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I
n the spectrum of pure 
versus applied mathemat-
ics, algebraic topology has 
throughout most of its 
lifetime sat resolutely on the 

pure side of the scale. Pioneered 
in the early 20th century, it has 
seen continuous development of 
its abstract theories and methods.  
Every serious university mathemat-
ics department has a topologist—or 
a team of such—in its ranks, yet 
most laymen don’t have any idea 
what these people do. What ques-
tions do they ask? What results 
do they produce? And to what 
end—does their work have applica-
tions in the real world, or is it an 
exercise in pure abstraction? This 
is the story of one small strand of 
topological research and the recent 
surprising discovery of its applica-
tion to the field of robotics.

While topology is a branch of 
geometry, algebraic topology often 
considers questions about high-
dimensional objects, or spaces, as 
they are affectionately known. The 
most familiar spaces are the Euclid-
ean ones: Rn denotes the space of all 
real n-tuples, so R 2 is the Cartesian 
plane, R 3 is three-dimensional space, 
and so on. The superscript indicates 
the dimension of the space, and this 
notational convention is used for 
a large class of topological spaces 
known as manifolds. 

For example, the n-dimensional 
sphere Sn is the set of all points  
( x 1 ,  … , xn+1) in Rn+1 for which        
   . Think 
about the case n = 2, which is like 
a balloon in three-space. It is called 

“Does this have any applications?” someone asked. 
My response was that I considered this to be an 
application—of methods of algebraic topology.  
In recent years a relationship, and potential  
application, has been found, to robotics.

“two-dimensional” because little 
parts of it can be flattened out into 
a two-dimensional disk. In other 
words, a small patch of the two-
sphere looks very much like a small 
patch of R 2. 

If the curviness of the spherical 
surface seems fundamentally differ-
ent than the flat plane, keep in mind 
that in the field of topology, such 

things do not matter. Two spaces 
are topologically equivalent if each 
can be continuously deformed into 
the other. To a topologist, a circle 
and a square are indistinguishable! 
It is important to understand that 
dimension is a topological property: 
topologically equivalent manifolds 
have the same dimension.

Note that the n-sphere sits 
naturally inside Euclidean n +1 
space. For more abstract spaces, the 
following question is fundamental: 
What is the smallest dimensional 
Euclidean space in which a given 
manifold can be embedded? By an 
embedding we mean a one-to-one 
differentiable function, so no two 
distinct points on the manifold can 
occupy the same point in space. The 
identity map f(x) = x is an embed-
ding of Sn in Rn+1.  

To get a better sense of this 
question, consider another fam-
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ily of spaces: the real projective 
spaces. The space RPn is formed 
from Sn by abstractly gluing each 
point to its antipodal point; i.e., 
the point −x directly opposite x. 
For n > 1, this gluing cannot be ac-
complished in the Rn+1 in which Sn 
sits. More dimensions are required. 
For example, it can be shown that 
RP 2 can be embedded in R 4 but not 

in R 3. Finding the smallest embed-
ding dimension for RPn is a chal-
lenging question in topology.

In algebraic topology, replacing 
embeddings with immersions turns 
out to be a more tractable type of 
problem. An immersion is similar to 
an embedding except that it allows 
well-behaved self-intersections (techni-
cally, the derivative must be injective 
everywhere). The easiest example 
of an immersion is that of the Klein 
bottle, which can be defined as the 
space obtained from a rectangle by 
gluing points on its edges according to 
the prescription in the left side of fig-
ure 1. When the long sides are glued, 
you get a cylinder. 

One way of gluing the ends of 
the cylinder would yield a to-
rus, but that is not the way they 
are to be glued to make a Klein 
bottle. The Klein bottle cannot be 
embedded in R 3, but it can be im-
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Figure 2: An immersion of Boy’s surface in R3.

Figure 1: How to glue the 
edges of a rectangle to create 
a Klein bottle, far left.  
Immersion of a Klein bottle, 
left.

mersed in R 3, as seen on the right 
side of figure 1. Nice glass models 
of immersed Klein bottles can be 
seen at www.kleinbottle.com.

Similarly, RP 2 can be immersed in 
R 3, but it is not so easy to visual-
ize.  Figure 2 depicts an immersion 
of RP 2 called Boy’s surface. Werner 
Boy discovered this immersion in 
1901. It is not easy to see how this 
picture relates to the definition of 
RP 2, but it can be shown that Boy’s 
surface is topologically equivalent to 
two-dimensional projective space.

In 1970, the only unknown im-
mersion question for any RPn with 
n ! 27 was whether RP 24 could be 
immersed in R 38. This question 
remains unresolved. An immersion 
question that was completely re-
solved in the 1980s was for RP 28; it 
can be immersed in R 47 but not in 
R 46. Embeddings are much trickier. 
For example, it is not known wheth-

er RP 6 can be embedded in R 9 or 
in R10. Although it can be embed-
ded in R 11, mathematicians have 
proved that it cannot be embedded 
in R 8.

Algebraic topology has been 
used to prove both positive and 
negative immersion results. To 
give a sense of what these results 
look like, here is a sample of two 
theorems. Let "(n) denote the 
number of ones in the binary expan-
sion of a positive integer n.

Theorem (Davis, 1983). For  
any positive integer  
with "#n) = 4, RPn can be im-
mersed in R 2n–9.
Theorem (Davis, 1984). For any 
positive integer n, RP 2(n+"(n)–1)  

cannot be immersed in R 4n–2"(n).

While the second theorem does 
not always give the best-known 
result, it is always close to it. For 
example, for n = 5, 6, and 8, we 
obtain that RP 12, RP 14, and RP 16 

cannot be immersed in R 16, R 20, and 
R 30, respectively. The first two are 
within one of best possible, and the 
third is optimal.  

