route to this result is via the right-hand-side of equations (4.3), (4.4),

and (4.5).

The structure of the rest of the paper is as follows. As already noted, Section 2

presents the results for ku∗(K2). In Section 3, we compute the E2-term of the ASS

for ku∗(K2). In Section 4 we determine the differentials in this ASS. In order to do so,

we need to compare with k(1)∗(K2), where k(1) is the spectrum for mod-2 connective

KU -theory, using the exact sequence

→ k(1)∗−1(K2) → ku∗(K2)
2−→ ku∗(K2) → k(1)∗(K2) → ku∗+1(K2)

2−→ . (1.19)

In Section 4, we restate results about k(1)∗(K2) from [6]. At the end of Section 4, we

show how the descriptions of ku∗(K2) in (1.1) and (1.11) are obtained once we know

the differentials. This exact sequence is also used in determining the exotic extensions

of (1.6), which is done in Section 5. In Section 6, we propose complete formulas for

the exact sequence (1.19), and then in Section 7, we show that our proposed formulas

exactly account for all elements of k(1)∗(K2). In the optional Section 8, we discuss

in more detail how the charts are obtained and explain a surprising duality in the Bk

charts.

The main point of Section 7 is to prove that there are no additional exotic extensions

in ku∗(K2). An exotic extension 2 · A = B implies that A is not in the image from

k(1)∗−1(K2), and B does not map nontrivially to k(1)∗(K2), so once we have shown

that all elements are accounted for, there can be no more extensions. Many of our

formulas in Section 6 are forced by naturality. However, many others occur in regular

families, but with surprising filtration jumps. We could probably show that the

homomorphisms must be as we claim, by showing that there are no other possibilities,

but we prefer to forgo doing that.
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2. Results for ku∗(K2)

Our initial interest in this project was ku∗(K2) ([11],[5]), but here we first achieved

success in computing ku∗(K2). In [4, Corollary 1.3], the first author proved the

following result.

Theorem 2.1. There is an isomorphism of ku∗-modules ku∗(K2) ≈ (ku∗+4K2)
∨.

Here M∨ = Hom(M,Z/2∞), the Pontryagin dual, localized at 2. A homotopy chart

for ku∗(K2) could be thought of as a shifted version of the homotopy chart of ku∗(K2)

viewed upside-down and backwards.

A remarkable property, for which one explanation is given in Section 8, is that Bk

is self-dual as a ku∗-module. One way of stating this is to let B̃k denote Bk with its

indices negated. Then there is an isomorphism of ku∗-modules

Σ2k+2k−1+2k+2B̃k ≈ B∨
k . (2.2)

For example, the second generator Y of Σ208B̃7 is in grading 208− 134 = 74 and has

2Y ̸= 0 and v4Y ̸= 0. (See Figure 1.10.) The second generator Z of B∨
7 is dual to the

class in position (74, 4) in Figure 1.10, and also satisfies 2Z ̸= 0 and v4Z ̸= 0. The

isomorphism (2.2) can be proved by induction on k using Remark 1.7.

A complete description of the ku∗-module ku∗(K2) is immediate from Theorems

1.14 and 2.1. However, one might like a complete description of its ASS. We can

write formulas for the E2-term and differentials, but will not do so here. In Theorem

2.4 we give a complete description of the E∞-term of the ASS of ku∗(K2) with exotic

extensions included, in terms of the charts described in Section 1.

In [4], a comparison was made of the chart for A5 and its ku∗ analogue. Here we

present in Figure 2.3 the ku∗ analogue of Figure 1.10. This presents the portion of

the ASS of ku∗(K2) dual to A7 under the isomorphism of Theorem 2.1. The chart

dual to B7 is obtained from this by removing the classes connected by dashed lines,

and lowering the remaining tower so that the bottom is in filtration 0. The resulting

chart is isomorphic to the B7 part of Figure 1.10.
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Figure 2.3. Portion of ku∗(K2) corresponding to B7 and A7.
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We observe that in even gradings of the ASS for ku∗(K2), h0-extensions exactly

correspond to exotic extensions in the ASS of ku∗+4(K2), and vice versa. As a typical

example of the duality, the summands of ku82(K2), ku
82(K2)

∨, and ku78(K2) in Fig-

ures 1.10 and 2.3 are all isomorphic to Z8⊕Z2. But for the ku∗-module structure, it is

ku82(K2)
∨ and ku78(K2) that correspond, since in both, the element that is divisible

by 4, in position (82, 0) and (78, 7), resp., is also divisible by v7 for A7 and by v4 for

B7..

Theorem 2.4. The E∞-term of the ASS of ku∗(K2) with exotic extensions included

contains exactly the following.

• There are Z2’s annihilated by v corresponding to those enumerated at the end

of Section 3 with gradings decreased by 4.

• For every summand of (1.11), there is a chart of the same form as Figure 1.13

with v-towers of height k − 1 on generators in gradings described as follows.

Corresponding to the factor Sk,ℓ itself, they are in gradings 2ℓ + 2i − 4 for

0 ≤ i ≤ ℓ − k − 1. One must add to this the grading of the other factors

accompanying Sk,ℓ in (1.11).

• For each occurrence of Bk in (1.1), there is a summand Σ2k+2k−1+2k−2B̃k with

gradings increased by those of other factors accompanying Bk in (1.1). Here

B̃k is as defined prior to (2.2).

• For each summand xc2k−2

4 Ak in (1.1), there is a variant of Σ2k+2k−1+2k−2B̃k

with gradings increased by c2k. In this variant, the initial TB
k is pushed up by

k−2 filtrations and surrounded with a triangle of classes of the sort appearing

in the lower left corner of Figure 2.3. See Remark 2.5.

Proof. Theorem 2.1 and our results for ku∗(K2) give the ku∗-module structure of

ku∗(K2), but that is not the same as the ASS picture. Expanding on work done

in [5] and [11] and using methods such as those in Section 3, we were able to write

the E2-term of the ASS for ku∗(K2), and had conjectured the differentials (but not

the extensions) prior to embarking on our ku-cohomology project. We were unable

to prove the differentials, probably because we had not taken sufficient advantage of

the exact sequence with k(1)∗(K2). Now that we know the 2-orders and v-heights

of generators (by grading, at least, if not by name), it is straightforward to see that
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the differentials and extensions must be as claimed. The isomorphism (2.2) plays an

important role here; the left hand side gives the ASS form of the right hand side.

Remark 2.5. Regarding the unusual portion of the ASS chart for part of ku∗(K2)

in the lower left of Figure 2.3, this is obtained from [5, Fig. 4.2] with d6-differentials

on all odd-graded towers. For Ak, it will be a triangle going up to filtration k − 2,

with all but the first two dots on the top row being part of Bk.

3. The E2-term of the ASS for ku∗(K2)

We will need some notation. By H∗K2, we understand H∗(K(Z2, 2);Z2). Let

E denote an exterior algebra, P a polynomial algebra, and TPn[x] = P [x]/(xn)

the truncated polynomial algebra. In all cases these will be over Z2, the integers

mod 2, and we also use Z2[−] notation for polynomial algebras. Let E denote the

augmentation ideal of an exterior algebra, and E1 = E[Q0, Q1], where Q0 = Sq1

and Q1 = Sq2 Sq1+Sq1 Sq2. Because Q2
i = 0 we have homology groups, H∗(−;Qi),

defined for E1-modules. We let ⟨y1, y2, . . .⟩ denote the Z2-span of classes yi.

The ASS for ku∗(K2) has Es,t
2 = Exts,tA (H∗(bu), H∗K2), where A is the mod 2

Steenrod algebra and H∗(bu) ≈ A/A(Q0, Q1). Using a standard change of rings

theorem, [7], this is Exts,tE1
(Z2, H

∗K2). This converges to ku−(t−s)(K2). We depict

this with Es,t
2 in position (t − s, s) as usual, but label the axis with codegrees, the

negative of the homotopical degree, so the left side of the chart will have positive

gradings. In an attempt to avoid confusion, we rewrite this as G
−(t−s),s
2 . With this

notation, the differentials are dr : Ga,b
r −→ Ga+1,b+r

r , multiplication by the element

v ∈ ku−2 (also considered in G−2,1
r ), is v : Ga,b

r −→ Ga−2,b+1
r , and multiplication by

the element representing 2 ∈ ku0, (h0 ∈ G0,1
r ), is h0 : G

a,b
r −→ Ga,b+1

r .

We will later define elements zj ∈ G2j+2,0
2 for j ≥ 4 and elements zi,j ∈ G

2j+2+2(j−i),0
2

as

zi,j = z2i

j−i−1∏
t=1

zi+t

for 4 ≤ i ≤ j with zj,j = zj, the Ext analogues of (1.2). They will have the properties:

h0zj = vz2j−1 for j ≥ 5, and h0z4 = 0. Additionally, h0zi,j = vzi−1,j, and h0z4,j = 0.
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For j ≥ 4, we define Wj = ⟨zj,j, zj−1,j, . . . , z4,j⟩. We also have xi ∈ Gi,0
2 for i =

4, 8, 9, 10. One last definition, let Λj+1 = E[zi : i ≥ j + 1].

A picture of P [v]⊗W7 as a P [v, h0]-module appears in Figure 3.1.

Figure 3.1. A depiction of P [v]⊗W7
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The remainder of this section is devoted to proving the following result.

Theorem 3.2. The E2 term of the Adams spectral sequence for the reduced ku∗(K2)

is isomorphic as a P [h0, v]-module to

P [v, x4]⊗ E[x9]⊗
(⊕
j≥4

(Wj ⊗ Λj+1)
)

⊕
(
P [h0, v, x4]⊗ E[v2x9]

)
⊕
(
P [x4]⊗ ⟨x8, x10, h0x8 = vx10⟩

)
plus the family of filtration-0 Z2’s annihilated by h0 and v enumerated at the end of

this section.

Some of the algebra structure of this E2 will be useful later. For example, the

product structure among the zj’s will be clear, and also the formula

(v2x9)
2 = v4z4, (3.3)

holds since, as we shall see, in H∗(K2), x
2
9 −Q0x17 ∈ im(Q1).

There are two parts to proving this theorem. First, we must give a complete descrip-

tion of the E1-module structure of H∗K2. Second, we have to compute Ext∗,∗E1
(Z2,−)

of this. We begin the first part.

Serre ([8]) showed that H∗K2 is a polynomial algebra on classes u2j+1 in degree

2j +1 for j ≥ 0 defined by u2 = ι2 and u2j+1+1 = Sq2
j

u2j+1 for j ≥ 0. We easily have

Q0(u2) = u3, Q0(u3) = 0, Q0(u2j+1) = u2
2j−1+1 for j ≥ 2,
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and

Q1(u2) = u5, Q1(u3) = u2
3, Q1(u5) = 0, Q1(u2j+1) = u4

2j−2+1 for j ≥ 3.

