THE CONNECTIVE KO-THEORY OF THE EILENBERG-MACLANE SPACE $K(\mathbb{Z}_2, 2)$, I: THE E_2 PAGE

DONALD M. DAVIS AND W. STEPHEN WILSON

ABSTRACT. We compute the E_2 page of the Adams spectral sequence converging to the connective KO-theory of the second mod 2 Eilenberg-MacLane space, $ko_*(K(\mathbb{Z}_2, 2))$, where \mathbb{Z}_2 is the cyclic group of order 2. This required a careful analysis of the structure of $H^*(K(\mathbb{Z}_2, 2); \mathbb{Z}_2)$ as a module over the subalgebra of the Steenrod algebra generated by Sq^1 and Sq^2 . Complete analysis of the spectral sequence is performed in [8].

1. Introduction

Let $\mathbb{Z}_2 = \mathbb{Z}/2$ and let K_2 denote the Eilenberg-MacLane space $K(\mathbb{Z}_2, 2)$. In [9], the authors gave a complete determination of the connective complex K-theory groups $ku_*(K_2)$ and $ku^*(K_2)$. The original motivation for this work was from [16] and [10], which studied Stiefel-Whitney classes of Spin manifolds. Because of the relationship ([2]) of the Spin cobordism spectrum and the spectrum ko for connective real K-theory, information about $ko_*(K(\mathbb{Z}_2, n))$ gave useful results about Spin manifolds. For complete calculations the authors were led to the more tractable ku groups. In this paper, we return to the ko groups.

We give a complete determination of the E_2 page of the Adams spectral sequences (ASS) converging to $ko_*(K_2)$ and $ko^*(K_2)$. In [8], we will complete the calculation by determining the differentials and extensions in the spectral sequences. We choose to split this E_2 work off because we feel that it involves some clever arguments that we would not want to have obscured in a paper with massive ASS charts.

Most of our focus will be on the homology groups $ko_*(K_2)$, in part because of its connection with the motivating problem and in part because its ASS is of a more

Date: July 27, 2025.

 $Key\ words\ and\ phrases.$ Adams spectral sequence, Steenrod algebra, connective KO-theory, Eilenberg-MacLane space.

²⁰⁰⁰ Mathematics Subject Classification: 55S10, 55T15, 55N20, 55N15.

familiar form than that for $ko^*(-)$. In [9], most of the work was done for the cohomology groups $ku^*(K_2)$, largely because of the product structure. That structure, along with a comparison with the mod-p groups $k(1)^*(K_2)$, enabled us to find the differentials in the spectral sequence for $ku^*(K_2)$, and we can use that information to deduce differentials in the other spectral sequences. Similarly to the situation for kuin [9], the ko-homology and ko-cohomology groups of K_2 are Pontryagin duals of one another. We discuss this in Section 4.

Let A_1 denote the subalgebra of the mod-2 Steenrod algebra generated by Sq^1 and Sq^2 , and let E_1 denote the exterior subalgebra generated by the Milnor primitives $Q_0 = \operatorname{Sq}^1$ and $Q_1 = \operatorname{Sq}^1 \operatorname{Sq}^2 + \operatorname{Sq}^2 \operatorname{Sq}^1$. The ASS converging to $ko_*(X)$ has $E_2^{s,t} = \operatorname{Ext}_{A_1}^{s,t}(H^*X,\mathbb{Z}_2)$, while that for $ku_*(X)$ has $E_2 = \operatorname{Ext}_{E_1}(H^*X,\mathbb{Z}_2)$. All cohomology groups have coefficients in \mathbb{Z}_2 . The first step toward $ku^*(K_2)$ was finding a splitting of H^*K_2 as a direct sum of reduced E_1 -modules ([9, Proposition 2.11 and (2.16)]). (A reduced module is one containing no free submodules.) In Section 3, we describe a corresponding splitting as A_1 -modules (Theorem 3.9) and the groups $\operatorname{Ext}_{A_1}(-,\mathbb{Z}_2)$ for all of the summands. This then will be the E_2 page of the ASS, the main result of this paper.

We thank the referee for a careful reading and several useful suggestions.

2. The
$$A_1$$
-summands M_k

An important part of the E_1 splitting of H^*K_2 was a family of E_1 -modules M_k for $k \geq 4$ ([9, (2.13), (2.14), (2.15)]). In this section, we find corresponding A_1 -modules, which we also call M_k . Although the structure of these A_1 -modules as E_1 -modules is very similar to that of the corresponding E_1 -modules of [9] (in fact isomorphic if $k \equiv 0, 1 \mod 4$), finding classes with the correct Sq^2 behavior was a nontrivial task.

