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1. Introduction

APBA baseball is a baseball simulation game invented by Dick Seitz
of Lancaster, Pennsylvania, and first marketed in 1951. It has an avid
following today([1]), and was featured in a New York Times article in
August 2009.([5]) In this article, we use Markov chains to analyze cer-
tain aspects of this game. For example, we can tell whether one player’s
batting card is better than another’s, and we can make informed deci-
sions about strategy in the game.

Markov chain analysis has been applied to real baseball in [2], [6], and
[7]. For example, two of these discuss how to optimize the batting order,
using Markov chains and detailed statistics available from a database.
The rigid structure of the game analyzed here lends itself to conclusions
of a different nature than those.

Each play of the game begins with a roll of a pair of dice, one red
and one white. A red 4 and white 2 is interpreted as 42. There are
6 · 6 = 36 possible rolls. Each player has a card, which is based on his
performance during a particular season. The card associates to each
of the 36 possible dice rolls a number from 1 to 41. You look on the
batter’s card to see what number corresponds to the number rolled.
For example, on most players’ cards the number corresponding to a
roll of 42 will either be 13 or 14. Then one looks in a book to see
what is the outcome of this number. This will depend on which bases
are occupied, perhaps on the opposing pitcher and fielders, perhaps on
the speed of the baserunners, and occasionally on how many are out.
Usually 13 is a strikeout and 14 is a walk.

The value of a player’s card depends on the 36 numbers on it, since
one may assume that each of the 36 numbers is rolled equally often. We
can compute mathematically the expected number of runs that would
be scored from any (base,out) situation by a team of average players,
and then, using this information, we can determine the average increase
or decrease in expected number of runs scored when any number comes
up on a player’s card. For example, 1 is always a home run. We
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determine that when a 1 comes up, the team’s expected number of
runs for that inning is increased by 1.41. On the other hand, 13, which
is usually a strikeout, decreases the team’s expected number of runs
for that inning by 0.23.

If you average the 36 values of the numbers on a player’s card, you
obtain the average amount by which he changes your expected number
of runs scored in an inning in a single roll. This is not quite the same as
saying that it is the result of a plate appearance, because occasionally
the result of a roll will keep the batter at the plate. For example, it
might be “Strike. Runner out stealing” or “Ball. W–base on balls.”
The latter means that if the pitcher has a W, which stands for Wild,
the batter walks; otherwise you roll again.

For example, Hank Aaron’s 1962 card has two 1’s (a home run), a
5 and a 6 (extra-base hits of varying amount), eight numbers that are
often a single, depending on the grade of the opposing pitcher, four 14’s
(usually a walk), a 16 (which is often “first on error” depending on the
opposing team’s center fielder), a 40 (which varies but is often an out),
and eighteen numbers that are always outs. The total of the values of
his 36 numbers is 3.45, and so the average is .096. If you rolled 670
times for him over the course of a season (roughly corresponding to his
660 plate appearances in 1962), he would increase the team’s expected
number of runs by 670 · .096 = 64. Sabermetricians (aficionados of
extremely sophisticated baseball statistics) have a statistic called Bat-
ting Runs Above Average (BRAA), which tells how many runs a player
increased his team’s number of runs during the season compared to the
result of an average player. Hank Aaron in 1962 had 58 BRAA, ac-
cording to [8]. This suggests that the APBA card makers, my analysis,
and the sabermetricians are pretty much in synch.

One of the uses that can be made of having these valuations of play-
ers’ cards is to equalize fantasy teams. To do this, you need to be
able to have a method for telling the value of pitching ratings, fielding
ratings, and speed ratings on a basis comparable to the batting values.
This is accomplished in Section 4.

Three strategy aspects which are evaluated are

• When should you Hit and Run? This is an option with a runner
on first or runners on first and third.

• When should you “play it safe” with a slow runner on base?
There are numbers which say things like “Single, runner to
third, S out at third.” So, if your runner on first has an S (for
slow), you have an option to play it safe on a single. If you play
it safe, the runner only goes to second on a single, regardless
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of whether he would have ordinarily have gone to third or been
out at third due to his S. My analysis tells when you should
play it safe on a single, double, or fly ball.

• How should you align your outfielders? Each outfielder has a
fielding rating, 1, 2, or 3. We determine, for each combination
of these numbers, which alignment into left field, center field,
and right field produces optimal results.