Let x5 = u5 + u2u3 and write H∗K2 as an associated graded object:

P [u2
2]⊗ E[x5]⊗

(
E[u2]⊗ P [u3]

)
⊗j≥2

(
E[u2j+1+1]⊗ P [(u2j+1)

2]
)

From this, we can read off

Lemma 3.4.

H∗(H
∗K2;Q0) = P [u2

2]⊗ E[x5]

Letting x9 = u9 + u3
3 and x17 = u17 + u2u

3
5, we rewrite again as

P [u2
2]⊗ TP4[x9]⊗ TP4[x17]⊗j>4 E[(u2j+1)

2]

⊗
(
E[u2]⊗ P [u5]

)
⊗

(
E[u3]⊗ P [u2

3]
)
⊗j>4

(
E[u2j+1]⊗ P [(u2j−2+1)

4]
)
.

Again we read off

Lemma 3.5.

H∗(H
∗K2;Q1) = P [u2

2]⊗ TP4[x9]⊗ TP4[x17]⊗j>4 E[(u2j+1)
2]

An associated graded version of this is

Lemma 3.6.

H∗(H
∗K2;Q1) = P [u2

2]⊗ E[x9]⊗ E[x17]⊗j>2 E[(u2j+1)
2]

The bulk of the work here is finding a nice splitting of H∗K2 as an E1-module.

Let N be the E1-submodule with single nonzero elements in gradings 5, 7, 8, 9,

and 10 with generators x5 = u5 + u2u3, x7 = u2u5, and x9 = u9 + u3
3, satisfying

Q0x7 = Q1x5 and Q0x9 = Q1x7 = x10. It has a Q0-homology class x5 and a Q1-

homology class x9. A picture of N is in Figure 3.7.

Figure 3.7. An E1-module N .

5
9

7

10• • • • •
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The E1-submodule P [u2
2]⊕P [u2

2]⊗N carries the Q0-homology of H∗K2, while the

remaining Q1-homology is, written in our usual way as an associated graded version,

P [u2
2]⊗ E[x9]⊗ E[x17, u

2
2j+1, j > 2].

We will exhibit a Q0-free E1-submodule R whose Q1-homology is exactly this E.

Moreover, N ⊗ R contains an E1-split summand S which maps isomorphically to

⟨x9⟩ ⊗R.

It is premature to state this because we haven’t defined R and S yet, but for the

record:

Proposition 3.8. As an E1 module, H̃∗K2 is isomorphic to T ⊕F where F is a free

over E1 and T is

P [u2
2]⊗

(
⟨u2

2⟩ ⊕N ⊕R⊕ S
)

A start on R and S.

For this to make sense, we need to find R and S. The module R is a direct sum

of shifted versions of modules Lk, k ≥ 0, which have generators g2i, 0 ≤ i ≤ k, with

Q1g2i = Q0g2i+2 for 0 ≤ i < k, Q0g0 ̸= 0, and Q1g2k = 0. For example, L3 is depicted

in Figure 3.9.

Figure 3.9. The E1-module L3.

g0 g2

g4

g6
• • • • • • • •

A splitting map, ⟨x9⟩ ⊗ Lk −→ N ⊗ Lk, for the epimorphism N ⊗ Lk → ⟨x9⟩ ⊗ Lk

is defined by

x9g2i −→ x9 ⊗ g2i + x7 ⊗ g2i+2 + x5 ⊗ g2i+4 for 0 ≤ i ≤ k − 2,

x9g2k−2 −→ x9 ⊗ g2k−2 + x7 ⊗ g2k, and x9 ⊗ g2k −→ x9 ⊗ g2k.

The E1-module Mj

Let

x2j+1 = u2j+1 +


u2u

3
5 j = 4

u2u3u
2
5u

2
9 j = 5

u3u
2
5u

2
9u

2
17 j = 6

0 j > 6

and w2j−1 =


u2u3u

2
5 j = 4

u3u
2
5u

2
9 j = 5

0 j > 5.
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Then Q0x2j+1 = u2
2j−1+1 + Q1w2j−1, so Q0x2j+1 and u2

2j−1+1 represent the same Q1-

homology class. Define E1-modules Mj inductively by M3 = 0, and for j ≥ 4 there is

a short exact sequence of E1-modules

0 → u2
2j−2+1Mj−1 → Mj → M ′

j → 0, (3.10)

where M ′
j = ⟨x2j+1, Q0x2j+1⟩ and Q1x2j+1 = u2

2j−2+1Q0x2j−1+1. The above definitions

of the x2j+1 are necessary to get this formula to work right.

There is an isomorphism of E1-modules Mj ≈ Σ2j+1Lj−4 given by

Σ2j+1g2i −→


x2j+1 i = 0

u2
2j−2+1x2j−1+1 i = 1

u2
2j−2+1u

2
2j−3+1x2j−2+1 i = 2

u2
2j−2+1u

2
2j−3+1 · · ·u2

2j−i−1+1x2j−i+1 2 < i ≤ j − 4

(3.11)

And we have

H∗(Mj;Q1) =


⟨u2

9, u17⟩ j = 4

⟨u2
17, u

2
9u17⟩ j = 5

⟨u2
33, u

2
17u

2
9u17⟩ j = 6

⟨u2
2j−1+1, u

2
2j−2+1 · · ·u2

9x17⟩ j > 6

(3.12)

The E1-module R

Let

R =
⊕
j≥4

Mj ⊗ E[u2
2j+1, u

2
2j+1+1, . . .]. (3.13)

Then H∗(R;Q1) = E[x17, u
2
9, u

2
17, . . .], since monomials in E without x17 appear from

a first term (of the two in (3.12)) in H∗(Mj ⊗ E;Q1), where j is minimal such that

u2
2j−1+1 appears in the monomial, while those with x17, and also containing a product

u2
9 · · ·u2

2j−2+1 of maximal length, occur as a second term in H∗(Mj ⊗ E;Q1).

Proof of Proposition 3.8. We have the E1-submodule given in Proposition 3.8. Be-

cause this contains all of the Q0 and Q1 homology, what remains must be free over

E1 by [10].
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Proof of Theorem 3.2. We compute ExtE1(Z2, T ) with T as in Proposition 3.8. We

will not be concerned with the free E1-module F but later we will give the Poincaré

series for it. Each copy of E1 in F gives a Z2 in G∗,0 that corresponds to Q0Q1.

That

Ext∗,∗E1
(Z2, P [u2

2]) = P [v, h0, x4]

with x4 ∈ G4,0
2 should be clear, given our labeling conventions. We normally work

with the reduced cohomologies, so the x0
4 generator above would be ignored.

We compute ExtE1(Z2, N) in two ways using two different filtrations of N . From

this we see that the generator of the towers can be thought of either as v2x9 or h
2
0x5.

Using Figure (3.7) as our guide, our first filtration is ⟨x5, x8⟩, ⟨x7, x10⟩, and ⟨x9⟩.
The Ext on x9 ∈ G9,0 is just P [v, h0]. For the other two, we get h0-towers on x10 ∈
G10,0 and x8 ∈ G8,0. The extensions in N show these two h0-towers are connected by

multiplication by v. In addition, a d1 is forced on us by the extensions. Figure 3.14

describes this completely.

Figure 3.14. The first computation of ExtE1(Z2, N)

10 8 5 3 10 8 5 3

⇒ v2x9

Again referring to the picture (3.7), our second filtration is ⟨x9, x10⟩, ⟨x7, x8⟩, and
⟨x5⟩. Now our Ext groups are P [v, h0] on x5 ∈ G5,0, P [v] on x8 ∈ G8,0 and x10 ∈ G10,0.

Again, the d1 is forced by the extensions in N . Figure 3.15 describes the result.

Figure 3.15. The second computation of ExtE1(Z2, N)

⇒

10 8 5 3

= h2
0x5

10 8 5 3
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This concludes the computation of Ext for P [u2
2] ⊗ (⟨u2

2⟩ ⊕ N) of Proposition 3.8.

The result is the second line of Theorem 3.2.

We need to compute Ext for P [u2
2] ⊗ (R ⊕ S) and show it is the same as the top

line in Theorem 3.2. Since S ≈ ⟨x9⟩ ⊗ R, all we need to do is P [u2
2] ⊗ R and ignore

the E[x9]. Similarly we can ignore the P [u2
2] and the P [x4] because for every power

of u2
2 we will have a copy of the answer indexed by powers of x4. All we have left now

is R, but R is just many copies of the various Mj and the indexing for the number of

copies is given by the Λj+1.

All that remains is to show that ExtE1(Z2,Mj) ≈ P [v] ⊗ Wj. Recall that Mj =

Σ2j+1Lj−4. We can filter Lj−4 into pairs of elements g2i, Q0g2i, for 0 ≤ i ≤ j − 4. Ext

for each of these gives a P [v] on the element Q0g2i represented by zj−i,j ∈ G2j+2+2i,0.

There is no d1, but undoing the filtration does solve the extension problem and gives

us h0zk,j = vzk−1,j. This completes our computation and thus our proof.

Remark 3.16. To illustrate the last computation in the proof, consider the generators

of the v-towers for ExtE1(Z2,M7). They are z7, z
2
6 , z

2
5z6, and z24z5z6, which is what

we have called z7,7, z6,7, z5,7, and z4,7, as pictured in Figure 3.1. For future reference,

we note that (with ∼ meaning homologous)

zj = Q0x2j+1 ∼ u2
2j−1+1 = Q0u2j+1 = Q0Qjι2 = QjQ0ι2. (3.17)

We depict the E1-module M7 in Figure 3.18.

Figure 3.18. The E1-module M7.

z7,7

z6,7

z5,7 z4,7
• • • • • • • •

More on the E1-free part

If we compute the ExtE1(Z2, F ) for the E1-free part of H∗K2, we just get a Z2

corresponding to the top element for each copy of E1. If we find the Poincaré series

(PS) for the free part, all we have to do to get the PS for these elements is multiply

by x4

(1+x)(1+x3)
. The Poincaré series for free part is obtained by subtracting the PS for

the non-free part of Proposition 3.8 from that of H∗K2. This is:
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∏
k≥0

1

(1− x2k+1)
− 1

(1− x4)

(
1 + x5 + x7 + x8 + x9 + x10

)
− 1

(1− x2)(1− x4)

(⊕
j≥4

(
x2j+1(1 + x9)(1 + x)(1− x2j−6)

∏
k≥j

(1 + x2k+1+2)
))

The first term is the PS for H∗K2. The second is the PS for P [u2
2] ⊗ (⟨1⟩ ⊕ N).

The last term is more complicated but does the S and R terms. The (1− x4) in the

denominator is for the P [u2
2]. The x9 is the shift that takes R to S. The (1 + x) is

because they are Q0 free. The x
2j+1(1−x2j−6)/(1−x2) is for the odd part of Mj and

the remainder is for Λ.

This is easy to put into a computer and calculate. For example, the number of free

generators in degree 79 is 245.