Let u_0 denote the nonzero element of $H^2(K_2)$, and define u_j inductively by $u_{j+1} = \operatorname{Sq}^{2^j} u_j$. Then $H^*(K_2) = \mathbb{Z}_2[u_j : j \geq 0]$ with $|u_j| = 2^j + 1.([14])$ Let $S = (\operatorname{Sq}^1, \operatorname{Sq}^2)$. One easily checks that

$$S(u_j) = \begin{cases} (u_1, u_0^2) & j = 0\\ (0, u_2) & j = 1\\ (u_{j-1}^2, 0) & j \ge 2. \end{cases}$$

In Lemma 2.1 we replace u_j with generators x_j for $j \geq 4$ with similar properties except that $\operatorname{Sq}^2\operatorname{Sq}^1(x_4) = 0$.

Lemma 2.1. There are elements $x_j \in H^{2^j+1}(K_2)$ for $j \geq 4$ satisfying

- (1) $x_j \equiv u_j \mod decomposables$,
- (2) $c_{18} := \operatorname{Sq}^1(x_4) \neq 0$, $\operatorname{Sq}^2(c_{18}) = 0$, $\operatorname{Sq}^2(x_4) = 0$, and
- (3) $S(x_j) = (x_{j-1}^2, 0)$ for $j \ge 5$.

Proof. We first introduce an intermediate set of generators w_i defined by

$$w_j = \begin{cases} u_j & j = 0, 1 \\ u_0 u_1 + u_2 & j = 2 \\ u_1^{2^{j-2}} u_{j-2} + u_0^{2^{j-2}} u_{j-1} + u_j & j \ge 3. \end{cases}$$

These satisfy

$$S(w_j) = \begin{cases} (w_1, w_0^2) & j = 0\\ (0, w_2 + w_0 w_1) & j = 1\\ (0, w_0 w_2) & j = 2\\ (w_{j-1}^2, 0) & j \ge 3. \end{cases}$$

Now we define $x_4 = w_0 w_2^3 + w_4$ and, for $j \ge 5$

$$x_j = w_0^{2^{j-4}} w_2^{2^{j-3}} w_{j-2} + w_1^{3 \cdot 2^{j-5}} w_2^{2^{j-4}} w_3^{2^{j-5}} w_{j-3} + w_0^{2^{j-5}} w_1^{2^{j-4}} w_2^{2^{j-3}} w_{j-3} + w_j.$$

One can check that these satisfy the claims of the lemma.

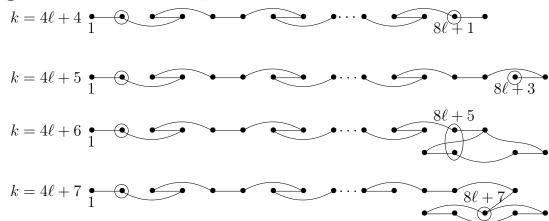
Theorem 2.2. For $k \geq 4$ there are Q_0 -free A_1 -submodules $M_k \subset H^*(K_2)$ with

$$H_*(M_k; Q_1) = \begin{cases} \langle c_{18}, x_4 \rangle & k = 4 \\ \langle x_{k-1}^2, c_{18} x_4 \prod_{t=4}^{k-2} x_t^2 \rangle & k \ge 5. \end{cases}$$

The A_1 -module $\Sigma^{-2^k}M_k$ has the form in Figure 2.3.

Here and throughout $\langle s_1, \ldots, s_k \rangle$ denotes the span (resp. graded span) of elements in a vector space (resp. graded vector space). We depict A_1 -modules with straight segments showing Sq^1 , and curved segments Sq^2 . We circle the Q_1 -homology classes.

Figure 2.3. Modules $\Sigma^{-2^k} M_k$.



For example, if $k = 4\ell + 4$, $\Sigma^{-2^k} M_k$ has a single nonzero class g_i for $1 \le i \le 8\ell + 2$ with

$$\operatorname{Sq}^{2} \operatorname{Sq}^{1} \operatorname{Sq}^{2}(g_{i}) = \operatorname{Sq}^{1} g_{i+4} \neq 0 \text{ if } i \equiv 3 \text{ (4)}, \ i \leq 8\ell - 5,$$

and
$$\operatorname{Sq}^2 \operatorname{Sq}^1(g_1) = \operatorname{Sq}^1(g_3) \neq 0$$
.