The analysis, although totally mathematical once it gets going, de-
pends on input parameters taken from a batch of cards. I use a sample
of 350 cards from the period 1956 to 1966, which is when I was actively
playing the game. The parameters include what fraction of the time
each batting number appears on all the cards, what fraction of the
pitchers have each grade, A, B, C, and D, how often pitching adorn-
ments for strikeouts and walks occur, what fraction of the batters are
fast (F) or slow (S), and what fraction of the fielders have the various
fielding ratings. These fractions have a great effect on the values of the
batting numbers. For example, the number 9 is often a single, but is
usually an out against a grade A or C pitcher. Since my parameters
say that the pitcher will have grade C 46% of the time, this makes 9
have a relatively poor rating, whereas if there were fewer C pitchers, it
would have a better rating.

A very different version of this paper was written for APBA players
who may not know any advanced mathematics.([3]) The purpose of
the present paper is to explain how matrix methods can be applied to
perform an interesting analysis of a game. Although Markov chains
are present, no advanced theorems of Markov theory are involved. It
is really just matrix manipulation and matrix equations.

Most of the ideas in this analysis were developed by the author in
1964, and a preliminary version of this analysis was performed then. It
was limited by inadequate computer access at that time. The computer
program used for the current analysis was the computer algebra system
Maple. The new analysis was inspired by the New York Times article.

2. Details of evaluation of batting cards

We will work with various 25-by-25 transition matrices for the 25
(base,out) states. The possible bases occupied are 0, 1, 2, 3, 1-2, 1-3,
2-3, and 1-2-3. With none (resp., one, two) out, these comprise states 1
to 8 (resp. 9 to 16, 17 to 24). State 25 is the terminal state of three out.
We write bases occupied as, for example, 1-3 to distinguish “runners on
first and third” from situation number 13 (which is runners on first and
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second and one out) and from the strikeout number 13 on a batter’s
card.

For each integer k from 1 to 41, corresponding to the numbers that
may appear on a batter’s card1, we form the 25-by-25 transition matrix
Mk with (i, j)-entry Mk(i, j) the probability of going to state j if you
are in state i and k is rolled. (I find it convenient to use the inaccurate
term that the number (from 1 to 41) is “rolled.” The dice are rolled
and then the number corresponding to the dice is found on the batter’s
card; it is a consequence of the roll and the batter’s card, but I will
say it is “rolled.”) The rows of each Mk sum to 1. The last row of Mk

is [0, . . . , 0, 1]. It is included mainly just so the theory of absorbing
Markov chains applies. See, for example [4, §11.2]. The matrices Mk

incorporate the various outcomes that can occur, depending upon the
distribution of pitching and fielding ratings. They also incorporate the
strategies of playing it safe and hit-and-running.

We illustrate with one example of a portion of an Mk. If 8 is rolled
with a runner on first, it is an out, runner to second, against an A or
B pitcher, while against a C or D pitcher it is single, runner to third,
S out at third. We determine by methods discussed in Section 3 that,
on average, an S runner on first should play it safe on a single against
a C or D pitcher. Thus

M8(i, j) =





A + B if (i, j) = (2, 11), (10, 19), or (18, 25)

(C + D)S if (i, j) = (2, 5), (10, 13), or (18, 21)

(C + D)(1− S) if (i, j) = (2, 6), (10, 14), or (18, 22)

0 if i ∈ {2, 10, 18}, j not as above.

Here, for t = 0, 1, or 2, state 2 + 8t refers to runner on first and t out,
while state 5 + 8t (resp. 6 + 8t) refers to runners on first and second
(resp. first and third) and t out. Also, A, B, C, and D are the fractions
of the time that the pitcher will have each grade. For example C = .46.
Also, S is the fraction of all cards that are S (Slow).

Then define a 25-by-25 transition matrix M0 by

(2.1) M0 :=
41∑

k=1

pkMk,

where pk is the fraction of the time that the number k occurs on our
batters’ cards. The matrix M0 is the transition matrix for an average
batter. It is a Markov chain with one absorbing state, state 25. Let

M̃ denote the 24-by-24 matrix obtained from M0 by deleting the last

1The actual program goes to 43 because two of the extra-base-hit numbers have
an alternate interpretation, but we shall ignore this minor deviation in this paper.
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row and column. Most of its rows do not sum to 0 because transitions
to a third out are not included in M̃ . It is the transient submatrix
associated to the absorbing Markov chain M0. Most of our work will

involve M̃ .
In linear algebra, it is common to have the transition probabilities

appear in the columns rather than the rows. You can do it either way,
but it seems more common in probability texts to put the transition
probabilities in rows. The two ways would be equally convenient for
our analysis.