4. Differentials in the ASS of ku∗(K2)

The main theorem of this section determines the differentials in the ASS for ku∗(K2).

Theorem 4.1. The differentials in the spectral sequence whose E2-term was given

in Theorem 3.2 are as follows. All v-towers are involved, either as source or target,

in exactly one of these. Here ν(i) denotes the exponent of 2 in the integer i, and M

refers to any monomial (possibly = 1) in the specified exterior algebra.

dν(i)+2(x
i
4) = h

ν(i)
0 v2xi−1

4 x9, i ≥ 1. (4.2)

dν(i)+2(x
i
4zjM) = vν(i)+2xi−1

4 x9zj−ν(i),jM, (4.3)

j ≥ 4 + ν(i), M ∈ Λj.

d2t+1−t−1(h
t−1
0 v2x2tk+2t−1

4 x9) = v2
t+1

x2tk
4 zt+3, t ≥ 1, k ≥ 0. (4.4)

d2t+1−t−1(x
2tk+2t−1
4 x9zj−(t−1),jM) = v2

t+1−t−1x2tk
4 zt+3zjM, (4.5)

j ≥ t+ 3, M ∈ Λj+1.

The proof occupies the rest of this section, except that at the end of the section we

explain briefly how this leads to our description of ku∗(K2) in Section 1, except for

the exotic extensions.

By [9, Theorem A], QjQ0ι2 is in the image from BP ∗(K2), and hence must be a

permanent cycle in our ASS. Thus by (3.17), zj is a permanent cycle, and so (4.3)

follows from (4.2), and (4.5) follows from (4.4), using (1.3).
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The differentials (4.2) follow from the result of [2] or [3, Proposition 1.3.5] that

H4i+1(K2;Z) ≈ Z/2ν(i)+2 ⊕
⊕

Z2. The ASS converging to H∗(K2;Z) has E2 =

ExtA0(Z2, H
∗K2), where A0 = ⟨1, Q0⟩. We depict this E2 similarly to our ASS for

ku∗(K2). It has an h0-tower for each element of H∗(H
∗K2, Q0), which was described

in Lemma 3.4. These come in pairs in grading 4i and 4i+1 corresponding to u2i
2 and

u2i−2
2 u5. There must be a dν(i)+2-differential, as pictured on the right hand side of

Figure 4.6.

Similarly to Figures 3.14 and 3.15, we have, for i ≥ 1, an h0-tower in the ASS

for ku∗(K2) arising from G4i+1,2, called either h2
0x

i−1
4 x5 or v2xi−2

4 x9. There is also an

h0-tower arising from xi
4 ∈ G4i,0. The classes x4 and x5 correspond to cohomology

classes u2
2 and u5 + u2u3. Under the morphism ku∗(K2) → H∗(K2;Z), these towers

map across, as suggested in Figure 4.6. We deduce the dν(i)+2-differential claimed in

(4.2), promulgated by the action of v.

Figure 4.6. ku∗(K2) → H∗(K2;Z)

4i4i+ 1 4i4i+ 1
ku∗(K2) H∗(K2;Z)

−→

In Figure 4.7, we depict many of the differentials asserted in Theorem 4.1 in grading

≤ 36. Not included in this is the P [x4] ⊗ ⟨x8, x10, h0x8 = vx10⟩ portion of Theorem

3.2. (The classes called x10 here are sometimes called z3, because that fits nicely in

(1.6).) Also not included are the portions involving (4.2) and (4.3) when i is odd,

as this portion self-annihilates. What is shown is (4.2) for i = 2, 4, and 6, (4.4) for

(t, k) = (1, 0), (1, 1), (1, 2), and (2, 0), and (4.5) with t = 1, k = 0, and j = 4.
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Figure 4.7. Some differentials.
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In order to establish some of the differentials, we will need the following description

of k(1)∗(K2), which is proved in [6, Theorem 9.3]. It involves classes x4, x8, and zj
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for j ≥ 3, which are reductions of the corresponding classes in ku∗(K2), an element

p3 which is the reduction of x9, and an additional class p4 with |p4| = 17. There

are composite elements pe for e > 4 defined recursively by pe+2 = x2e−3

4 peze+1. For

5 ≤ e ≤ 8, |pe| is 31, 59, 113, 221.
We introduce functions h and h′ whose first few values are given in Table 1. Succes-

sive values can be obtained using h(e+2)−h(e) = 2e+1 and h′(e+2)−h′(e) = 2e+1−1.

e 1 2 3 4 5 6 7 8 9

h(e) 0 2 4 7 13 24 46 89 175

h′(e) 1 2 4 9 19 40 82 167 337

Table 1: The functions h and h′

Our description of k(1)∗(K2) is given in the following theorem.

Theorem 4.8. k(1)∗(K2) consists of the following three types of elements.

a For each split Z2 in ku∗(K2) in grading d, there are split Z2’s in k(1)∗(K2) in

gradings d and d− 1.

b Additionally, there are split Z2’s, also of v-height 1, corresponding to a basis

of Z2[x4]⊗ E[p3]⊗
⊕
j≥4

z2jΛj+1, and also {x8, z3} ⊗ Z2[x4].

c For e ≥ 2, there are summands E[pe+1] ⊗ E[pe+2] ⊗ Z2[x
2e−1

4 ] ⊗ Λe+2 and

E[ze+2]⊗E[pe+2]⊗Z2[x
2e−1

4 ]⊗Λe+3, consisting of classes of v-height h(e) and

h′(e), respectively.

Proof. Part (c) was proved in [6, Theorem 9.3], with the following correspondence of

notation. Our zj is their zj−1, our pj is their wj−1, our h(j) is their r(j − 1), and

our x2j

4 is their yj+1. Part (a) is true since a copy of E1 with top class in grading d

is the sum of copies of E[Q1] with top classes in grading d and d− 1. The classes in

part (b) play an important role in Sections 6 and 7. The E1-module N in Figure 3.7

has free E[Q1]-summands with top classes in gradings 8 and 10, and so the N -part

of Proposition 3.8 yields the second part of (b) in the theorem. In Remark 3.16,

we illustrate how M7 has free E[Q1]-summands with top classes corresponding to z26 ,

z25z6, and z24z5z6. Thus the j = 7 summand in (3.13) contributes to the R-part of

Proposition 3.8 all monomials in
⊕

j≥4 z
2
jΛj+1 whose first omitted factor is z7, and
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so consideration of all j ≥ 4 in (3.13) yields all of
⊕

j≥4 z
2
jΛj+1. For the S-part of

Proposition 3.8, this is just tensored with x9 = p3.

Elements of the first few v-heights in k(1)∗(K2) are listed in Table 2.

v-height elements

h(2) = 2 E[p3]⊗ E[p4]⊗ Z2[x
2
4]⊗ Λ4

h′(2) = 2 E[z4]⊗ E[p4]⊗ Z2[x
2
4]⊗ Λ5

h(3) = 4 E[p4]⊗ E[p5]⊗ Z2[x
4
4]⊗ Λ5

h′(3) = 4 E[z5]⊗ E[p5]⊗ Z2[x
4
4]⊗ Λ6

h(4) = 7 E[p5]⊗ E[p6]⊗ Z2[x
8
4]⊗ Λ6

h′(4) = 9 E[z6]⊗ E[p6]⊗ Z2[x
8
4]⊗ Λ7

h(5) = 13 E[p6]⊗ E[p7]⊗ Z2[x
16
4 ]⊗ Λ7

h′(5) = 19 E[z7]⊗ E[p7]⊗ Z2[x
16
4 ]⊗ Λ8

h(6) = 24 E[p7]⊗ E[p8]⊗ Z2[x
32
4 ]⊗ Λ8

Table 2: Elements of k(1)∗(K2)

Two things from Theorem 4.8 that will be important in proving the differentials in

the ASS of ku∗(K2) are summarized in the following corollary.

Corollary 4.9. (1) In the morphism of ASSs induced by ku∗(K2)
ρ−→ k(1)∗(K2),

the v-towers on x2e−3j
4 ze map across. The target tower is truncated at height

h′(e − 2), and so ρ(vsx2e−3j
4 ze) = 0 for s ≥ h′(e − 2), as there are no higher-

filtration elements for it to hit.

(2) In k(1)∗−1(K2) → ku∗(K2), |vh(e−1)pe| = |v2e−2
ze|−1, which will be important

in deducing that v2
e−2

ze is hit by a differential.

Now we continue the proof of Theorem 4.1. We have already proved (4.2) and (4.3).

As noted earlier, the zj’s are infinite cycles by [9], and so the differentials in (4.5) are

implied as soon as the corresponding differential in (4.4) is proved. We start with

the case t = 1 of (4.4). In even gradings ≤ 14, k(1)∗(K2) = 0 in positive filtration,

using Table 2. Thus the map ku∗(K2) → k(1)∗(K2) implies that in ku∗(K2), v
sz4 is

either hit by a differential or divisible by 2 for s ≥ 2. In grading < 8, there is nothing
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that can divide it, and the only odd-grading v-tower in that range is on v2x4x9. Thus

d2(v
2x4x9) = v4z4, the case t = 1, k = 0 of (4.4). Since d2(x

2k
4 ) = 0 by (4.2), the case

t = 1 of (4.4) follows for any k by the derivation property.

Similarly vsz5 must be hit or divisible for s ≥ 4, and examination of options in

Figure 4.7 shows that we must have d5(h0v
2x3

4x9) = v8z5, preceded by extensions.

Since d5(x
8
4) = h3

0v
2x7

4x9, we deduce the case t = 2, k even of (4.4) using the deriva-

tion property, (3.3), and h0z4 = 0. We do not have a priori knowledge that x4
4z5 is

a permanent cycle in the ASS of ku∗(K2). However, if it supported a nonzero differ-

ential, then the tower of v-height 4 on x4
4z5 in the ASS of k(1)∗(K2) would have to

map to vtC for 0 ≤ t ≤ 3 for some C in positive filtration in grading 51 in the ASS

of ku∗(K2). Then v4C must be dr(B) with r ≥ 5 and B in filtration 0 in grading 42.

(B cannot have higher filtration since everything is v-towers, and v3C cannot be hit.)

But the only possible B is x6
4z4, and we already know that v4x6

4z4 ∈ im(d4). (Ordi-

narily this would not preclude the possibility of B supporting a differential, but it

does since everything is v-towers.) Thus x4
4z5 is a permanent cycle, and consideration

of its image in k(1)∗(K2) implies that vsx4
4z5 is hit by a differential for some s ≥ 4.

The only element in odd grading < 42 not yet accounted for is h0v
2x7

4x9 in grading

33. This is the case t = 2, k = 1 of (4.4). The validity for all odd k (and t = 2) now

follows similarly to what we did for even k at the beginning of this paragraph.

