REAL PROJECTIVE SPACE AS A SPACE OF PLANAR POLYGONS

DONALD M. DAVIS

ABSTRACT. We describe an explicit homeomorphism between real projective space \mathbb{RP}^{n-3} and the space $\mathcal{M}_{n,n-2}$ of all isometry classes of n-gons in the plane with one side of length $n - 2$ and all other sides of length 1. This makes the topological complexity of real projective space more relevant to robotics.

1. Introduction

The topological complexity, $TC(X)$, of a topological space X is, roughly, the number of rules required to specify how to move between any two points of X.([4]) This is relevant to robotics if X is the space of all configurations of a robot.

A celebrated theorem in the subject states that, for real projective space \mathbb{RP}^n with $n \neq 1, 3, \text{or } 7$, $TC(\mathbb{RP}^n)$ is 1 greater than the dimension of the smallest Euclidean space in which \mathbb{RP}^n can be immersed.([5]) This is of interest to algebraic topologists because of the huge amount of work that has been invested during the past 60 years in studying this immersion question. See, e.g., [6], [9], [1], and [2]. In the popular article [3], this theorem was highlighted as an unexpected application of algebraic topology.

But, from the definition of \mathbb{RP}^n, all that $TC(\mathbb{RP}^n)$ really tells is how hard it is to move efficiently between lines through the origin in \mathbb{R}^{n+1}, which is probably not very useful for robotics. Here we show explicitly how \mathbb{RP}^n may be interpreted to be the space of all polygons of a certain type in the plane. The edges of polygons can be thought of as linked arms of a robot, and so $TC(\mathbb{RP}^n)$ can be interpreted as telling how many rules are required to tell such a robot how to move from any configuration to any other.

Date: January 21, 2015.

Key words and phrases. Topological complexity, robotics, planar polygon spaces.

2000 Mathematics Subject Classification: 58D29, 55R80, 70G40, 51N20.
Let $M_{n,r}$ denote the moduli space of all oriented n-gons in the plane with one side of length r and the rest of length 1, where two such polygons are identified if one can be obtained from the other by an orientation-preserving isometry of the plane. These n-gons allow sides to intersect. Since any such n-gon can be uniquely rotated so that its r-edge is oriented in the negative x-direction, we can fix vertices $x_0 = (0, 0)$ and $x_{n-1} = (r, 0)$ and define

$$M_{n,r} = \{ (x_1, \ldots, x_{n-2}) : d(x_{i-1}, x_i) = 1, \ 1 \leq i \leq n-1 \}.$$

Here d denotes distance between points in the plane.

Most of our work is devoted to proving the following theorem.

Theorem 1.2. If $n-2 \leq r < n-1$, then there is a $\mathbb{Z}/2$-equivariant homeomorphism $\Phi : M_{n,r} \to S^{n-3}$, where the involutions are reflection across the x-axis in $M_{n,r}$, and the antipodal action in the sphere.

Taking the quotient of our homeomorphism by the $\mathbb{Z}/2$-action yields our main result. It deals with the space $\overline{M}_{n,r}$ of isometry classes of planar $(1^{n-1}, r)$-polygons. This could be defined as the quotient of (1.1) modulo reflection across the x-axis.

Corollary 1.3. If $n-2 \leq r < n-1$, then $\overline{M}_{n,r}$ is homeomorphic to $\mathbb{R}P^{n-3}$.

These results are not new. It was pointed out to the author after preparation of this manuscript that the result is explicitly stated in [8, Example 6.5], and proved there, adapting an argument given much earlier in [7]. The result of our Corollary 1.3 was also stated as “well known” in [10]. Nevertheless, we feel that our explicit, elementary homeomorphism may be of some interest.