First we compute the fraction of the time that a batter is in each of
the 24 states. Let q = [q1, . . . , q24] be a row vector of probabilities of

being in the various states prior to a roll, with
24∑
i=1

qi ≤ 1. This sum

might be less than 1 because it does not include the probability that the

inning has already ended. Then qM̃ is the row vector of probabilities
of being in the various states after the roll, and the sum of its entries
may be even smaller than it is for q. Let e = [1, 0 . . . , 0], a row vector
of length 24. It represents the state at the beginning of the inning.
Then

(2.2) p := e + eM̃ + eM̃2 + eM̃3 + · · ·
has as its ith entry the expected number of times that situation i will
occur during an inning. The general theory of Markov chains with an
absorbing state implies that this infinite series converges to a finite row
vector. Let pr denote the row vector obtained by dividing each entry
of p by the sum of the entries of p. Then pr gives the probabilities
pr(i) of being in each of the 24 states.

The easiest way to compute p is derived by first multiplying (2.2)

on the right by M̃ , obtaining

pM̃ = eM̃ + eM̃2 + eM̃3 + · · · .

Combining this with (2.2) yields that pM̃ = p− e, and so

(2.3) p(I − M̃) = e,

where I is the 24-by-24 identity matrix. The matrix equation (2.3)
can be solved for p. It is perhaps more commonly thought of as the

transposed version, (I − M̃)TpT = eT . In this latter version, you are
working with column vectors, and, if you are thinking of it as a system
of 24 linear equations in 24 unknowns, the equations line up more
naturally. At any rate, it is by solving this system of equations, or
matrix equation, that p and then pr is obtained. This is easily done
by Maple, yielding that pr is as in Table 1. A more explicit formula
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for p is that it equals the first row of (I − M̃)−1 or the first column of

(I − M̃T )−1, but it is easier just to solve (2.3).

Table 1. Fraction of the time a batter is in each situation

outs
0 1 2

0 .24239 .17284 .13518
1 .06248 .07462 .07359

Bases 2 .01671 .03318 .04347
3 .00189 .00728 .01491

1-2 .00924 .01664 .01895
1-3 .00584 .01128 .01744
2-3 .00496 .01013 .01305

1-2-3 .00233 .00515 .00645

Now we explain how we found the expected number of runs scored
in an inning subsequent to being in situation j, which we denote by
E(j). Let E be the column vector of length 24 with entries E(j), and
let E(25) = 0. If you are in situation i and roll a k, the number of runs
that you expect to score in the remainder of the inning, including on
that roll, is

25∑
j=1

Mk(i, j)(E(j) + rk,i,j),

where rk,i,j is the number of runs scored on that roll (rolling k and
going from state i to j). Then

(2.4) E(i) =
41∑

k=1

pk

25∑
j=1

Mk(i, j)(E(j) + rk,i,j),

or equivalently

(2.5) E = M̃E + b,

where b is a column vector of length 24 whose ith entry is

41∑

k=1

pk

25∑
j=1

Mk(i, j)rk,i,j.

This (2.4) is the key equation, expressing the desired E-values in terms
of other E-values, including itself, and the r-values. Once the r-values
are known, it can be solved to find the important E-values.
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Most of the time, rk,i,j does not depend on k and equals

(2.6) r(i, j) := 1 + BR(i) +
[

i−1
8

]−BR(j)− [
j−1
8

]
,

where

BR(i) :=





0 i ≡ 1 (mod 8)

1 i ≡ 2, 3, 4 (mod 8))

2 i ≡ 5, 6, 7 (mod 8)