The proof of (4.4) for t ≥ 3 is much more delicate. For all non-2-powers n, write

n = 2p(2k + 1) and let T (n) = v2hp+2
0 x2p+3k−1

4 x9 and M(n) = x
2p+3(k−1)
4 zp+6. We will

prove d2p+4−p−4(T (n)) = v2
p+4

M(n), which is (4.4), with a new k. From now on, we

will denote such a differential as T (n) → M(n). If we write T (n) → M(m), then

the exponent of v accompanying M(m) will be 1
2
(|M(m)| − |T (n)| − 1). In Table 3,

we consider the range 33 ≤ n ≤ 63. We also include n = 96 for future reference.

We omit writing the v2x9 factors of T (n), and write x instead of x4. The values

M ′(n) = |M(n)| − 2h′(p+ 4) will be important, as we shall explain later.

There are two main constraints. Constraint (1) says that if T (n) → M(m), then

|T (n)| < M ′(m). This is true since the image of M(m) in k(1)∗(K2) has v-height

h′(p+ 4), with p = ν(m). Thus the v-tower on M(m) cannot be hit by a differential

in grading > |M(m)| − 2h′(p + 4) = M ′(m). This also requires that we know, as in
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n p k |T (n)| |M(n)| M ′(n) T (n) v2
p+4

M(n)

33 0 16 513 546 528 h2
0x

127 v16x120z6

34 1 8 513 578 540 h3
0x

127 v32x112z7

35 0 17 545 578 560 h2
0x

135 v16x128z6

36 2 4 513 642 562 h4
0x

127 v64x96z8

37 0 18 577 610 592 h2
0x

143 v16x136z6

38 1 9 577 642 604 h3
0x

143 v32x128z7

39 0 19 609 642 624 h2
0x

151 v16x144z6

40 3 2 513 770 606 h5
0x

127 v128x64z9

41 0 20 641 674 656 h2
0x

159 v16x152z6

42 1 10 641 706 668 h3
0x

159 v32x144z7

43 0 21 673 706 688 h2
0x

167 v16x160z6

44 2 5 641 770 690 h4
0x

159 v64x128z8

45 0 22 705 738 720 h2
0x

175 v16x168z6

46 1 11 705 770 732 h3
0x

175 v32x160z7

47 0 23 737 770 752 h2
0x

183 v16x176z6

48 4 1 513 1026 692 h6
0x

127 v256z10

49 0 24 769 802 784 h2
0x

191 v16x184z6

50 1 12 769 834 796 h3
0x

191 v32x176z7

51 0 25 801 834 816 h2
0x

199 v16x192z6

52 2 6 769 898 818 h4
0x

191 v64x160z8

53 0 26 833 866 848 h2
0x

207 v16x200z6

54 1 13 833 898 860 h3
0x

207 v32x192z7

55 0 27 865 898 880 h2
0x

215 v16x208z6

56 3 3 769 1026 862 h5
0x

191 v128x128z9

57 0 28 897 930 912 h2
0x

223 v16x216z6

58 1 14 897 962 924 h3
0x

223 v32x208z7

59 0 29 929 962 944 h2
0x

231 v16x224z6

60 2 7 897 1026 946 h4
0x

223 v64x192z8

61 0 30 961 994 976 h2
0x

239 v16x232z6

62 1 15 961 1026 988 h3
0x

239 v32x224z7

63 0 31 993 1026 1008 h2
0x

247 v16x240z6

96 5 1 1025 2050 1376 h7
0x

255 v512z11

Table 3: Differentials
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the case of x4
4z5 discussed earlier, that each M(n) is a permanent cycle. We prove

this in Lemma 4.10. Constraint (2) says that if n1 < n2 and |T (n1)| = |T (n2)| and
T (n1) → M(m1) and T (n2) → M(m2), then |M(m1)| < |M(m2)|. This is true since

moving up an h0-tower requires higher differentials.

Lemma 4.10. In the algorithm described in this section, M(n) is a permanent cycle.

Proof. Recall that M(n) = x
2p+3(k−1)
4 zp+6. We present the proof when p = 1, and

then explain how it generalizes. The algorithm illustrated in Table 3 purports to

prove that d27(v
2h3

0x
16k−1
4 x9) = v32x

16(k−1)
4 z7, and an important part of the argument

is that, by consideration of the image of x
16(k−1)
4 z7 in the ASS for k(1)∗(K2), the

v-tower on x
16(k−1)
4 z7 is hit by a dr-differential with r ≥ 19. This argument would go

awry if x
16(k−1)
4 z7 supported a differential in the ASS of ku∗(K2). If it did support

a differential, then in the ASS morphism of k(1)∗(K2) → ku∗+1(K2), the height-19

v-tower on x
16(k−1)
4 z7 will map nontrivially, increasing filtration by at least 1. The

target v-tower must be truncated by a dr-differential with r ≥ 20 emanating from

filtration 0 in grading 64(k− 1)+130− 38 = 64k+28. We seek to show that no such

differential is possible.

The class supporting such a differential cannot be an M(m) with m < n, since they

have already been shown to be targets of differentials, nor can it be a product of zj’s

times such M(m), for the same reason. It can’t be an M(m) with m ≥ n because

their grading is too large.

We must also rule out the possibility that this unwanted differential is one of the

(4.3) differentials. If so, the i in (4.3) must satisfy ν(i) ≥ 18, and the class supporting

the differential is xi
4Z, where Z is a product of zj’s with j ≥ 22 and all j’s distinct,

except that the smallest one might occur twice. Since |zj| = 2j +2, |xi
4Z| = 64k+28

implies that there must be 14 zj’s, with the largest j being ≥ 34. Hence 64k > 234.

If k is minimal such that d27(v
2h3

0x
16k−1
4 x9) = v32x

16(k−1)
4 z7 does not hold due to

the problem we have been describing, then we have just seen that 16k > 232. By the

minimality assumption, the d27 formula is valid if 16k is replaced by 16k − 232. By

(4.2), d27(x
232

4 ) = 0. Hence by the derivation property, the formula holds as stated.

For arbitrary p, the above argument goes through with

(16k, 7, 27, 19± 1, 64k, 28, 22, 14, 34, 232)



26 DONALD M. DAVIS AND W. STEPHEN WILSON

replaced by

(2p+3k, 6 + p, 2p+4 − (p+ 4), h′(p+ 4)± 1, 2p+5k, 2p+5 + 2− 2h′(p+ 4),

h′(p+ 4) + 3, 2p+4 + 1− h′(p+ 4), 2p+4 + 2, 22
p+4

).

The final step follows from d2p+4−(p+4)(x
22

p+4

4 ) = 0.

Now we can explain how the description of kuod in (1.11) is obtained from (4.3)

and Lemma 4.10. We illustrate with the case k = 7 in (1.11), so we want x15
4 x9S7,ℓ

for ℓ ≥ 8. It is formed from P [v]x15
4 x9Wℓ (with Wℓ as in Theorem 3.2) by truncating

the first (leftmost) ℓ−7 v-towers at height 6, while the last four support differentials.

The differentials from (4.3) are

d6(x
16
4 zj · zj · · · zℓ−1) = v6x15

4 x9zj−4,jzj · · · zℓ−1

= v6x15
4 x9zj−4,ℓ, 8 ≤ j ≤ ℓ− 1 (4.11)

d6(x
16
4 zℓ) = v6x15

4 zℓ−4,ℓ.

After tensoring with P [x2k−2

4 ]⊗ Λℓ+1, all of (1.11) is obtained in this way.

The last ν(e + 1) v-towers in xe
4Wℓ support differentials. To see this, first note

that, similarly to (4.11), the image of (4.3) hits v-towers on all xe
4x9zs,jΛj+1 with

j− s ≥ ν(e+1). In P [v, x4]x9

⊕
j≥4Wj ⊗Λj+1 of Theorem 3.2, this is all but the last

ν(e + 1) v-towers in the Wj’s. By Lemma 4.10 and the fact that zj’s are permanent

cycles, all the v-towers on the right-hand side of (4.4) and (4.5) are permanent cycles.

Thus there is nothing which can hit these last ν(e+1) odd-graded v-towers, and since

no infinite v-towers are present in E∞ by [1], we deduce the claim of this paragraph.

Thus the elements of (1.11), which were obtained in the preceding paragraph, are the

totality of kuod(K2).

Now we proceed with the proof of (4.4) for t ≥ 3. We begin by showing that if we

have proved T (n) → M(n) for all non-2-power n ≤ 8a, then T (8a+ b) → M(8a+ b)

for 1 ≤ b ≤ 3. We show this for a = 4, and then note that the same argument works

for any a since n ̸≡ 0 mod 8 implies that increasing n by 8 increases each of |T (n)|,
|M(n)|, and M ′(n) by 128. Refer to Table 3. Constraint (1) implies that M(33)

and M(34) must be hit by some T (n) with |T (n)| < 540 so |T (n)| = 513, and by

Constraint (2) this must be T (33) → M(33) and T (34) → M(34). Constraint (1) says

that M(35) must be hit by some T (n) with |T (n)| = 513 or 545, and Constraint (2)
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says it cannot be hit by one with |T (n)| = 513 since |M(35)| = |M(34)|. Therefore

T (35) → M(35).

Constraints (1) and (2) allow a possibility of T (16i+4) → M(16i+5), T (16i+5) →
M(16i+ 6), T (16i+ 6) → M(16i+ 8), and T (16i+ 8) → M(16i+ 4) for i ≥ 1. Since

this alternative involves an aberration of a d12-differential, and x210

4 survives to E12,

multiplicativity implies that the first time that this alternative might occur must be

in grading < 212. If i = 2j +1 is odd, this alternative would say that v96x128j
4 z9 is hit

by a differential. Theorem 4.8 says that k(1)∗(K2) has classes x
128j
4 p9 with v-height

89. We have |v89x128j
4 p9| = 257+ 512j = |v128x128j

4 z9| − 1, and the expectation is that

in the k(1)∗−1(K2) → ku∗(K2) portion of the exact sequence, v89−sx128j
4 p9 maps to

v128−sx128j
4 z9 for 1 ≤ s ≤ 32. In the alternative scenario, with v96x128j

4 z9 = 0, there

is nothing for v89−sx128j
4 p9 to hit for 1 ≤ s ≤ 32. (This is easy to check because of

our order of listing the classes. For example, letting j = 1, all subsequent |T (n)|’s
are > 833, so all the higher v-towers are truncated before they get to grading 833.)

So these classes must be in the image from ku∗−1(K2)/2. In odd gradings, these are

just the Sk,ℓ classes,
3 which have v-heights k − 1 arising from filtration 0 in gradings

> 2k+1, roughly. In grading < 212, which is where we noted the first case of the

alternative scenario must occur, the maximum v-height in Sk,ℓ’s is 10, which is not

nearly large enough to map onto the portion of the p9-tower that needs to be hit.

This shows that this alternative scenario cannot occur when i is odd.

Combining this with the previous observation about the first few values of n yields

the desired T (n) → M(n) for 32j + 17 ≤ n ≤ 32j + 27, and the result for 32j + 28 ≤
n ≤ 32j + 31 follows easily from Constraints (1) and (2), as can be seen in lines 60

to 62 of Table 3.