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. Let J^m denote the m-fold Cartesian product of the interval $[-1, 1]$, and $S^0 = \{ \pm 1 \}$. Our model for S^{n-3} is the quotient of $J^{n-3} \times S^0$ by the relation that if any component of J^{n-3} is ± 1, then all subsequent coordinates are irrelevant. That is, if $t_i = \pm 1$, then

$$t_1, \ldots, t_i, t_{i+1}, \ldots, t_{n-2} \sim t_1, \ldots, t_i, t'_{i+1}, \ldots, t'_{n-2}$$

(2.1)
for any $t'_{i+1}, \ldots, t'_{n-2}$. This is just the iterated unreduced suspension of S^0, and the antipodal map is negation in all coordinates. An explicit homeomorphism of this model with the standard S^{n-3} is given by

$$(t_1, \ldots, t_{n-2}) \leftrightarrow (x_1, \ldots, x_{n-2}),$$

with

$$x_i = t_i \prod_{j=1}^{i-1} \sqrt{1 - t_j^2}, \quad t_i = \frac{x_i}{\sqrt{1 - x_1^2 - \cdots - x_{i-1}^2}} \text{ if } \sum_{j=1}^{i-1} x_j^2 < 1.$$

Then $t_i = \pm 1$ for the smallest i for which $x_1^2 + \cdots + x_i^2 = 1$.

Let $P \in M_{n,r}$ be a polygon with vertices x_i as in (1.1). We will define the coordinates $t_i = \phi_i(P)$ of $\Phi(P)$ under the homeomorphism Φ of Theorem 1.2.

For $0 \leq i \leq n-2$, we have

$$(2.2) \quad n - 2 - i \leq d(x_i, x_{n-1}) \leq n - 1 - i.$$

The first inequality follows by induction on i from the triangle inequality and its validity when $i = 0$. The second inequality also uses the triangle inequality together with the fact that you can get from x_i to x_{n-1} by $n - 1 - i$ unit segments. The second inequality is strict if $i = 0$ and is equality if $i = n - 2$. Let i_0 be the minimum value of i such that equality holds in this second inequality. Then the vertices x_{i_0}, \ldots, x_{n-1} must lie evenly spaced along a straight line segment.

Let $C(x, t)$ denote the circle of radius t centered at x. The inequalities (2.2) imply that, for $1 \leq i \leq i_0$, $C(x_{n-1}, n - 1 - i)$ cuts off an arc of $C(x_{i-1}, 1)$, consisting of points x on $C(x_{i-1}, 1)$ for which $d(x, x_{n-1}) \leq n - 1 - i$. Parametrize this arc linearly, using parameter values -1 to 1 moving counterclockwise. The vertex x_i lies on this arc. Set $\phi_i(P)$ equal to the parameter value of x_i. If $i = i_0$, then $\phi_i(P) = \pm 1$, and conversely.

The following diagram illustrates a polygon with $n = 7$, $r = 5.2$, and $i_0 = 5$. We have denoted the vertices by their subscripts. The circles from left to right are $C(x_i, 1)$ for i from 0 to 4. The arcs centered at x_6 have radius 1 to 5 from right to left. We have, roughly, $\Phi(P) = (.7, .6, .5, -.05, 1)$.
Here is another example, illustrating how the edges of the polygon can intersect one another, and a case with $i_0 < n - 2$. Again we have $n = 7$ and $r = 5.2$. This time, roughly, $\Phi(\mathcal{P}) = (.2, -4, .4, 1, t_5)$, with t_5 irrelevant. Because $i_0 = 4$, we did not draw the circle $C(x_4, 1)$.

That Φ is well defined follows from (2.1); once we have $t_i = \pm 1$, which happens first when $i = i_0$, subsequent vertices are determined and the values of subsequent t_j are irrelevant. Continuity follows from the fact that the unit circles vary continuously with the various x_i, hence so do the parameter values along the arcs cut off. Bijectivity follows from the construction; every set of t_i’s up to the first ± 1 corresponds to a unique polygon, and ± 1 will always occur. Since it maps from a compact space to a Hausdorff space, Φ is then a homeomorphism. Equivariance with respect to the
involution is also clear. If you flip the polygon, you flip the whole picture, including
the unit circles, and this just negates all the t_i's.

We elaborate slightly on the surjectivity of Φ. The arc on $C(x_0,1)$ cut off by
$C(x_{n-1},n-2)$ is determined by n and r. Given a value of t_1 in $[-1,1]$, the vertex
x_1 is now determined on this arc. Now the arc on $C(x_1,1)$ cut off by $C(x_{n-1},n-3)$
is determined, and a specified value of t_2 determines the vertex x_2. All subsequent
vertices of an n-gon are determined in this manner.

REFERENCES

www.lehigh.edu/~dmd1/imms.html.
[3] ———, *Algebraic topology: there’s an app for that*, Math Horizons *19*

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
E-mail address: dmd1@lehigh.edu