3 i ≡ 0 (mod 8)

is the number of base runners in situation i, and [ i−1
8

], which denotes
the integer part of the fraction, is the number of outs in situation i.
The 1 in (2.6) is due to the batter. The formula (2.6) does not work
when j = 25, when rk,i,j is usually 0. Let r be a column vector of

length 24 whose ith entry is
24∑

j=1

M̃(i, j)r(i, j). This gives, except for

the exceptional situations noted below, the average number of runs
scored on a single roll from situation i. Note that r(i, j) is sometimes

negative, which is nonsensical, but this will never happen if M̃(i, j) 6= 0.
There are two types of exceptions when the formulas of the preceding

paragraph do not give the number of runs scored on the play. Those
with j = 25 are the rare cases, such as 9 with a runner on third and
two out against a B or D pitcher2, in which runs score on the play,
but then a base runner makes the third out. Let d(k, i) denote the
expected number of runs which are scored on inning-terminating plays
when rolling a k from situation i. For example, d(9, 20) = B +D, since
situation 20 is (base,out)=(3,2). Let d be a column vector of length

24 whose ith entry is di :=
41∑

k=1

pkd(k, i), the average number, out of all

rolls from situation i, of runs scored on plays which include the third
out of the inning. These numbers di will be 0 unless i ≥ 20.

A bigger exception is the cases in which the batter stays up after
the roll, such as rolling a 37 with the bases empty3 if the pitcher does
not have a W. We have M37(1, 1) = 1 − W , where W is the fraction
of all pitchers that have a W. The formula (2.6) would incorrectly say
that one runner scored on the play. We define a column vector No of

length 24 which has ith entry Noi :=
41∑

k=1

pkU(k, i), where U(k, i) is the

probability that the batter stays up if you roll k in situation i. The

2single, runner scores, batter out trying for second
3Strike. W-Base on balls.
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above example for 37 says U(37, 1) = 1−W and contributes p37(1−W )
to No1.

Now we can write b = r + d−No, and (2.5) becomes

(2.7) (I − M̃)E = r + d−No.

This equation was solved for E by Maple to obtain Table 2.

Table 2. Expected number of runs from different situations

outs
0 1 2

0 0.4327 0.2254 0.0792
1 0.8071 0.4737 0.1892

Bases 2 0.9833 0.6055 0.2862
3 1.2053 0.8693 0.3481

1-2 1.3294 0.8288 0.4042
1-3 1.6274 1.0519 0.4450
2-3 1.7479 1.1924 0.5279

1-2-3 2.1726 1.4705 0.7098

The most interesting value in E is the expected number, E(1), of
runs scored when no one is on and no one out, since that tells the
average number of runs scored in an inning. This value, 0.4327, after
being multiplied by 9, yields the average number of runs scored by a
team in a 9-inning game. This value, 3.8943, is quite consistent with
actual baseball figures during the early 1960’s on which this analysis is
based. It would be higher if we based our analysis on the cards from
the late 1990’s.

The values V (k) of the numbers on a card are now easily obtained
as

V (k) =
24∑
i=1

pr(i)

( 24∑
j=1

Mk(i, j)
(
r(i, j)− U(k, i) + E(j)− E(i)

)

+Mk(i, 25)
(
d(k, i)− E(i)

))
.

This is obtained by averaging, over all initial situations i and all sub-
sequent situations j obtained when rolling a k, the number of runs
obtained on that roll plus the change in expected number of subse-
quent runs to be obtained later in the inning. This yields numbers
such as V (1) = 1.4101 and V (13) = −0.2317, which were mentioned
in Section 1. They are listed in [3], but we will not list them here, as
they would only be of interest to an APBA player.
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3. Strategy

In this section, we discuss briefly the way in which the results of
Tables 1 and 2 are used in making strategy decisions of the three types
outlined in Section 1. The strategy decisions also affect the computa-
tion of the numbers in those tables, so it is sort of a feedback loop.
The way this was performed was to first make an initial assumption
about hit-and-running, playing-it-safe, and aligning your outfielders,
then use that assumption to compute numbers pr(i) and E(i) for the
two tables, next use these values to determine new strategies, and then
finally recompute the numbers pr(i) and E(i) using the new strategy.
After this, the process stabilizes because the strategies based on the
revised tables are the same as the strategies obtained from the earlier
tables.