New Dimensions in Robotics
I remember that in one of my 

earliest talks on immersions of RPn 
someone asked, “Does this have any 
applications?” and my response was 
that I considered this to be an ap-
plication—of methods of algebraic 
topology. However, in recent years a 
relationship, and potential applica-
tion, has been found, to robotics.

Michael Farber, a mathemati-
cian at the University of Durham, 
England, has been the leader in 
developing the field of topological 
robotics during the past decade. He 
introduced the notion of topological 
complexity of a space X. This is the 
minimum number of motion-planning 
rules required to tell how to move 
between pairs of points in X. 

These rules are used to tell a robot-
ic arm how to move from one place 
to another. A “rule” must be continu-
ous, in the sense that if x is close to 
x', and y is close to y', then the path 
it takes in going from x to y is close 
to the path it takes in going from x' 
to y'. Every pair of points must be 
governed by exactly one rule.

Here is a simple example.  
Let X = S 1 be the circle. You can’t 
just say, “Take the shortest arc from 

x to y,” because that has a problem 
when x and y are antipodal. And 
you can’t say, “Move counterclock-
wise from x to y,” because then you 
would follow a constant path from x 
to x, but to move from x to a point 
just a tiny bit clockwise from x, 
you would move almost all the way 
around the circle, so this would not 
be a continuous rule. 

But if you used the first rule when-
ever the points are not antipodal and 
the second rule when they are, then 
you have two continuous rules that 
cover all cases, and so the topological 
complexity of the circle is two.

Here’s where robotics comes in. 
The space X might consist of all 
configurations of some robot. For 
example, consider a robot arm in 
the plane with two independent 
joints at separate spots along the 
arm. See the top of figure 3. Each 
joint can rotate through any angle, 
so two angles describe all the arm’s 
possible positions. Since the points 
on a torus (see the bottom of figure 
3) are completely described by two 
angles, the torus is the configura-
tion space for this robot arm. It 
can be shown that the topological 
complexity of the torus is three, 
and so three rules are required to 
tell this robot arm how to move 
between any two positions.

The relationship with immersions 
of projective spaces came in 2003, 
when Farber and two colleagues 
proved that, if n $ 1, 3, or 7, then 
the topological complexity of RPn 
equals the smallest k such that RPn 
can be immersed in Rk–1. Thus, 
immersion results from algebraic 

n ≡ 6 (mod 8)
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Michael Farber has a 
nice book, Invitation 
to Topological 

Robotics (American 
Mathematical Society, 2008), 
that carefully explores the 
aspects of topology relevant 
to engineering problems in 
robotics.

Since the early days of the 
Internet, I have maintained 
a table of known immersion 
and embedding results for 
real projective spaces. It 
can be found at www.lehigh.
edu/~dmd1/imms.html.

An interactive illustration 
of Boy’s surface can be found 
at http://demonstrations.
wolfram.com/ 
BoySurfaceAndVariations.

Regarding the two theo-
rems, the first is from  
my article “Some New  
Immersions and  
Nonimmersions of Real  
Projective Spaces,” AMS 
Contemporary Mathematics 
19 (1983): 51–64.

The second is from another 
article of mine, “A Strong 
Nonimmersion Theorem for 
Real Projective Spaces,” 
Annals of Mathematics 120 
(1984): 517–528.

—Donald M. Davis

topology give information about 
how many motion-planning rules 
are required for RPn. 

Conversely, nonimmersion results 
would tell you that it is impossible 
to specify how to move between 
any two points in RPn in fewer than 
a certain number of (continuous) 
rules. The proof of the theorem just 
mentioned describes a precise way 
of going from an immersion to a set 
of motion-planning rules. 

For this to apply to robotics, we 
need to have an interpretation of 
RPn as the space of configurations 
of a robot. One, which is simple 
but not very practical, uses the 
model of RPn as the set of all lines 
through the origin in Rn+1. The re-
lationship of this with our previous 
definition of RPn as the set of an-
tipodal pairs on Sn is that each line 
through the origin can be identified 
with the pair of antipodal points 
where it intersects the sphere. 

Now think of a robot that con-
sists of one arm in Rn+1, which piv-
ots around the origin. Then RPn is 
the configuration space for this ro-
bot, and so immersion results from 
algebraic topology give information 
on how many rules are required for 
this arm to move between any two 
positions.

It would be more practical to 
have a model of RPn as the configu-
ration space of a robot in R3, even 
for high values of n. This can be 
done, at least in theory. There is a 
known method of associating to any 
space defined by equations of the 
sort that can be used to describe 
RPn a mechanical linkage, that is, 
a set of connected physical rods of 
specified lengths (as in the top of 
figure 3), for which the given space 
is the space of configurations. How-
ever, this “known method” is quite 
complicated.

There is also a notion of symmet-
ric motion-planning rules, in which 
the path from y to x must be the 
reverse of the path from x to y, and 
the path from a point to itself must 
be the constant path. The symmet-
ric topological complexity of a space 
is the minimum number of symmet-

ric motion-planning rules required 
to go between any two points. It 
was proved recently that, with sev-
eral low-dimensional exceptions, the 
symmetric topological complexity of 
RPn is the smallest k such that RPn 
can be embedded in Rk–1. So the 
embedding question is related to 
robotics too.

In the end, there is a potential 
path from the exceedingly abstract 
realm of algebraic topology to the 
practical realm of robotic design. 
This path was completely unknown 
to the algebraic topologists as they 
conducted their research, but its 
existence shows yet again how pat-
terns discovered in the lofty towers 
of pure mathematics can ultimately 
reflect some concrete aspect of our 
physical world. !
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Figure 3: At top, a robot arm in the plane 
with two joints. Below, its configuration 
space is a torus.

Further Reading
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