Proof of Theorem 2.2. We use the classes x_j , $j \geq 4$, of Lemma 2.1, but find it convenient to write c_{18} as x_3^2 , even though it isn't a perfect square. In the discussion below we treat it as a perfect square. For $k \geq 4$, let \mathbb{M}_k denote the finite A_1 -submodule of H^*K_2 with basis all elements $\prod_{j=3}^k x_j^{e_j}$ satisfying $\sum e_j 2^j = 2^k$. Our desired A_1 -module M_k will be a submodule of \mathbb{M}_k .

We first show that \mathbb{M}_k is Q_0 -free. Every monomial in \mathbb{M}_k which is a perfect square can be written uniquely as $\prod_{s \in S} x_s^2 \cdot \prod_{t \in T} x_t^{2e_t}$ with $e_t > 1$ and S and T disjoint. It determines a Q_0 -free summand

$$\prod_{t \in T} x_t^{2e_t - 2} \cdot \bigotimes_{i \in S \cup T} \langle x_{i+1}, x_i^2 \rangle.$$

Every monomial in \mathbb{M}_k is in a unique one of these summands, as can be seen by writing the monomial as $P \cdot \prod_{u \in U} x_u$ with P a perfect square. This monomial is in the

 Q_0 -free summand determined as above from $P \cdot \prod_{u \in U} x_{u-1}^2$.

We now show, somewhat similarly, that

$$H_*(\mathbb{M}_k; Q_1) = \langle x_{k-1}^2, x_4 \prod_{t=3}^{k-2} x_t^2 \rangle.$$

Let $k \geq 5$, as the case k = 4 is elementary. Every monomial in \mathbb{M}_k which is a perfect square or x_4 times a perfect square can be written uniquely as $\prod_{s \in S} x_s^2 \cdot x_4^{\varepsilon} \cdot \prod_{t \in T} x_t^{2e_t}$ with $e_t \geq 2$, S and T disjoint, and $\varepsilon \in \{0,1\}$. Also, $T \neq \emptyset$ unless the monomial is x_{k-1}^2 or $x_3^2 x_4^3 x_5^2 \cdots x_{k-2}^2$, in order to have $\sum e_j 2^j = 2^k$. This monomial determines a Q_1 -free summand

$$\prod_{s \in S} x_s^2 \cdot x_4^{\varepsilon} \cdot \prod_{t \in T} x_t^{2e_t - 4} \bigotimes_{t \in T} \langle x_t^4, x_{t+2} \rangle.$$

Every monomial in \mathbb{M}_k except x_{k-1}^2 and $x_3^2 x_4^3 x_5^2 \cdots x_{k-2}^2$ is in a unique one of these by writing it as

$$P \cdot x_4^{\varepsilon} \cdot \prod_{\substack{t \in T \\ t > 2}} x_{t+2}$$

with P a perfect square; it is in the Q_0 -free summand determined as above from $P \cdot x_4^{\varepsilon} \prod x_t^4$.

By [13, Proposition 13.13 and p.203], the A_1 -module \mathbb{M}_k has an expression, unique up to isomorphism, as $M_k \oplus F$, with F free and M_k reduced. This M_k is Q_0 -free and has the Q_1 -homology stated in the theorem. To get a sense of why this is true, it is impossible for a Q_0 -free module to have just one Q_1 -homology class. Thus the two Q_1 -homology classes must be in the same summand and what is left must be free over A_1 .

We will determine its precise structure.

The module \mathbb{M}_4 has only the classes $\langle x_4, x_3^2 \rangle$, so this is also M_4 . For $k \geq 5$, \mathbb{M}_k in gradings $\leq 2^k + 4$ has just the classes $\langle x_k, x_{k-1}^2, x_{k-2}^2 x_{k-1}, x_{k-2}^4 \rangle$, in which Sq^1 and Sq^2 act as depicted on the left four dots in each row of Figure 2.3. We will use Yu's Theorem ([4, Theorem 7.1]) to show that M_k must have the form claimed in the theorem. We thank Bob Bruner for suggesting the use of Yu's Theorem.