When i is even, a different argument must be used because x64
4 p9 does not exist in

k(1)∗(K2). For i = 2, we will be considering values of n in Table 3 from 36 to 48, and

a similar argument applies for any i = 4j + 2. There are various scenarios consistent

with Constraints (1) and (2) for which it is not the case that T (n) → M(n) for all n

in this range.

3We introduce the term “Sk,ℓ classes” to refer to the classes of (1.11), so they are accompanied

by x2k−3−1
4 x9 and perhaps by powers of x2k−2

4 and monomials in Λℓ+1.
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Assume first that there is an odd number n in this range for which it is not the

case that T (n) → M(n). Then there is a deviation from a d12-differential, and so, as

above, we can assert that the first such deviation occurs in grading < 212. (For i = 2,

we are clearly in grading < 212, but this argument is applying to all i = 4j+2.) If it is

not the case that T (48) → M(48), then vsz10 is hit by a differential for some s ≤ 224,

since the only |T (n)|’s not yet handled are ≥ 577. The v175−tp10 which wanted to map

to v256−tz10 will be mapping to 0 for t ≤ 32. It must be hit by a v-tower of height

≥ 32 in some Sk,ℓ, but these have v-height < 12 in grading < 212. Thus we conclude

that T (48) → M(48), and v255z10 ̸= 0 in ku∗(K2).

However, the image of vsz10 in k(1)∗(K2) is 0 for s ≥ 167, as there is nothing for

it to hit. Thus these elements must be divisible by 2, and so there is an element

C in ku692(K2) (with 2C = v167z10) such that v88C ̸= 0. The only possible C is

v39x64
4 z9, and so v127x64

4 z9 ̸= 0. Therefore M(40) must be hit by T (40). It is easy to

check that this, together with Constraints (1) and (2), implies that T (n) → M(n)

for 33 ≤ n ≤ 48, and similarly for any 33 + 64j ≤ n ≤ 48 + 64j, contradicting the

assumption that T (n) ̸→ M(n) for some odd n in this range.

Now we may assume that T (n) → M(n) for all odd n in the range under con-

sideration. One easily checks that Constraints (1) and (2) then imply that either

T (n) → M(n) for all n in [33, 48] or else there is a deviation from a d27-differential.

Hence the first such deviation must occur in grading < 227 (since x225

4 ∈ E27). Since

27 < 32, the same argument as above applies. But for subsequent continuation of

the argument, we strengthen it. Under this assumption about T (n) → M(n) for all

odd n, some ranges in the previous argument can be doubled. If T (48) ̸→ M(48),

then vsz10 is hit for some s ≤ 256 − 64. Then part of the v-tower on p10 must be

hit by a v-tower of height ≥ 64 in an Sk,ℓ, but, for the first occurrence, these heights

are ≤ 27. Hence v255z10 ̸= 0 in ku∗(K2). The second part of the argument, involving

M(40), goes through exactly as above, and so we have proved T (n) → M(n) for

33 + 64j ≤ n ≤ 48 + 64j.

Next we consider the cases where n ∈ [65, 80]∪ {96}, the only remaining cases less

than 128. For n ∈ [65, 80], the values of |T (n)|, |M(n)|, and M ′(n) are 512 greater

than those for n − 32 tabulated in Table 3, and the v2
p+4

M(n) column has an extra

factor of x128. The entries for n = 96 are in the last line of Table 3.
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A direct adaptation of the argument used for n ∈ [33, 48] breaks down where it said

“the v175−tp10 which wanted to map to v256−tz10” because the z10 is now multiplied

by x128
4 , and there is not a corresponding class x128

4 p10 in k(1)∗(K2).

If it is not the case that T (96) → M(96), then vsz11 is hit by a differential for some

s ≤ 512−2ρ, where ρ = 5 if T (n) ̸→ M(n) for some odd n, else ρ = 6 if T (n) ̸→ M(n)

for some n ≡ 2 mod 4, else ρ = 7. Similarly to the earlier argument, the last 2ρ classes

on the v-tower on p11 will have to be hit by a v-tower from some Sk,ℓ, but, for the

first such occurrence, the maximum v-heights in any Sk,ℓ are ≤ 2ρ−1 − (ρ− 1). (Here

we are again using the derivation property and (4.2).) Thus T (96) → M(96), and

the v-tower on z11 in ku∗(K2) has height 512.

The image of z11 in k(1)∗(K2) has v-height 337, and there is nothing else for the

end of the v-tower on z11 in ku∗(K2) to hit. Thus there is a class C in ku∗(K2) with

2C = v337z11 and v174C ̸= 0. The only possible C is v81x128
4 z10, and so v255x128

4 z10 ̸= 0,

and hence T (80) → M(80). (Constraint (2) implies that M(80) could not be hit by

T (72), since there would be nothing with larger |M(m)| for T (80) to hit.)

Now we do a similar step to show that T (72) → M(72). Indeed, the image of

x128
4 z10 in k(1)∗(K2) has v-height 167, and so v167x128

4 z10 must be 2C ′ with v88C ′ ̸= 0,

and the only possibility is v39x192
4 z9. Hence v127x192

4 z9 ̸= 0, and T (72) → M(72).

We now easily deduce using Constraints (1) and (2) that T (n) → M(n) for all n in

[65, 80] ∪ {96}, and similarly for shifts of this by multiples of 128.

We have now shown that T (n) → M(n) for all non-2-power n ≤ 127, and in the

range [129, 255] all are done except for [129, 144] ∪ {160, 192}. These can be handled

by the same method as used above, with one extra step. If these values are increased

by multiples of 256, the same argument applies. This procedure can be continued for

all n.

We discuss briefly how Theorems 3.2 and 4.1 lead to (1.1), modulo exotic extensions.

We have already seen, in the discussion surrounding (4.11), how the description of

kuod(K2) in (1.11) follows from Theorems 3.2 and 4.1.

The part of Theorem 3.2 called ⟨x8, x10, h0x8 = vx10⟩ is A3. (Recall that x10 = z3.)

Then x2i−1
4 xc2i+1

4 A3 is a subset of xc2i+1

4 A3+i. Thus the second half of the second

displayed line of Theorem 3.2 exactly yields the A3-portion of (1.5) tensored with

Z2[x
2k−2

4 ].
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All elements in the part of Theorem 3.2 called P [h0, v, x4]v
2x9 are either targets

in (4.2) or support differentials in (4.4), while the P [h0, v, x4] part of Theorem 3.2

supports differentials in (4.2).

This leaves the v-towers on monomials xt
4zi,jΛj+1 with 4 ≤ i ≤ j. Those with

i ≥ 4+ν(t) support differentials (4.3). Those with ν(t) ≥ i−3 are hit by differentials

(4.4) and (4.5), and the v-heights are as in our definitions of TA
k and TB

k in Section

1. It remains to see how these monomials occur in the summands of (1.1).

It is convenient to let yi = x2i−3

4 and Ei = E[yj, zj : j ≥ i]. The monomials in

question are all those of the form ziM with M ∈ Ei, i ≥ 4. Let k be the smallest

integer ≥ i such that either both or neither of yk and zk are factors of M . If we divide

(1.1) into its three parts, including the Z2[x
2k−2

4 ] in each, then the first (resp. third)

part has those monomials containing neither yk nor zk in M , and no (resp. some)

factors zp with p > k, while the second part is those with both yk and zk. Moreover,

the k in (1.1) agrees with the k in this paragraph.

For example, we consider the second part of (1.1) with k = 7. All terms have

factors y7z7, and possibly some factors yj and zj with j > 7. The z4E4 terms have,

in addition to these and the z4, the following factors corresponding to the successive

summands in (1.9).

z4z5z6, z4z5y6, z4y5z6, z4y5y6, y4z5z6, y4y5z6, y4z5y6, y4y5y6.

These can be seen in Figure 1.10 in gradings 126, 102, 118, 84, 126, 108, 92, and 74,

respectively. There are also monomials in z5E5, z6E6, and z7.

5. The exotic extensions

The extensions in (1.6) are established in various Ak. They are then promulgated

under multiplication by products of one or more zj’s. Parts of the formula are implied

by h0 in Ext. The rest are deduced using the exact sequence (1.19).

The first exotic extension, 2x4z3 = v21z4, can be seen in the lower right corner

of Figure 1.10, after dividing by x14
4 . To prove it, first note that the v-tower on

z4 ∈ ku18(K2) has height 4. The elements v2z4 and v3z4 map to 0 in k(1)∗(K2), since

it contains no elements in even grading ≤ 18 in filtration > 1. Table 2 is useful in

seeing this. Thus v2z4 and v3z4 must be in the image of
2−→ , hence the extension.

Figure 5.1 shows the relevant elements in this portion of the exact sequence (1.19).
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Figure 5.1. Portion of exact sequence.

17 18

→
2−→ →

k(1)od(K2) kuev(K2)

p4
14 18

z4 z4
18
z4x4z3

kuev(K2) k(1)ev(K2)

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

• •

•

• •
14
x4z3

A similar argument works to prove

2 · x2j−3

4 zj = vx2j−3

4 z2j−1 + v2
j−2

zj+1, (5.2)

which was the last equation in (1.6). The first term is seen in Ext. To see the second

term, we consider j = 6 as a typical example. It has the advantage that we can

refer to Figure 1.10. The v-heights of z7 in ku∗(K2) and k(1)∗(K2) are 32 and 19,

respectively. The elements vmz7 for 20 ≤ m ≤ 31 are in filtration ≥ 20 in gradings

≤ 90. It is easy to check that k(1)∗(K2) is 0 in this range. Thus these vmz7 must all

be divisible by 2 in ku∗(K2). The elements vm−16x8
4z6 are the only possible classes

that can do this. [[If 2 · C = v20z7, then 2 · v11C = v31z7 ̸= 0. But v4x8
4z6 is the only

class C with |C| = 90 and v11C ̸= 0. Other multiples of z6 are not in this range, and

the v-height of z5 is 8.]] Knowing that v20z7 = 2v4x8
4z6 implies (5.2) for j = 6, as is

easily seen in Figure 1.10. Essentially the same argument works for all zj.

A similar argument applies to deduce that (5.2) is valid after multiplication by

xc2j−2

4 . The same comparison of v-heights applies as when c = 0. This was discussed

in part (1) of Corollary 4.9. Thus vmxc2j−2

4 zj+1 is divisible by 2 for m ≥ h′(j − 1).

It is convenient to also be in the range where h0x
c2j−2

4 x2j−3

4 zj = 0. This will occur

for vmxc2j−2

4 zj+1 with m ≥ 2j−2 + 2j−3 − j + 2. This requires slightly larger values

of m than did the h′(j − 1) condition. For example, the values are 19 and 20 when

j = 6, and are 40 and 43 when j = 7. For m = 2j−2 + 2j−3 − j + 2, there must

be an element Y in ku∗(K2) with 2Y = vmxc2j−2

4 zj+1 and v2
j−1−1−mY ̸= 0 (since

v2
j−1−1xc2j−2

4 zj+1 ̸= 0). The only possible Y is vm−2j−2
xc2j−2

4 x2j−3

4 zj.