The biggest difference when hit-and-running as compared to an or-
dinary at-bat is that 13, instead of being a strikeout, is “runner out
stealing; if runner has an 11 on card, he steals safely.” Some other
numbers change, too, but this is the most significant. Because of this,
one’s intuition is to hit and run if the runner has an 11, and not if he
doesn’t. The numbers in Table 2 can be used to verify that this is the
best strategy. We compare, for the situations in which hit-and-running
is allowable, namely i = 2, 6, 10, 14, 18, or 22, the value of

(3.1)
41∑

k=1

pk

25∑
j=1

Mk(i, j)(E(j) + rk,i,j)

if Mk(i, ∗) is the transition matrix4 for (a) hitting away, (b) hit-and-
running with an 11 on first, and (c) hit-and-running without an 11 on
first. We obtain the largest value when hit-and-running with an 11,
and the smallest value when hit-and-running without an 11.5 This is
all based on an average batter. For a specific batter, your strategy
might be different, but you can still use Table 2 to help you make your
decision.

A similar analysis is performed to decide whether to play it safe if an
S-runner is on base in a situation in which “S is out” as in the earlier
discussion of 8 with a runner on first. For each situation i, one compares
(3.1) using two different Mk(i, ∗)’s and the associated rk,i,j’s, one with

4and rk,i,j the runs scored on that roll
5If there is just a runner on first and he has a 10 but not an 11, because of a

different stolen-base situation which is advantageous if the runner has a 10 or an
11, hit-and-running turns out to be a “wash” if the runner has a 10 but not an
11. Largely for programming convenience, we decided not to hit and run in this
situation.
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playing it safe and one not playing it safe. In [3], all the conclusions
are listed, but they would not be of much interest to anyone except
an APBA player. Some of them are quite delicate. For example, with
runners on second and third, with an S runner on second, always play
it safe on a single against an A pitcher, never play it safe against a B
pitcher, and against a C or D pitcher play it safe with less than two
outs.

Decisions about playing it safe on a fly ball with an S runner on
third and less than two out are even more complicated because they
depend both on the pitcher (since some hit numbers are “fly out, runner
scores” against certain types of pitchers) and all the outfielders, since
whether certain out numbers are “fly out, runner scores,” “fly out,
runner holds,” or “fly out, runner scores, S out at home” depend on
the fielding column of specific outfielders. Here again, in practice,
an APBA player could use Table 2 together with information about
the specific batter, pitcher, and fielders to make a decision. But for
determining the final transition matrices for the “average” player, we
needed to include specific rules about when we were playing it safe,
and those are listed in [3].

Deciding how to align your outfielders was handled differently. We
determine this by running the Maple program with each of the various
possible combinations of fielding numbers, and seeing which alignment
gives the lowest expected number of runs scored. An outfielder’s field-
ing rating is 1 (the worst), 2, or 3 (the best). The program has pa-
rameters WLF (worst left fielder), MLF (middle left fielder), and BLF
(best left fielder), and similarly for center fielders and right fielders,
telling the probability that the particular fielder has a certain fielding
rating. Ultimately these will be given values which are the fraction of
the time that the left fielder is of each of these fielding types, etc., and
this depends, not only on the cards from which we are sampling, but
also on the alignment strategy.

Here is an example of determining alignment strategy. If you have
two 2’s and a 3 in the outfield, we run the program first with BLF=1,
MCF=1, and MRF=1, and the other probabilities, such as MLF, equal
to 0. Thus this run of the program assumes that you have put your
3 in left field. The program determines that the expected number of
runs in an inning is .42463 if the 3 is in left, .43322 if the 3 is in center,
and .42234 if the 3 is in right, so you should put your 3 in right field to
minimize the opponent’s expected number of runs. A similar analysis
is done for each combination of fielding numbers.
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4. Values for speed, pitching and fielding

Now all the strategies determined in the preceding section are imple-
mented into the Maple program. For hit-and-running, we sample that
9% of the cards have an 11, and we estimate that you will hit and run
80% of the time when you have a runner with an 11 on first, so we say
that you are hit and running 7% of the time when a runner is on first or
first and third. Thus the transition matrices in the rows corresponding
to these base situations have the usual outcome weighted by 1 − H
and the hit-and-run outcome weighted by H, where H is a parameter
which is set to .07. The values of E(i) listed in Table 2 are contingent
on all these strategies.

To determine the value of an S (slow base runner), we compute

(4.1)
24∑
i=1

pr(i)
41∑

k=1

pk

25∑
j=1

Mk(i, j)(E(j) + rk,i,j)

with Mk (and the associated rk,i,j) based on having S = 1, and then
again with S = 0, and take the difference. This will give the change
in expected runs scored in an average roll by having an S runner on
an affected base. This equals −.01898. But to compare this with a
batting number, there are several considerations.