For $k \geq 5$, let \mathbb{M}_k^* denote the A_1 -module dual to \mathbb{M}_k . Its top class x_k^* is in grading $-2^k - 1$ and bottom class $(x_3^{2^{k-3}})^*$ is in grading $-2^k - 2^{k-3}$. Let $(\mathbb{M}_k^*)^+$ denote an A_1 -module which agrees with \mathbb{M}_k^* in gradings less than -2^k and for $i \geq -2^k$ has

a single nonzero class y_i in grading i, with $\operatorname{Sq}^2\operatorname{Sq}^3y_{4j}=y_{4j+5}=\operatorname{Sq}^1y_{4j+4}$, and $0\neq\operatorname{Sq}^1y_{-2^k}\in\operatorname{im}(\operatorname{Sq}^2)$. This $(\mathbb{M}_k^*)^+$ is Q_0 -free and has a single nonzero Q_1 -homology class, dual to $x_4\prod_{t=3}^{k-2}x_t^2$, in grading $7-2^k-2k$. By [13, Proposition 13.13 and p.203], $(\mathcal{M}_k^*)^+$ is isomorphic to the direct sum of a reduced module R and a free module. Since R is Q_0 -free and reduced with a single nonzero Q_1 -homology class, by Yu's Theorem, R is isomorphic to a shifted version of one of the four modules P_i , $0 \leq i \leq 3$, depicted in [4, Figure 1]. These modules begin with a form dual to one of the four endings of the modules in Figure 2.3, followed by an infinite string of $\operatorname{Sq}^1z_n=\operatorname{Sq}^2\operatorname{Sq}^3z_{n-4}$.

Our module M_k is defined as the dual of R/T, where T is the submodule of R consisting of classes of grading $\geq -2^k$. This M_k will begin the same way as \mathbb{M}_k , as $\Sigma^{2^k}\langle g_1, \operatorname{Sq}^1 g_1, g_3, \operatorname{Sq}^1 g_3 = \operatorname{Sq}^2 \operatorname{Sq}^1 g_1 \rangle$, and will end with one of the four types in Figure 2.3, although a priori it could have a different length. Its top Q_1 -homology class is in grading $2^k + 2k - 7$.

Since A_1 has 8 basis elements, the total number of basis elements in M_k will be congruent mod 8 to the number in \mathbb{M}_k . There is a 1-1 correspondence between a basis for \mathbb{M}_k and the set of partitions of 2^{k-3} into 2-powers. (e_j tells the number of occurrences of 2^{j-3} .) It is proved in [6, Theorem 2] that this number of partitions is $\equiv 2 \mod 8$ if k is even, and is $\equiv 4 \mod 8$ if k is odd.

Let $k = 4\ell + 4$. The first module in Figure 2.3 is the only possibility that satisfies that the top Q_1 -homology class is in grading $2^k + 2k - 7 = 2^k + 8\ell + 1$ and the number of basis elements is $\equiv 2 \mod 8$. The second and fourth types in Figure 2.3 have their top Q_1 -homology class in grading 3 mod 4, while if the third type had its top Q_1 -homology class in $2^k + 8\ell + 1$, its number of basis elements would be 6 mod 8. A similar analysis, utilizing top Q_1 -homology class mod 4 and number of basis elements mod 8, shows the M_k must be as claimed.

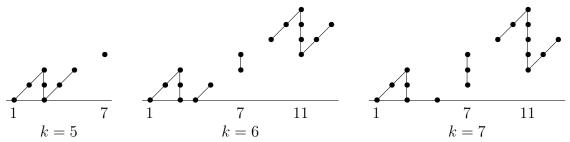
Prior to discovering this proof, we had laboriously found explicit bases for M_k for $k \leq 9$. For example, with *abcd* denoting $x_6^a x_5^b x_4^c c_{18}^d$, the basis for M_7 had x_7 , 2000, 1200, 0400, 1040, 0240, 0080 along the top, as pictured in Figure 2.3, and 1111+0320,

0311 + 1031 + 1102 + 0240, 0231 + 1022 + 0160, 0151 + 1013 + 0222 + 0080, and 0071 + 0142 + 0213 + 1004 along the bottom.

3. Ext charts and tensor products

There is a nice pattern to the charts $\operatorname{Ext}_{A_1}^{s,t}(\Sigma^{-2^k}M_k,\mathbb{Z}_2)$, depicted, as usual, in coordinates (t-s,s). They are similar to familiar charts of $\operatorname{Ext}_{A_1}(H^*P^{2n},\mathbb{Z}_2)$ (e.g., [7]). In fact, there are A_1 -module isomorphisms $\Sigma^{-2^{4\ell+4}}M_{4\ell+4}\approx H^*P^{8\ell+2}$ and $\Sigma^{-2^{4\ell+5}}M_{4\ell+5}\approx H^*P^{8\ell+4}$. For all k, all classes in these charts are v_1^4 -periodic; i.e., $\operatorname{Ext}^{s,t}\to\operatorname{Ext}^{s+4,t+12}$ is bijective for $s\geq 0$. All the charts have the same upper edge, (8i+x,4i+y) for (x,y)=(1,0),(2,1),(3,2), and (7,3). The lower edge drops by 1 for each increase in k, as long as $s\geq 0$. In Figure 3.1 we show the beginning of the charts for $5\leq k\leq 7$. These Ext charts are easily obtained by standard methods from the explicit description of the modules in Figure 2.3. See [5, Appendix A] for a rather detailed discussion of these methods.