Table 3 can help us see this. We consider a specific case, j = 7, c = 6, but it should

be clear that it generalizes. The relevant lines of Table 3 are 57 ≤ n ≤ 60. The nice

thing is that the table shows all4 classes that are not products5 of more than one z,

4The table does not include the short v-towers on z4 and z5. These could be filled in, at the
expense of greatly lengthening the table.

5Regarding other classes, see Remark 5.4.
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and it lists the towers roughly in order of grading. Figure 5.3 depicts the only four

relevant v-towers in this range, labeled by their n-value. The class Y has |Y | = 940.

The key thing is that tower 57 lies outside grading 940, and tower 59 does not

extend far enough back to support the extension all the way back, as must occur.

It must be the class in tower 58 which supports the extension. In general, ignoring

the xc2j−2

4 , the extension occurs into v2
j−2+2j−3−j+2zj+1, and the next lower v-tower

(after the one that works) is x2j−3+2j−4

4 zj−1, whose grading is lower than that of the

extension.

Figure 5.3. Depiction of some v-towers.

1026 962 930 898
940

60
58

59
57

Remark 5.4. Because zi’s are elements of ku∗(K2), multiplication by zi preserves

extension formulas. This explains why the class which extends into vmxc2j−2

4 zj+1

cannot be divisible by more than one zi. This is because the first such occurrence

would be on a class ziC for which 2 · C has already been seen to be compatible with

our extension formulas.

6. Proposed formulas for the exact sequence (1.19)

In this section, we propose what we feel must be correct complete formulas for the

exact sequence (1.19). Some homomorphisms are forced by naturality, but many oth-

ers involve significant filtration jumps. However, they all occur in several families with

nice properties. The 10-term exact sequence (6.2) shows how the Sk,ℓ portions and

the exotic extensions yield compatibility of the differing v-tower heights in ku∗(K2)

and k(1)∗(K2). In Section 7, we show that all elements of k(1)∗(K2) are accounted

for exactly once in these homomorphisms, which implies that there can be no more
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exotic extensions. This does not require us to prove that our formulas are actually

correct, as discussed at the end of Section 1.

We propose that (1.19) can be split into exact sequences of length 4 and 10 (not

including 0’s at the end). There are subgroups of k(1)∗(K2) called G1
k and G2

k for

k ≥ 3 and Gi
k,ℓ for 3 ≤ i ≤ 6 and 3 ≤ k < ℓ such that there are exact sequences

0 → G1
k → Ak

2−→ Ak → G2
k → 0 (6.1)

for k ≥ 3, and, for 3 ≤ k < ℓ,

0 → G3
k,ℓ → x2k−3

4 Bk

ℓ−1∏
k

zi
2−→ x2k−3

4 Bk

ℓ−1∏
k

zi → G4
k,ℓ → x2k−3−1

4 x9Sk,ℓ

2−→ x2k−3−1
4 x9Sk,ℓ → G5

k,ℓ → Bkzℓ
2−→ Bkzℓ → G6

k,ℓ → 0. (6.2)

The sequence (6.1) can be tensored with Z2[x
2k−2

4 ], while (6.2) can be tensored with

Z2[x
2k−2

4 ]⊗Λℓ+1. Note that B3 = 0, so that (6.2) only has four nontrivial terms when

k = 3. We will study these exact sequences by breaking them up into short exact

sequences and isomorphisms involving kernels and cokernels of ·2.
In studying these exact sequences, KA

k := ker(2|Ak) and KB
k := ker(2|Bk) are very

important. Important elements of each are given in Table 4.
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k gk

3 z3

4 z4

5 vz5

6 x2
4z4z5 + v3z6

7 vx4
4z5z6 + v8z7

8 x10
4 z4z5z7 + v3x8

4z6z7 + v18z8

9 vx20
4 z5z6z8 + v8x16

4 z7z8 + v39z9

10 x42
4 z4z5z7z9 + v3x40

4 z6z7z9 + v18x32
4 z8z9 + v81z10

Table 4: Elements gk in Kk

For example g7 can be seen in Figure 1.10 in grading 114, and can be verified using

(1.6) to see that 2g7 = v9z26 + v9z26 = 0. A recursive formula is

gk+2 = x2k−3

4 gkzk+1 + vh
′(k−1)−1zk+2. (6.3)

Note that the first part of this formula is analogous to the recursive formula for pe.

The occurrence of h′(k − 1) here is a bridge between ku∗(K2) and k(1)∗(K2).

The isomorphisms G1
k → KA

k and G3
k,ℓ → x2k−3

4 KB
k

∏ℓ−1
k zi are determined, on

elements of v-height > 1, by pi 7→ gi, multiplied by various things. The main place

where the A- and B-versions differ is in the element of largest v-height. This is gk for

each. However, its v-height in KA
k (resp. KB

k ) is 2
k−2 − (h′(k − 3)− 1) (resp. 2k−2 −

(k − 2) − (h′(k − 3) − 1)). In k(1)∗(K2), the v-height of pk is h(k − 1) if it is not

accompanied by zk, as will be the case when mapping to KA
k , while its v-height is

h′(k − 2) if it is accompanied by zk, as will be the case for the map out of G3
k,ℓ.

One can verify that these v-heights match, i.e., 2k−2 − h′(k − 3) + 1 = h(k − 1) and

2k−2 − (k − 2)− h′(k − 3) + 1 = h′(k − 2).

Other elements of v-height> 1 will have the same v-height in the A- and B-versions.

We just list it when k = 7, where we have Figure 1.10 to look at. These elements are
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hit by v-towers in k(1)∗(K2) of the same height as follows:

ht h′(2) = 2 (p4 7→ g4) · z4{z5, x4
4}{z6, x8

4}

ht h′(3) = 4 (p5 7→ g5) · z5{z6, x8
4} (6.4)

ht h′(4) = 9 (p6 7→ g6) · z6.

The notation such as {z5, x4
4} means that the homomorphism is multiplied by either

z5 or x4
4. For example, (6.4) means that p5z5z6 7→ g5z5z6 and also p5z5x

8
4 7→ g5z5x

8
4.

You can see all of the target elements in Figure 1.10, and can verify that the preimage

elements occur in Table 2 with the prescribed v-height. This generalizes to arbitrary

k in an obvious way. In the B case, these formulas must be multiplied by x2k−3

4 and by∏ℓ−1
k zi, or by zℓ with ℓ > k. In both the A- and B-cases, they can also be multiplied

by the things which we said the exact sequences can be multiplied by. None of this

changes any of the v-heights.

There are elements of v-height 1 in KA
k and KB

k . When k = 7, you can see these in

Figure 1.10 in gradings 124, 108, 106, 90, and (for B but not A) 76, 74, and 72. The

basic formulas for the morphisms from G1
k and G3

k,ℓ follow a pattern which should be

clear from the first three:

x3
4p3z4,5 7→ x2

4vz4z5 (6.5)

x7
4p3

((
z4,6, z5,6

))
7→ x4

4

((
v4z5, vx

2
4z4

))
z6 (6.6)

x15
4 p3

((
z4,7, z5,7, z6,7

))
7→ x8

4

((
v11z6, v

4x4
4z5, vx

6
4z4

))
z7. (6.7)

We use
((
−
))

notation to indicate an ordered list. For example, (6.6) means that

x7
4p3z4,6 7→ x4

4v
4z5z6 and x7

4p3z5,6 7→ vx6
4z4z6. It is different than the set symbols

that we used to mean “choose one.” The v-exponents in the targets are various

2t − t− 1. The preimage elements are of the second type in Theorem 4.8. Note that

this morphism involves large filtration jumps.

The formula (6.5) occurs in G1 and G3 in many ways. Later we will list additional

ways that it occurs in G5.

• as stated in G1
6 → A6;

• multiplied by x4
4 in G3

5,6 → x4
4B5z5;

• multiplied by x8
4z6 in G3

6,7 → x8
4B6z6;

• multiplied by {z6, x8
4} in G1

7 → A7;
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• multiplied by x16
4 {z6, x8

4}z7 in G3
7,8 → x16

4 B7z7;

• multiplied by {z6, x8
4}{z7, x16

4 } in G1
8 → A8;

• etc.

For G3
k,ℓ → x2k−3

4 Bk

∏ℓ−1
k zi with ℓ > k + 1, multiply the formula by an additional

zk+1 · · · zℓ−1. Of course, formulas (6.6) and (6.7) and subsequent formulas have similar

manifestations. For the subsequent formulas after (6.7), increase subscripts of A, B,

G, and z and i in x2i

4 by appropriate amounts, and extend the vectors. In Figure 1.10,

multiples of (6.5) apply to the elements in 124 and 90, while (6.6) applies to elements

in 108 and 106, and (6.7) to z7 times elements in 76, 74, and 72.6

Next we describe the isomorphisms Ck → G2
k and Ckzℓ → G6

k,ℓ, where Ck :=

coker(2|Ak) = coker(2|Bk)
7 and ℓ ≥ k + 1. These isomorphisms are defined simply

by sending an element to one with the same name. Perusal of Figure 1.10 makes it

quite clear that the elements of C7 with v-height > 1 are as listed below with their

v-heights, in a pattern whose generalization to any k should be clear.

ht 19 = h′(5) z7 (6.8)

ht 9 = h′(4) x8
4z6

ht 4 = h′(3) x4
4z5{z6, x8

4}

ht 2 = h′(2) x2
4z4{z5, x4

4}{z6, x8
4}.

We explain the v-height of z7, again referring to Figure 1.10. In grading 92, we have

2(x10
4 z4z5 + v3x8

4z6) = v19z7, (6.9)

so v19z7 = 0 in C7, corresponding to the v-height of z7 in k(1)∗(K2). Note that

v18z7 ̸= 0 in C7, since 2 · v2x8
4z6 = v18z7 + v3x8

4z
2
5 . The relation (6.9) is closely related

to the formula for g8 in Table 4: if (6.9) is multiplied by z7, then vz27 = 2z8 implies

the relation 2g8 = 0.

The elements of v-height 1 in C7 are

zj,7 4 ≤ j ≤ 6

x8
4zj,6 4 ≤ j ≤ 5 (6.10)

x4
4zj,5{z6, x8

4} j = 4.

6These elements do not exist as kernel elements without being multiplied by sone zk with k ≥ 7.
7except for the elements x2k−3−1

4 z3 and x2k−3−1
4 x8 in coker(2|Ak).
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Note that these have v-height 1 in C7 because v times them is divisible by 2 in

ku∗(K2). This generalizes to any k.

