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Abstract. Let E = BP 〈n〉 denote the Johnson-Wilson spectrum, localized at p.
It is proved that if E∗(X) is locally finite, then there is an isomorphism of right E∗-
modules E∗(X) ≈ (E∗(Σ

D+n+1X))∨, where D =
∑
|vi| and M∨ = Hom(M,Q/Z)

is the Pontryagin dual. This result was motivated by work of the author and
W.S.Wilson regarding the 2-local ku-homology and -cohomology groups of the
Eilenberg-MacLane space K(Z/2, 2).

1. Main results

Let E = BP 〈n〉 denote the Johnson-Wilson spectrum ([5]) localized at a prime

p, which satisfies that E∗ = π∗(E) = Z(p)[v1, . . . , vn], with |vi| = 2(pi − 1). Our

motivating example is the case p = 2, n = 1, when E is the spectrum ku for connective

complex K-theory, localized at 2. Our main result is an isomorphism between certain

E-cohomology groups and the Pontryagin dual of E-homology groups. We require

that E∗(X) is locally finite, which means that for each i, the E∗-module generated

by Ei(X) is finite. If M is an R-module, we denote by M∨ the right R-module

Hom(M,Q/Z). Localized at p, we prefer to write Q/Z as Z/p∞.

Theorem 1.1. If E = BP 〈n〉 and E∗(X) is locally finite, there is an isomorphism

of right E∗-modules

E∗(X) ≈ (E∗(Σ
D+n+1X))∨,

where D =
∑
|vi| = 2((pn+1 − 1)/(p− 1)− (n+ 1)).

We prove this result using a Universal Coefficient Theorem and the following alge-

braic result, which we prove in Section 2. If M is a graded module, ΣDM denotes the
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graded module obtained from M by increasing gradings by D. Our Ext groups are

in the category of graded modules, and the second superscript refers to the grading.

Theorem 1.2. Let R = Z(p)[x1, . . . , xn] with |xi| positive integers, and let D =
∑
|xi|.

If M is a locally finite graded R-module, there is an isomorphism of graded right R-

modules

ExtsR(M,R) ≈

{
ΣDM∨ s = n+ 1

0 s 6= n+ 1.

Proof of Theorem 1.1. By [7, Corollary, p.257], if E is an A∞ ring spectrum, there is

a Universal Coefficient spectral sequence

Exts,tE∗
(E∗X,E∗)⇒ Es+tX.

By [1, Corollary 3.5], BP 〈n〉 is an A∞ ring spectrum. By Theorem 1.2 with R = E∗,

the spectral sequence must collapse, as it is confined to a single value of s, and the

E∞ groups are as claimed.

In Section 3, we illustrate Theorem 1.1 for a portion of ku∗(K2) with K2 =

K(Z/2, 2)), localized at 2. Here we state the application of Theorem 1.1 to this

case as a corollary.

Corollary 1.3. There is an isomorphism of right ku∗-modules ku∗(K2) ≈ (ku∗(Σ
4K2))

∨.

Observe also that the case n = 0 of Theorem 1.1 is the usual Universal Coefficient

Theorem when H∗(X;Z(p)) is finite.

After a version of this paper was placed on the arXiv, John Greenlees pointed out

to the author that Theorem 1.1 could apparently be deduced using concepts of duality

in stable homotopy theory, and quickly prepared a short manuscript ([4]) which did

so, at least when n ≤ 2. A result using Brown-Comenetz duality ([6, Corollary 9.3])

is closely related. We feel that the elementary nature of our presentation lends worth

to our paper.

The author is grateful to Andy Baker, John Greenlees, Andrey Lazarev, Doug

Ravenel, Chuck Weibel, and Steve Wilson for helpful suggestions.
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2. Proof of Theorem 1.2

The following result is certainly well-known. Here Zp denotes the p-adic integers.

Proposition 2.1. Let R = Z(p)[x1, . . . , xn] with |xi| positive integers, and let D =∑
|xi|. In the category of graded R-modules

Exts,tR (Z/p,R) =

{
Z/p (s, t) = (n+ 1, D)

0 otherwise,
(2.2)

and

ExtsR(Z/p∞, R) =

{
Zp (s, t) = (n+ 1, D)

0 otherwise.
(2.3)

Proof. Let C0 be the chain complex C1 → C0 with C1 and C0 free Z(p)-modules of

rank 1 and grading 0 with generators g0 and ι0, respectively, and d(g0) = pι0. For

1 ≤ i ≤ n, let Ci be the chain complex Ci,1 → Ci,0 with Ci,1 and Ci,0 free Z(p)[xi]-

modules of rank 1 with generators gi and ιi, respectively, and d(gi) = xiιi. Here

|ιi| = 0 and |gi| = |xi|. Then C := C0 ⊗ C1 ⊗ · · · ⊗ Cn is a chain complex of free

R-modules with Hj(C) = Z/p for j = 0, and 0 for j > 0, by the Künneth Theorem.