Figure 3.1. $\operatorname{Ext}_{A_1}(\Sigma^{-2^k}M_k,\mathbb{Z}_2)$.



Explicitly, $\Sigma^{-2^k} M_k$ has, for $i \geq 0$,

- 0 in 8i + 6, 8,
- \mathbb{Z}_2 in 8i + 1, 2 of filtration 4i + 0, 1,
- \mathbb{Z}_2 in 8i + 4, 5 of filtration 4i k + 6, 7 if $4i k + 6, 7 \ge 0$, else 0,
- $\mathbb{Z}/2^{k-4}$ in 8i+7 with generator of filtration 4i-k+8 if $4i-k+8 \geq 0$, else $\mathbb{Z}/2^{4i+4}$ with generator of filtration 0, and
- $\mathbb{Z}/2^{k-2}$ in 8i+3 with generator of filtration 4i-k+5 if $4i-k+5 \geq 0$, else $\mathbb{Z}/2^{4i+3}$ with generator of filtration 0.

Here, as usual, d dots connected by vertical segments yield a $\mathbb{Z}/2^d$ summand.

The A_1 -modules M_k in Section 2 correspond to the E_1 -modules M_k in the E_1 -splitting of $H^*(K_2)$ in [9, (2.16)]. The correspondence is that, as an E_1 -module, the A_1 -module M_k is isomorphic to the E_1 -module M_k plus perhaps a single copy of E_1 . Moreover, the Q_1 -homology classes agree, with u_j replaced by x_j . Also involved in the E_1 splitting in [9, (2.16)] were summands $M_k \cdot P$, where P is a product of finitely many distinct classes u_j^2 with $j \geq k$. Although u_j^2 is acted on trivially by E_1 , $\operatorname{Sq}^2(u_j^2) \neq 0$, so the corresponding A_1 summands must do more than just multiply by the product of the classes u_j^2 . To maintain some consistency with [9], in Definition 3.3 we will define $M_k z_j$ to be a reduced Q_0 -free A_1 -module with

$$H_*(M_k z_j; Q_1) = H_*(M_k; Q_1) \otimes \langle u_{j+1}^2 \rangle,$$
 (3.2)

and similarly for products with more than one z_i .

For $j \geq 3$, let $G_j = \langle u_{j+2}, u_{j+1}^2, u_j^4 \rangle$ with $\operatorname{Sq}^2 \operatorname{Sq}^1 u_{j+2} = u_j^4$. If M is a Q_0 -free A_1 -module, then $M \otimes G_j$ is Q_0 -free and

$$H_*(M \otimes G_j; Q_1) = H_*(M; Q_1) \otimes \langle u_{j+1}^2 \rangle.$$

Definition 3.3. We define $M_k z_j$ to be the reduced summand of the A_1 -module $M_k \otimes G_j$.

Let P_i be the A_1 -module for which there is a short exact sequence (SES)

$$0 \to G_j \to P_j \to \Sigma^{2^{j+2}-1} \mathbb{Z}_2 \to 0$$

with $u_{j+2} \in \operatorname{im}(\operatorname{Sq}^2)$. Then $H_*(P_j; Q_1) = 0$, so $M_k \otimes P_j$ is a free A_1 -module by Wall's Theorem ([15, Theorem 2]), using also a Künneth Theorem for Q_i -homology. The short exact sequence of A_1 -modules

$$0 \to M_k \otimes G_j \to M_k \otimes P_j \to \Sigma^{2^{j+2}-1} M_k \to 0 \tag{3.4}$$

has a long exact Ext sequence which implies that

$$\operatorname{Ext}_{A_1}^{s,t}(M_k \otimes G_j, \mathbb{Z}_2) \to \operatorname{Ext}_{A_1}^{s+1,t+1}(\Sigma^{2^{j+2}}M_k, \mathbb{Z}_2)$$

is bijective for $s \geq 1$ and surjective for s = 0. We deduce that, for the reduced submodule, $\operatorname{Ext}_{A_1}(M_k z_j, \mathbb{Z}_2)$ is formed from $\operatorname{Ext}_{A_1}(\Sigma^{2^{j+2}} M_k, \mathbb{Z}_2)$ by shifting filtrations down by 1, or, equivalently, by killing classes of filtration 0. Elements in the kernel of (3.4) when s = 0 correspond to free summands, which do not appear in the reduced submodule. Iterating, we have

