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ABSTRACT. If p is a prime (implicit in notation) and n a positive
integer, let v(n) denote the exponent of p in n, and U(n) = n/p” ™),
the unit part of n. If « is a positive integer not divisible by p, we
show that the p-adic limit of (—1)P*¢ U((ap®)!) as e — oo is a well-
defined p-adic integer, which we call z,. Note that if p = 2 or « is
even, this can be thought of as U((ap™)!). In terms of these, we
then give a formula for the p-adic limit of (g}’)’:ﬁg) as e — 0o, which
we call (Zﬁ::i;). Here a > b are positive integers, and ¢ and d are
integers.

1. STATEMENT OF RESULTS.
Let p be a prime number, fixed throughout. The set Z, of p-adic integers consists of

expressions of the form x = Z c;p' with 0 < ¢; < p—1. The nonnegative integers are
i=0
those z for which the sum is finite. The metric on Z, is defined by d(z,y) = 1/p*@¥),

where v(z) = min{i : ¢; # 0}. (See, e.g., [3].) The prime p will be implicit in most
of our notation.
If n is a positive integer, let U(n) = n/p”™ denote the unit factor of n (with respect

to p). Our first result is as follows.
Theorem 1.1. Let a be a positive integer which is not divisible by p. If p¢ > 4, then
U((ap”™)1) = (=1)"U((ap)!)  mod p*.
This theorem implies that
(=PI U((ap ), (=1 U((ap®)))) < 1/,

from which the following corollary is immediate.

Corollary 1.2. If « is as in Theorem 1.1, then lim (—1)P*U((ap®)!) exists in Z,.

€e—00
We denote this limiting p-adic integer by z,.
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If p =2 or «is even, then z, could be thought of as U((ap™)!). It is easy for
Maple to compute z, mod p™ for m fairly large. For example, if p = 2, then z; =
1424234274294 2104 212 mod 2%, This is obtained by letting C,, denote the mod
27+ reduction of U(2™!) and computing C, = 1, Cy, = 3, C3 = Cy = C5 = Cs = 11,
C; = Cg =139, Cy = 651, Cp = C1; = 1675, and C5 = C13 = Cyy = 5771. Similarly,
if p=3,then 1 =14+2-34+2-324+2-324+304+2.374+2.3% mod 3. It would
be interesting to know, as a future investigation, if there are algebraic relationships
among the various z, for a fixed prime p.

There are two well-known formulas for the power of p dividing a binomial coefficient

(7). (See, e.g., [4].) One is that
V(Z) = ﬁ(dp(b) +dy(a —b) —dy(a)),

where d,(n) denotes sum of the coefficients when n is written in p-adic form as above.
Another is that V(Z) equals the number of carries in the base-p addition of b and a —b.
Clearly I/(Z;’E) = IJ(Z)

Our next result involves the unit factor of (Zg e). Here one of a or b might be
divisible by p. For a positive integer n, let z, = zy(,), where 2y, € Z, is as defined

in Corollary 1.2.

Theorem 1.3. Suppose 1 < b < a and {v(a),v(b),v(a —b)} = {0,k} with k > 0.

Then
ape — ck_*~a e
U = (1P — d
(1)) = o2 o,
a if v(a) =k,
where ¢ =< b if v(b) =k,
a—>b ifv(a—0b) =k

Note that since one of v(a), v(b), and v(a — b) equals 0, at most one of them can be
positive.

Since V(agz ) is independent of e, we obtain the following immediate corollary.

Corollary 1.4. In the notation and hypotheses of Theorem 1.3, in Z,

ap™\ o (apt\ _u(2) pek “a
=1 =p"\o)(=1)PF ——.
(bpoo) e (bpe) (=) ZbZa—b
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ap>+c

bt d), where ¢ and d are integers, possibly negative.

Our final result analyzes (

Theorem 1.5. If a and b are as in Theorem 1.3, and ¢ and d are integers, then in
7

D
(re)(@)  ed=0,
(ap“>+—c) . (ape#—c> (o) ()t e<0<d,
= lim = D a
bp> + d e—oo \ bp® + d (‘Zgw)(cfd)g c<0<c—d,
0 otherwise.

Here, of course, (‘Zgz ) is as in Corollary 1.4, and we use the standard definition that

if ceZ and d > 0, then
() =clc=1)---(c—d+1)/d.

These ideas arose in extensions of the work in [1] and [2].

2. PROOFS

In this section, we prove the three theorems stated in Section 1. The main ingre-

dient in the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. Let a be a positive integer which is not divisible by p, and let e be a
positive integer. Let I,. = {i : ap®' < i < ap®}, and let S denote the multiset
consisting of the least nonnegative residues mod p¢ of U(i) for alli € 1,.. Then every

positive p-adic unit less than p® occurs exactly o times in S.