Thus C is an R-resolution of Z/p. Hence ExtsR(Z/p,R) is the sth cohomology group

of the dual complex HomR(C, R), which is the tensor product, C∗0 ⊗ C∗i ⊗ · · · ⊗ C∗n, of

the dual complexes. The cohomology group is nonzero only when s = n+ 1, where it

is Z/p, dual to g0 ⊗ g1 ⊗ · · · ⊗ gn, in grading D.

For the second result, we replace C0 by a chain complex C ′ which has C ′1 and C ′0

free Z(p)-modules with generators indexed by positive integers, g′j and ι′j, respectively,

with d(g′j) = ι′j − pι′j+1. Then H0(C ′) = Z/p∞ is the nonzero homology group, and

H1(C ′) = Zp is the nonzero cohomology group. The rest of the proof follows as in the

previous paragraph.

Proof of Theorem 1.2. We first consider the case when M is finite, and proceed by

induction on the size of M . The result is true when M = Z/p by (2.2). Let α

denote a generator of Extn+1,D
R (Z/p∞, R) from (2.3). Yoneda product α◦ is a natural

transformation of right R-modules

Ext∗,∗R (−,Z/p∞)→ Ext∗+n+1,∗+D
R (−, R).
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If

0→ K →M → Q→ 0

is a short exact sequence of finiteR-modules, by induction we may assume the theorem

is true forK and Q, and hence by the exact Ext sequence, ExtsR(M,R) = 0 if s 6= n+1.

We also obtain a commutative diagram of short exact sequences of right R-modules

0 ΣDQ∨ ΣDM∨ ΣDK∨ 0

0 Extn+1
R (Q,R) Extn+1

R (M,R) Extn+1
R (K,R) 0.

The 0’s on the ends of the first sequence follow from [8, p.70], and for the second

sequence by the induction. By the 5-lemma, our result is true for finite R-modules.

Now let M be locally finite, and for any positive integer k, let Kk (resp. Qk) denote

the set of all elements of M in grading > k (resp. ≤ k). There is a short exact

sequence of R-modules

0→ Kk →M → Qk → 0.

Since Qk is finite, the induced ExtR(−, R) sequence implies that for s 6= n + 1,

Exts,jR (M,R) = 0 for j ≤ k. Since k was arbitrary, we deduce that ExtsR(M,R) = 0

for s 6= n + 1. Again Yoneda product with α yields a commutative diagram of short

exact sequences of right R-modules

0 ΣDQ∨k ΣDM∨ ΣDK∨k 0

0 Extn+1
R (Qk, R) Extn+1

R (M,R) Extn+1
R (Kk, R) 0.

The left vertical arrow is iso since Qk is finite, and the groups in the right vertical

arrow are 0 in grading ≤ k. Since k is arbitrary, we deduce that the center vertical

arrow is an isomorphism.

3. An example when n = 1, p = 2, and X = K(Z/2, 2).

In [9] and [2], the author and, previously, Wilson initiated a partial calculation of

ku∗(K2), where K2 = K(Z/2, 2), in their studies of Stiefel-Whitney classes. In [3],

these authors made a complete calculation of ku∗(K2). Using our new Theorem 1.1,



DUALITY IN BP 〈n〉 (CO)HOMOLOGY 5

we can now give a complete determination of ku∗(K2), since we know that it is locally

finite, as it was noted in [2] that it contains no infinite groups or infinite v1-towers.

The work in [2] and [3] was done using the Adams spectral sequence. It is interest-

ing to compare the forms of the two Adams spectral sequence E∞ calculations. What

appears as an h0 multiplication in one usually appears as an exotic extension (mul-

tiplication by 2 not seen in Ext) in the other. We illustrate here with corresponding

small portions of each. The portion of ku∗(K2) in Figure 3.1 is called A5 in [3]. Note

that in our ku∗ chart, indices increase from right to left. Exotic extensions appear in

red. One should think of the dual of the ku∗ chart as an upside-down version of the

chart. The dual of the element in position (30, 7) in Figure 3.2 is in position (34, 0)

in Figure 3.2.

Figure 3.1. A portion of ku∗(K2)
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Figure 3.2. Corresponding portion of ku∗(K2)
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