Proposition 3.5. For distinct $j_i \geq k-1$, $\operatorname{Ext}_{A_1}(M_k z_{j_1} \cdots z_{j_r}, \mathbb{Z}_2)$ is formed from $\operatorname{Ext}_{A_1}(\Sigma^{2^{j_1+2}+\cdots+2^{j_r+2}}M_k, \mathbb{Z}_2)$ by reducing filtrations by r.

The E_1 -splitting of H^*K_2 in [9, Proposition 2.11] also involved products of modules with a class called u_2^2 there, but would be u_0^2 in our notation. Again, since $\operatorname{Sq}^2(u_0^2) \neq 0$, we must expand to an A_1 -submodule of $H^*(K_2)$, namely

$$U = \langle u_0, u_1, u_0^2, u_2, u_1^2 \rangle. \tag{3.6}$$

The A_1 -structure of this is $\Sigma^2 \langle 1, \operatorname{Sq}^1, \operatorname{Sq}^2, \operatorname{Sq}^2 \operatorname{Sq}^1, \operatorname{Sq}^3 \operatorname{Sq}^1 \rangle$, sometimes called the Joker ([3]). Note that $H_*(U; Q_1) = \langle u_0^2 \rangle$.

Proposition 3.7. If M is a Q_0 -free A_1 -module and U is as above, then for s > 0

$$\operatorname{Ext}_{A_1}^{s,t}(U\otimes M,\mathbb{Z}_2)\approx \operatorname{Ext}_{A_1}^{s+2,t+2}(M,\mathbb{Z}_2).$$

Proof. There is a SES of A_1 -modules

$$0 \to G \to F \to U \to 0$$
,

where F is a free A_1 -module on a generator of degree 2, and $G = \langle \iota_5, \operatorname{Sq}^2 \iota_5, \operatorname{Sq}^3 \iota_5 \rangle$. After tensoring with M, the exact Ext sequence yields an isomorphism for s > 0

$$\operatorname{Ext}_{A_1}^{s,t}(G\otimes M,\mathbb{Z}_2)\to \operatorname{Ext}_{A_1}^{s+1,t}(U\otimes M,\mathbb{Z}_2).$$

Let $P = \Sigma^5 A_1/(\mathrm{Sq}^1)$. There is a SES of A_1 -modules

$$0 \to \Sigma^{10} \mathbb{Z}_2 \to P \to G \to 0.$$

Then $P \otimes M$ is free by Wall's theorem, since $H_*(P; Q_1) = 0$ and $H_*(M; Q_0) = 0$. So tensoring this sequence with M yields isomorphisms for s > 0

$$\operatorname{Ext}_{A_1}^{s,t}(\Sigma^{10}M,\mathbb{Z}_2) \to \operatorname{Ext}_{A_1}^{s+1,t}(G \otimes M,\mathbb{Z}_2).$$

Combining the two yields

$$\operatorname{Ext}_{A_1}^{s,t}(\Sigma^{10}M,\mathbb{Z}_2) \approx \operatorname{Ext}_{A_1}^{s+2,t}(U \otimes M,\mathbb{Z}_2).$$

The Q_0 -free module $U \otimes M$ has v_1^4 -periodicity in Ext

$$\operatorname{Ext}_{A_1}^{s,t}(U\otimes M,\mathbb{Z}_2)\approx \operatorname{Ext}_{A_1}^{s+4,t+12}(U\otimes M,\mathbb{Z}_2)$$

for s>0 by [1, Theorem 5.1]. This is isomorphic to $\operatorname{Ext}_{A_1}^{s+2,t+12}(\Sigma^{10}M,\mathbb{Z}_2)\approx \operatorname{Ext}_{A_1}^{s+2,t+2}(M,\mathbb{Z}_2)$.

We let UM_k and $UM_kz_{j_1}\cdots z_{j_r}$ denote reduced modules after tensoring with U. By Proposition 3.7, their Ext charts are obtained from those of M_k or $M_kz_{j_1}\cdots z_{j_r}$ by decreasing filtrations by 2.

The summand S in [9, Proposition 2.11] is the reduced summand of tensor products of the summands of the type that we have been considering here with an E_1 -module N with Q_1 -homology class x_9 . We have an analogous construction in the A_1 context.