Proof. Let W, . denote the set of positive integers prime to p which are less than
ap®. Then our unit function U : I, . — W, . has an inverse function ¢ : W, . — I,
defined by ¢(u) = p'u, where

t = max{i : p'u < ap®}.

Note that p'u € I, since p"*'u > ap® which implies p'u > ap®~*. One easily checks
that U and ¢ are inverse and hence bijective. Since reduction mod p® from W, . to

Wi . is an a-to-1 function, preceding it by the bijection U implies the result. 0

Proof of Theorem 1.1. If p¢ > 4, the product of all p-adic units less than p© is con-
gruent to (—1)? mod p®. (See, e.g., [4, Lemma 1], where the argument is attributed

to Gauss.) The theorem follows immediately from this and Lemma 2.1, since, mod
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%, U((ap®)!)/ U((ap)!) is the product of the elements of the multiset S described

in the lemma. O

Proof of Theorem 1.3. Suppose v(b) = 0 and a = ap® with k > 0 and a = U(a).
Then, mod p°,

Y ( (aé);k)) - (bpe)llj)(-( %IE(:Z)'—) b)p°)!)

(_1)pa(e+k) Za

(_l)pbezb . (_1)p(a—b)eza_b

= (1t

ZbZa—b

Y

as claimed. Here we have used Theorem 1.1 and the notation introduced in Corollary

1.2. Also we have used that either p = 2 or a = @ mod 2. A similar argument works
if v(b) =k >0 (and v(a) =0), or if v(a —b) = k > 0 (and v(a) = v(b) = 0). O

Our proof of Theorem 1.5 uses the following lemma.

Lemma 2.2. Suppose [ is a function with domain 7 X 7Z which satisfies Pascal’s

relation
for alln and k. If f(0,d) = Adyq for all d € Z and f(c,0) = Ar for all ¢ <0, then
A(Z) c,d >0,
Al <d
fle,d) = Agd)cT cei=d
S)a=r) c<0<c—d,
0 otherwise.

The proof of this lemma is straightforward and omitted. It is closely related to
work in [5] and [6], in which binomial coefficients are extended to negative arguments

in a similar way. However, in that case (2.3) does not hold if n = k = 0.

Proof of Theorem 1.5. Fix a > b > 0. If f.(¢,d) := (Zg:j:;), where e is large enough
that ap® 4+ ¢ > 0 and bp® + d > 0, then (2.3) holds for f.. If, as e — oo, the limit
exists for two terms of this version of (2.3), then it also does for the third, and (2.3)
holds for the limiting values, for all ¢,d € Z. The theorem then follows from Lemma
2.2 and (2.4) and (2.5) below, using also that if d < 0, then ( ap” ) = (( P gl to

bpe+ a—b)pe+|d|
which (2.4) can be applied.

e
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If d > 0, then
(2.4) < ap® ) _ <ape> ((a—b)pe) - ((a—b)pt —d +1) o

bpe + d bp® (bpe 4+ 1) - - (bp® + d)

in Z, as e — 00, since it is p°® times a factor whose p-exponent does not change as e

increases through large values.
Let ¢ = —m with m > 0. Then
(2.5)

a

(ape - m) B (p) ((a=b)p) - ((a= by —m+1) (apw) a—b

bp° bp°
in Z, as e — 00, since
((a=0)p°=1)---((a=b)p° —m+1)
(ap" — 1) (ap* —m + 1)

ap®- -+ (ap® —m+1) bp™>

=1 mod p¢lee=m)],

)

Here we have used that if ¢ < e and v is not divisible by p, then (a=bp*—vp' — 1 1104

ap€—vpt

e—t

p

REFERENCES

[1] D. M. Davis, For which p-adic integers z can Z(i)_l be defined?,

k

J. Comb. Number Theory (forthcoming). Available at http://arxiv.org/
1208.0250.

[2] —, Divisibility by 2 of partial Stirling numbers, Funct. Approz. Com-
ment. Math. (forthcoming). Available at http://arxiv.org/1109.4879.

[3] F. Q. Gouvea, p-adic Numbers: an Introduction, Springer-Verlag, Berlin, Hei-
delberg, 1993.

[4] A. Granville, Binomial coefficients modulo prime powers, CMS Conf. Proc 20
(1997) 253-275.

[5] P. J. Hilton, J. Pederson, Extending the binomial coefficients to preserve sym-
metry and pattern, Comput. Math. Appl. 17 (1989) 89-102.

[6] R. Sprugnoli, Negation of binomial coefficients, Discrete Math. 308 (2008)
5070-5077.

Department of Mathematics, Lehigh University, Bethlehem, PA 18015
dmd1@lehigh.edu

O