Let SK
k,ℓ = ker(2|Sk,ℓ) and SC

k,ℓ = coker(2|Sk,ℓ). We study the short exact sequence

0 → x2k−3

4 CkzkP
ℓ
k+1 → G4

k,ℓ → x2k−3−1
4 x9S

K
k,ℓ → 0, (6.11)

where P ℓ
k+1 :=

∏ℓ−1
k+1 zi. Note that SK

k,ℓ contains just the v-tower of height k − 1 on

z4,ℓ, and classes of v-height 1 for each vk−2zi,ℓ with 5 ≤ i ≤ ℓ− k + 3. We deal with

the latter elements first. The map from G4
k,ℓ sends

x2k−3

4 zi+k−4,ℓ 7→ vk−2x2k−3−1
4 x9zi,ℓ, 5 ≤ i ≤ ℓ− k + 3. (6.12)

The classes of v-height 1 in Ck, described in the preceding paragraph, when multiplied

by x2k−3

4 zkP
ℓ
k+1, map to elements with the same name in G4

k,ℓ ⊂ k(1)∗(K2).

Of the v-towers in Ck of v-height > 1, after multiplication by x2k−3

4 zkP
ℓ
k+1, all except

the one on zk map to v-towers with the same name. The only tower of v-height > 1

in x2k−3−1
4 x9S

K
k,ℓ is x

2k−3−1
4 x9z4,ℓ, with v-height k − 1. It is hit by pkpk+1P

ℓ
k+1, which

has v-height h(k − 1). The class which hits vk−1pkpk+1P
ℓ
k+1 is vx2k−3

4 zk,ℓ, which has

v-height h′(k − 2) − 1 in x2k−3

4 CkzkP
ℓ
k+1, as it corresponds to zk ∈ Ck. (See (6.8) for

the v-height.) These match since

h(k − 1)− (k − 1) = h′(k − 2)− 1.

The generator of the v-tower x2k−3

4 zk,ℓ in x2k−3

4 CkzkP
ℓ
k+1 maps to the class with the

same name in k(1)∗(K2). A schematic when k = 7 and ℓ = 8 appears in Figure

6.13. Elements with ◦, •, or X = x16
4 z27 map to elements with the same symbol, and

numbers indicate filtration.

Figure 6.13. Towers in exact sequence.

◦

18

◦

•p7p8
•

x15
4 x9z4,8

56

23

X X

x16
4 C7z7 G4

7,8 x15
4 x9S

K
7,8→ →
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Finally, we study the short exact sequence

0 → x2k−3−1
4 x9S

C
k,ℓ → G5

k,ℓ → KB
k zℓ → 0 (6.14)

with ℓ ≥ k + 1. First, SC
k,ℓ has classes zi,ℓ for 4 ≤ i ≤ ℓ − k + 3, which, after

multiplying by x2k−3−1
4 x9, map to classes with the same name (except that x9 is

replaced by p3) in G5
k,ℓ ⊂ k(1)∗(K2). The target classes have v-height 1, as do the

domain classes in x2k−3−1
4 x9S

C
k,ℓ, except the one with i = ℓ− k+3, which has v-height

k − 1. Similarly to the discussion following (6.3)8, KB
k zℓ has summands of v-height

h′(e− 2) for 4 ≤ e ≤ k − 1 with generators geP , with

P := ze

k−1∏
j=e+1

{zj, x2j−3

4 }zℓ,

and gkzℓ of v-height h
′(k−2). The classes geP are mapped to by peP in G5

k,ℓ with the

same v-height. However, gkzℓ is hit by pkzℓ of v-height h(k−1) = h′(k−2)+k−2. To

compensate, vh
′(k−2)pkzℓ is hit by vx2k−3−1

4 x9z3+ℓ−k,ℓ, which is v times the generator

of the only part of x2k−3−1
4 x9S

C
k,ℓ of v-height > 1. One can check that

|vx2k−3−1
4 x9z3+ℓ−k,ℓ|+ 1 = |vh′(k−2)pk−1zℓ|.

We illustrate this key phenomenon in Figure 6.15, which shows all of x3
4x9S5,6 and

B5z6, and part of G5
5,6.

Figure 6.15. x3
4x9S5,6 → G5

5,6 → B5z6

→ →

X X

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•◦

◦

90 98 90 98
vx3

4x9z4,6 p5z6 vz5z6

There are also two families of elements of v-height 1 in KB
k zℓ which are hit from

G5
k,ℓ similar to those described in (6.5)-(6.7). First, in G5, (6.5) occurs

as follows (6.16)

8See especially (6.4).
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• in G5
6,ℓ → B6zℓ for ℓ ≥ 7, multiplied by zℓ,

• in G5
7,ℓ → B7zℓ for ℓ ≥ 8, multiplied by {z6, x8

4}zℓ,
• in G5

8,ℓ → B8zℓ for ℓ ≥ 9, multiplied by {z6, x8
4}{z7, x16

4 }zℓ,
• etc.

These can also be tensored with Λℓ+1 and, for G
5
k,ℓ, by Z2[x

2k−2

4 ]. There are analogous

occurrences of (6.6), (6.7), and their successors.

In G5, there are also generalizations of (6.5)-(6.7) as follows.

x3
4p3zℓ−1,ℓ 7→ x2

4vz4zℓ, ℓ ≥ 6 (6.17)

x7
4p3

((
zℓ−2,ℓ, zℓ−1,ℓ

))
7→ x4

4

((
v4z5, vx

2
4z4

))
zℓ, ℓ ≥ 7 (6.18)

etc.

Formula (6.17) occurs in G5
5,ℓ → B5zℓ and can be tensored with Z2[x

8
4]Λℓ+1, and (6.18)

occurs in G5
6,ℓ → B6zℓ and can be tensored with Z2[x

16
4 ]Λℓ+1.

7. All accounted for

In this section, we show that all elements of k(1)∗(K2) are involved in exactly one

of the homomorphisms involving some G-group described in the preceding section.

As discussed earlier, this implies that there can be no exotic extensions in ku∗(K2)

other than those in (1.6), because such an extension would decrease the number of

elements in ker(2|ku∗(K2)) and coker(2|ku∗(K2)), and these must correspond to the

elements of G-groups.

Let

Gi =


⊕
k≥3

Z2[x
2k−2

4 ]⊗Gi
k 1 ≤ i ≤ 2⊕

3≤k<ℓ

Z2[x
2k−2

4 ]⊗Gi
k,ℓ ⊗ Λℓ+1 3 ≤ i ≤ 6.

This section is devoted to the proof of the following theorem.

Theorem 7.1. G1 ⊕ · · · ⊕G6 consists precisely of classes of the following four types.

i. {x8, z3} ⊗ Z2[x4].

ii. For e ≥ 2, v-towers of height h(e) on E[pe+1]⊗ E[pe+2]⊗ Z2[x
2e−1

4 ]⊗ Λe+2;

iii. For e ≥ 3, v-towers of height h′(e−1) on E[ze+1]⊗E[pe+1]⊗Z2[x
2e−2

4 ]⊗Λe+2;

iv. For e ≥ 4, v-towers of height 1 on Z2[x4]⊗ E[p3]⊗ E[z2e ]⊗ Λe+1.
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This and Theorem 4.8 immediately imply the following result.

Corollary 7.2. G1 ⊕ · · · ⊕G6 exactly gives all of k(1)∗(K2) except for the split Z2’s

(of the first type in Theorem 4.8) coming from free E1-summands in H∗(K2).

Proof of Theorem 7.1. Case i. The mod-2 reduction of A3 is {x8, z3}, and, as noted
near the end of Section 4, x2i−1

4 xc2i+1

4 A3 ⊂ xc2i+1

4 A3+i. These map to classes with the

same name in G2.

Case ii. Our work in Section 6 showed that the v-towers of height h(e) in the G’s

are

• pe+1Z2[x
2e−1

4 ] in G1,

• pe+1pe+2Z2[x
2e−1

4 ]Λe+2 in G4, and

• pe+1Z2[x
2e−1

4 ]Λe+2 in G5.

The first and third combine to give the portion of Theorem 7.1(ii.) which does not

contain the pe+2 in E[pe+2], while the second part contains the portion which does.

Case iii. The work in Section 6 showed that the v-towers of height h′(e− 1) in the

G’s are

• pe+1ze+1

⊕
i≥e+1

Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } in G1,

• Z2[x
2e−1

4 ]ze+1 ⊕ x2e−2

4 ze+1

⊕
i≥e+1

Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } in G2,

• pe+1ze+1

(
x2e−2

4 Z2[x
2e−1

4 ]Λe+2 ⊕
⊕
i≥e+1

x2i−2

4 Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } · zi+1Λi+2

)
in G3,

• x2e−2

4 ze+1

⊕
i≥e+1

x2i−2

4 Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } · zi+1Λi+2 in G4,

• pe+1ze+1

⊕
i≥e+1

Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } · Λi+2 in G5, and

• Z2[x
2e−1

4 ]ze+1Λe+2 ⊕ x2e−2

4 ze+1

⊕
i≥e+1

Z2[x
2i−1

4 ]⊗
i∏

j=e+2

{zj, x2j−3

4 } · Λi+2 in G6.

The G1 ⊕ G3 ⊕ G5 part is all divisible by pe+1ze+1. We remove those factors, and

combine G1 into G5 to remove the bar over Λ. This combines with the G3-part to
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give

x2e−2

4 Z2[x
2e−1

4 ]Λe+2 ⊕
⊕
i≥e+1

Z2[x
2i−1

4 ]⊗ {1, zi+1x
2i−2

4 }
i∏

j=e+2

{zj, x2j−3

4 } · Λi+2. (7.3)

We will show that the
⊕

part equals Z2[x
2e−1

4 ]Λe+2. Thus the entire expression

equals Z2[x
2e−2

4 ]Λe+2, and so this G1 ⊕ G3 ⊕ G5 part gives the portion of Theorem

7.1(ii) which includes the pe+1 in E[pe+1]. A very similar argument shows that the

G2 ⊕G4 ⊕G6 part gives the portion which includes just the 1 in E[pe+1], concluding

the proof of Case iii, modulo the claim.

To prove the claim, it is convenient to think of Z2[x
2i−1

4 ] as an exterior algebra of

{x2t

4 : t ≥ i − 1}. Any monomial in Z2[x
2e−1

4 ]Λe+2 can be described by a sequence

of choices:
((
(ze+2, x

2e−1

4 ), (ze+3, x
2e

4 ), . . .
))
. In each pair, which was included: neither,

both, or which one? Note that Z2[x
2i−1

4 ]Λi+2 allows all possible choices beginning

with (zi+2, x
2i−1

4 ). A monomial corresponding to the i-term in the
⊕

in (7.3) chooses

exactly one of zj and x2j−3

4 in each position for j < i+1, then chooses neither or both

of zi+1 and x2i−2

4 , and then makes all possible choices after that. Thus all monomials

in Z2[x
2e−1

4 ]Λe+2 are chosen exactly once.