Using the classes w_j in the proof of Theorem 2.1, let N be the A_1 -module

$$N = \langle w_2, w_0 w_2, w_1 w_2, w_3, w_2^2 \rangle.$$

This satisfies $\operatorname{Sq}^2 \operatorname{Sq}^3(w_2) = \operatorname{Sq}^1(w_3) = w_2^2$ with $|w_2| = 5$. It has the property that if M is a Q_0 -free A_1 -module, then

$$\operatorname{Ext}_{A_1}(N \otimes M, \mathbb{Z}_2) \approx \operatorname{Ext}_{A_1}(\Sigma^9 M, \mathbb{Z}_2)$$
 (3.8)

in positive filtration as is easily seen from the Ext sequence obtained from the SES

$$0 \to N' \otimes M \to N \otimes M \to \Sigma^9 M \to 0$$
,

where N' is the A_1 -submodule of N generated by w_2 , since $N/N' = \Sigma^9 \mathbb{Z}_2$ and $N' \otimes M$ is a free A_1 -module by Wall's theorem. For any of our modules $U^{\varepsilon}M_k z_J$, we let $NU^{\varepsilon}M_k z_J$ denote a reduced submodule of $N \otimes U^{\varepsilon}M_k z_J$. It is isomorphic to $\Sigma^9 U^{\varepsilon}M_k z_J$.

The analogue of [9, Proposition 2.11] is given in Theorem 3.9. We let $y_1^2 = u_0^4$; it is annihilated by Sq^1 and Sq^2 .

Theorem 3.9. There is an A_1 -module splitting

$$H^*K_2 = P[y_1^2] \otimes (\mathbb{Z}_2 \oplus U \oplus N \oplus NU) \otimes (\mathbb{Z}_2 \oplus \bigoplus_{k \geq 4} M_k \Lambda_{k-1}) \oplus F,$$

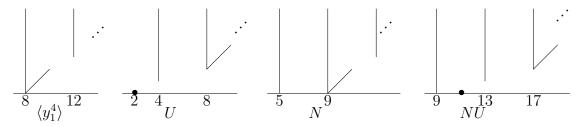
where F is free and $\Lambda_{k-1} = E[z_j : j \ge k-1]$ is an exterior algebra. The interpretation of $M_k z_{j_1} \cdots z_{j_r}$ is as in Definition 3.3, and $U \otimes M_k \Lambda_{k-1}$, $N \otimes M_k \Lambda_{k-1}$, and $NU \otimes M_k \Lambda_{k-1}$ mean the reduced summand. For reduced cohmology, one can remove the \mathbb{Z}_2 summand from the splitting.

Theorem 3.9 is obtained from [9, Proposition 2.11] by modifying the E_1 summands (where necessary) to make them A_1 modules that still retain the same Q_1 and Q_0 homologies.

Proof. The correspondence with [9, Proposition 2.11] is $R \leftrightarrow \bigoplus M_k \Lambda_{k-1}$, S = NR, $\langle u_2^2 \rangle \leftrightarrow U$, and $P[u_2^2] \leftrightarrow P[y_1^2] \otimes (\mathbb{Z}_2 \oplus U)$. The Q_0 - and Q_1 -homology classes correspond and fill out the Q_i -homology of H^*K_2 . The quotient of H^*K_2 by this large submodule is A_1 -free by Wall's theorem.

The E_2 page is obtained by applying $\operatorname{Ext}_{A_1}(-,\mathbb{Z}_2)$ to the summands of Theorem 3.9. Earlier in this section, we have done that for the summands involving $M_k\Lambda_{k-1}$. The others are small modules whose Ext is easily seen to be as in Figure 3.10.

Figure 3.10. $\text{Ext}_{A_1}(-, \mathbb{Z}_2)$.



Here NU means the reduced summand of the A_1 -module $N \otimes U$.

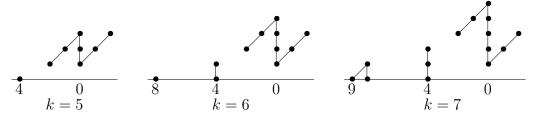
4. ko-cohomology and duality

Our main focus is on $ko_*(K_2)$, in part because of its relationship with Spin cobordism. In this short section, we explain briefly how we compute $ko^*(K_2)$ and the duality between it and $ko_*(K_2)$.