One is that the player with the S is not going to always be on base.
The more frequently the player is on base, the more disadvantageous
his S rating is. But my analysis cannot measure such a fine distinction.
We must assume that each player on the team is equally likely to be
on base. Suppose a team has, in its lineup, two S players. Then two
ninths of the time a specific baserunner (such as the runner on second)
would have an S. So the average loss to the team on any roll due to
the S’s would be 2

9
· .01898. But a given player with an S will only be

causing half of this loss. Thus the average loss caused by the player’s
S is .01898/9.

But this analysis is happening every play of the game (while your
team is at bat). An S runner could be on an affected base while several
batters are up. The previous paragraph takes this into account. If you
average the values of the 36 numbers on a batter’s card, this gives the
average amount by which he increases the team’s expected number of
runs on a single roll. On average, a batter will be up 4.5 times per
game, and so the average of the values of the numbers on his card
should be multiplied by 4.5 to give the amount by which his batting
numbers increase the team’s expected number of runs during a game.
The value .01898/9 that a person’s S hurts you on every roll of the
game should be multiplied by 40.5, for the 40.5 rolls during a game, on
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average. Since 40.5/9 equals 4.5, over the course of a game the .01898
negative value of an S is exactly comparable to the average value of the
numbers on the players card. If comparing it with a single number on
the player’s card, its .01898 should be multiplied by 36, yielding .683,
since the sum of the values of the numbers on the card had to be divided
by 36 to form the average. Having an S turns out to be roughly equal
to the difference between one of your 36 batting numbers being a 7
(usually a single, although occasionally an out against a good pitcher)
rather than a pure out number (and all other numbers unchanged),
since V (7) = .47 and V (13) = −.23, and .47− (−.23) is approximately
equal to .683.

A similar analysis can be made for F and the base-running value of
an 11.

To find the value of an A pitcher, one merely needs to run the pro-
gram with the pitcher parameters set as A = 1, B = 0, C = 0, D = 0,
and find that then the expected number of runs in an inning is .25186,
which is .18087 less than the value of .43273 against an average pitcher.
Thus the A pitcher saves .18087 runs per inning. But how do we com-
pare this with the value of a batter’s numbers? It should be done on a
per-game basis. A batter bats 4.5 times per game, and so we multiply
the average of the values of his numbers by 4.5 to see how many runs
per game do his plate appearances help the team’s expected number
of runs. The A pitcher pitches roughly 7 innings every fifth game,
hence 1.4 innings per game (of his team). Thus the A pitcher’s value,
per game of his team, is .1898 · 1.4 = .2532. If he also has a Z, for
good control, that adds another .04 · 1.4 = .056, bringing his value to
.31. If this is multiplied by 162, the number of games in a season, this
brings his value to the team to about 50 runs during the season, in
rough agreement with the sabermetricians’ value for the Runs Above
Average Pitcher([8]) of a very good pitcher, again establishing a nice
compatibility among the APBA card makers, my analysis, and saber-
metrics.

If we wish to evaluate a batter’s card by the sum of the values of its
batting numbers, under the system in which 1 (a home run number)
has 1.41, 13 (a strikeout number) −.23, and Hank Aaron a total of
3.45, then the value of an A pitcher with a Z would be .31 · 36/4.5
(because the sum of the batting numbers didn’t take into account the
batter’s 4.5 at bats per game). So the A pitcher with a Z is worth 2.48
to the team if Hank Aaron’s batting is worth 3.44. Aaron’s speed and
fielding would make him even more valuable.

A similar analysis is made for the other pitching grades and also
for fielding. It turns out that the difference between the best fielding
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column and the worst fielding column, on a scale such as that of the
previous paragraph comparable to the sum of the values of the batting
numbers, is approximately 1 at each position. Tables for all these
appear in [3], as does an annotated version of the Maple program which
was used to perform the calculations.

In conclusion, the analysis described above, accompanied by the de-
tailed results in [3], should enable APBA players to equalize or optimize
their fantasy teams and to make informed decisions about strategy. The
method of analysis employed here provides a paradigm for analyzing
games of a certain type.
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