Case iv. Now we study the classes of v-height 1. We begin with those not divisible

by p3. These are exactly those coming from G2, G4, and G6, except that Case i

handled a few from G2. Now we list the terms in each which contain the factor z2e ,

for some e ≥ 4. The desired answer is z2eZ2[x4]Λe+1.

From G2, we have

z2e
⊕
i≥e+1

Z2[x
2i−2

4 ]
i∏

j=e+2

{zj−1, x
2j−4

4 },

and from G6 the same thing with Λi+1 appended, so that these combine to give

z2e
⊕
i≥e+1

Z2[x
2i−2

4 ]
i∏

j=e+2

{zj−1, x
2j−4

4 } · Λi+1. (7.4)

From G4, there are three types. One, from (6.10), is

z2e
⊕
i≥e+1

Z2[x
2i−2

4 ]zix
2i−3

4

i∏
j=e+2

{zj−1, x
2j−4

4 } · Λi+1. (7.5)
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(The seven cases of (6.10) multiplied by x16
4 z7 give the seven cases of (7.5) with

i = 7, prior to tensoring either with Z2[x
32
4 ]Λ8.) This combines with (7.4) to give

z2eZ2[x
2e−2

4 ]Λe+1 in exactly the same way as was done two paragraphs above. The

element X of Figure 6.13 and its generalizations give z2ex
2e−3

4 Z2[x
2e−2

4 ]Λe+1, so now

we have all z2ex
t
4Λe+1 with ν(t) ≥ e − 3. The classes z2ex

t
4Λe+1 with ν(t) ≤ e − 4 are

exactly those in (6.12) since ν(t) = k − 3, e = i+ k − 4, and i ≥ 5.

The terms divisible by p3 are a bit harder. Those with x2∗
4 and x4∗+1

4 are easily

handled, as they all come from (6.14) with k = 3 and 4, since Sk,ℓ can be producted

with Z2[x
2k−2

4 ]Λℓ+1. Note all zi,ℓΛℓ+1 with 4 ≤ i ≤ ℓ− 1 gives all of
⊕

e≥4 z
2
eΛe+1.

The domain classes in G1 obtained from (6.5)-(6.7) and those in G5 related to the

group (6.16) combine to give, for e ≥ 4,

z2ep3
⊕
i≥e+1

x2i−3−1
4

i−1∏
t=e+1

zt ·
⊕
j≥i

Z2[x
2j−1

4 ]Λj+2

j∏
s=i+1

{zs, x2s−3

4 }. (7.6)

We first consider the terms in G3 of v-height 1 which are divisible by p3z
2
e with

e = 5. It may be helpful to refer to the paragraph following (6.5)-(6.7). From (6.6),

we obtain

x7
4p3z

2
5

(
x8
4Λ7Z2[x

16
4 ]⊕ x16

4 z7Λ8Z2[x
32
4 ]⊕ x32

4 z8{z7, x16
4 }Λ9Z2[x

64
4 ]⊕ · · ·

)
. (7.7)

From (6.7), we obtain

x15
4 p3z

2
5z6

(
x16
4 Λ8Z2[x

32
4 ]⊕ x32

4 z8Λ9Z2[x
64
4 ]⊕ x64

4 z9{z8, x32
4 }Λ10Z2[x

128
4 ]⊕ · · ·

)
. (7.8)

These extend in an obvious way, and the pattern for arbitrary e ≥ 4 should be

apparent, with all subscripts and 2-power exponents modified appropriately.

In addition, the generalization of (6.17) and (6.18) contribute to G5, for e ≥ 5,

z2ep3
⊕
i≥e−2

x2i−1−1
4 Z2[x

2i

4 ]Λi+4

i+2∏
j=e+1

zj. (7.9)

Finally, G5 contains image terms from the Sk,ℓ part of (6.14). We have already

discussed how the part for k = 3 and 4 gives all desired terms with factors x2∗
4 and
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x4∗+1
4 . The remaining terms combine to yield⊕

e≥4

z2ep3
⊕
k≥5

x2k−3−1
4 Z2[x

2k−2

4 ]
⊕

ℓ≥k+e−3

ℓ−1∏
j=e+1

zj · Λℓ+1

=
⊕
e≥4

z2ep3
⊕
k≥5

x2k−3−1
4 Z2[x

2k−2

4 ]
k+e−4∏
j=e+1

zj · Λk+e−3. (7.10)

Now we prove Case iv of Theorem 7.1 for classes divisible by p3. To simplify

exposition, we restrict our attention to the case e = 5. We wish to show that all

monomials in xs
4z

2
5p3Λ6 are obtained exactly once in G1 ⊕ G3 ⊕ G5, whose classes

have been described in the previous several paragraphs. We let ν = ν(s + 1) and

Z(t) = z6 · · · zt for t ≥ 6, and Z(5) = 1. The cases ν < 2 have already been handled.

From (7.9), we obtain all z25p3x
s
4Z(ν+3)Λν+5. From (7.10), we obtain all z25p3x

s
4Z(ν+

4)Λν+5. Combining these gives z25p3x
s
4Z(ν + 3)Λν+4. If ν = 2, this is as desired.

Now restrict to ν ≥ 3. We consider the family beginning with (7.7) and (7.8) but

omit the first term of each sum. When these are combined with (7.6), we obtain

expressions which can be simplified using exactly the same method that was used to

simplify (7.3), and we obtain x2
5p3x

s
4Z(ν + 2)Λν+4. When this is combined with the

previous combined expression, we obtain z25p3x
s
4Z(ν+2)Λν+3. Finally, the first terms

of the (7.7)-(7.8) family give all monomials in z25p3x
s
4Λ6 not divisible by Z(ν + 2).

This and z25p3x
s
4Z(ν + 2)Λν+3 exactly fill out xs

4z
2
5p3Λ6. To justify the claim about

the “first terms,” note that (7.7) and (7.8) are the first two of a succession of similar

expressions, of which we are considering the first terms of each. Terms with a certain

value of ν ≥ 4 will appear among the first ν − 3 of these. For example, with ν = 6,

the first of these contains all terms with no z6, the second those with z6 but no z7,

and the third those with z6z7 but no z8. These comprise all terms not divisible by

Z(8).

The argument that we have illustrated when e = 5 generalizes to arbitrary e ≥ 4

in an obvious way.
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8. An explanation of self-duality of Bk

In this optional section, we discuss some observations about the ASS of ku∗(K2) and

ku∗(K2) which, among other things, provide an explanation of the self-dual nature of

the Bk charts which occur in both ku∗(K2) and ku∗(K2).

We first observe that, for k ≥ 3, there is an E1-submodule, Mk, of H
∗(K2) such

that ExtE1(Z2,Mk) (resp. ExtE1(Mk,Z2)) is closed under the differentials in the ASS

converging to ku∗(K2) (resp. ku∗(K2)), yielding the chart Ak (resp. the homology

analogue of Ak discussed in Theorem 2.4). For example, with Mj as in (3.10) and N

as in Figure 3.7, M5 is as depicted in Figure 8.1.

Figure 8.1. The E1-module M5.

17
26

33
30

36
22•• • • • • • • • • • • • •

x4
4 x3

4N x2
4M4 x4x9M4 M5

The two ASSs for M5 will yield the charts for A5 and its homology analogue pictured

in [4].

The situation for Bk is slightly more complicated. There is no E1-submodule of

H∗(K2) which, by itself, can give a chart Bk or Bkzℓ. Some of the differentials that

truncate v-towers in Bkzℓ come from classes that are part of a summand that includes

x2k−3−1
4 x9Sk,ℓ. We find that, for 4 ≤ k < ℓ, there is an E1-submodule Mk,ℓ of H

∗K2

such that ExtE1(Z2,Mk,ℓ) is closed under the differentials in the ASS converging to

ku∗(K2) and yields the chart

Bkzℓ ⊕ x2k−3−1
4 x9Sk,ℓ ⊕ x2k−3

4 BkZ
ℓ−1
k ,

where Zℓ−1
k = zk · · · zℓ−1. Note that these three subsets of ku

∗(K2) appeared together

in the 10-term exact sequence (6.2).

This Mk,ℓ is symmetric; i.e., there is an integer D such that M∗
k,ℓ and Mk,ℓ are

isomorphic E1-modules, where M∗
k,ℓ is obtained from Mk,ℓ by negating gradings and

reversing direction of Q0 and Q1. This implies that the v-towers in ExtE1(Z2,Mk,ℓ)

and ExtE1(Mk,ℓ,Z2) correspond nicely. Moreover, the differentials in the two ASSs

correspond, too, obtaining isomorphic charts, although the gradings in one decrease

from left to right, while in the other they increase.
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We illustrate with an example, M5,6, and then discuss the implication for self-

duality of Bk, and finally discuss briefly the general case. In Figure 8.2, we depict

M5,6.

Figure 8.2. The E1-module M5,6.

70 75 80 96 102
91• • • • •• • • • •• • • •86 • • • • • •

• • • • • • • •

x7
4x9M5 x6

4z5M4 x5
4x9z5M4 x4

4M6 x3
4x9M6 x2

4z6M4 x4x9z6M4 z6M5

In Figure 8.3, we depict the ASS chart for both ExtE1(Z2,M5,6) and ExtE1(M5,6,Z2).

They are isomorphic except that, from left to right, the gradings start with 102 for

the first and 70 for the second. We label the portions of the chart corresponding to

the eight summands of M5,6 just by the M -factor, since accompanying factors differ

for the two versions. For example, the M5 on the left-hand side is z6M5 for the first

spectral sequence, and is x7
4x9M5 for the second.
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Figure 8.3. Two ASSs for M5,6.
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For the ku∗(K2) version, B5z6 is on the left hand side of Figure 8.3, and x4
4B5z5

on the right hand side, with x3
4x9S5,6 separating them. The duality isomorphism in

Theorem 2.1 says that the Pontryagin dual of B5z6 is isomorphic as a ku∗-module to

Σ4 of the right hand side of the ku∗(K2) version of Figure 8.3, and we see that this

is isomorphic to a shifted version of B5 with indices negated. This is the self-duality

statement, that the Pontryagin dual of Bk is isomorphic as a ku∗-module to a shifted

version of Bk with indices negated.

Finally, we explain how the eight summands in M5,6 in Figure 8.2 generalize. Note

that (1.8) is the generalization of (1.9). We explain the general case using k = 7 and

(1.9). Let Ui be the coefficient of x2i in (1.9) with TB
j replaced by Mj. Then, for

ℓ ≥ 8, M7,ℓ in backwards order is

zℓM7 ⊕
7⊕

i=1

(
x2i−1
4 x9Uizℓ ⊕ x2i

4 Uizℓ
)
⊕ x15

4 x9Mℓ

⊕ x16
4 Mℓ ⊕

7⊕
i=1

(
x2i+15
4 x9UiZ

ℓ−1
7 ⊕ x2i+16

4 UiZ
ℓ−1
7

)
⊕ x31

4 x9Z
ℓ−1
7 M7.
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