The Adams spectral sequence for $ko^{-*}(K_2)$ is obtained by applying $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, -)$ to the same A_1 -modules used for $ko_*(K_2)$, with corresponding differentials. As we did for ku in [9], we display the ko-cohomology groups increasing from right to left.

In Figure 4.1, we show the beginning of the charts for $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, M_k)$ for k = 5, 6, 7. This should be enough to suggest the entire pattern. These charts are the analogue of those in Figure 3.1. They can be easily obtained from Figure 2.3.

Figure 4.1. $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, \Sigma^{-2^k}M_k)$



The analogue of Propositions 3.5 and 3.7 is as follows. It is proved using the exact sequences derived in Section 3.

Proposition 4.2. (a). For distinct $j_i \geq k$, $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, M_k z_{j_1} \cdots z_{j_r})$ is formed from $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, \Sigma^{2^{j_1+2}+\cdots+2^{j_r+2}}M_k)$ by increasing filtrations by r and extending to the left by v_1^4 -periodicity.

(b). If M is a Q_0 -free A_1 -module, then $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, U \otimes M)$ is formed from $\operatorname{Ext}_{A_1}(\mathbb{Z}_2, M)$ by increasing fitrations by 2 and extending to the left using v_1^4 -periodicity.

Analogously to [9, Theorem 1.16], we have the following remarkable duality result, where the group on the right hand side is the Pontryagin dual.

Theorem 4.3. There is an isomorphism of ko_* -modules $ko_*(K_2) \approx (ko^{*+6}K_2)^{\vee}$.

This is deduced from [12, Corollary 9.3] similarly to the ku proof in [11]. The subtlety of the result is suggested by the observation that there is nothing like it for the E_2 pages. We illustrate it in [8], in which differentials and extensions are determined.

References

- [1] J.F.Adams, A periodicity theorem in homological algebra, Proc Camb Phil Soc 62 (1966) 365–377.
- [2] D.W.Anderson, E.H.Brown, Jr., and F.P.Peterson, *The structure of the Spin cobordism ring*, Annals of Math **86** (1967) 271–298.
- [3] A.Baker, *Iterated doubles of the Joker and their realisability*, Homology, Homotopy, and Applications **20** (2018) 341–360.
- [4] R.R.Bruner, *Idempotents, localizations, and Picard groups of A*(1)-modules, Contemp Math AMS **617** (2014) 81–108.
- [5] R.R.Bruner and J.P.C.Greenlees, *Connective real K-theory of finite groups*, Math Surverys and Monographs, Amer Math Soc **169** (2010).
- [6] R.F.Churchhouse, Congruence properties of the binary partition function, Math Proc Camb Phil Soc 66 (1968) 365–370.

- [7] D.M.Davis, Generalized homology and the generalized vector field problem, Quarterly Jour Math, Oxford 25 (1974) 169–193.
- [8] _____, The connective KO theory of the Eilenberg MacLane space $K(\mathbb{Z}_2,2)$, https://arxiv.org/abs/2502.14982.
- [9] D.M.Davis and W.S.Wilson, The connective K-theory of the Eilenberg-MacLane space $K(\mathbb{Z}_2, 2)$, Glasgow Math Jour **66** (2024) 188-220.
- [10] ______, Stiefel-Whitney classes and nonimmersions of orientable and Spin manifolds, Topology and Appl 307 (2022) paper 107780, 14 pp.
- [11] D.M.Davis and J.Greenlees, Gorenstein duality and universal coefficient theorems, Jour Pure Appl Alg 227 (2023) paper 107265, 12 pp.
- [12] M.Mahowald and C.Rezk, Brown-Comenetz duality and the Adams spectral sequence, Amer Jour Math 121 (1999) 1153–1177.
- [13] H.R.Margolis, Spectra and the Steenrod algebra, North-Holland Math Library 29 (1983).
- [14] J.P.Serre, Cohomologie modulo 2 des complexes d'Eilenberg MacLane, Comm Math Helv 27 (1953) 198–231.
- [15] C.T.C.Wall, A characterization of simple modules over the Steenrod algebra mod 2, Topology 1 (1962) 249–254.
- [16] W.S.Wilson, A new relation on the Stiefel-Whitney classes of Spin manifolds, Ill Jour Math 17 (1973) 115–127.

DEPARTMENT OF MATHEMATICS, LEHIGH UNIVERSITY, BETHLEHEM, PA 18015, USA *Email address*: dmd1@lehigh.edu

DEPARTMENT OF MATHEMATICS, JOHNS HOPKINS UNIVERSITY, BALTIMORE, MD 01220, USA $Email\ address$: wswilsonmath@gmail.com