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Abstract. We determine the BP∗-module structure, mod higher
filtration, of the main part of the BP -homology of elementary 2-
groups. The action is related to symmetric polynomials and to
Dickson invariants.

1. Introduction and results

Let BP∗(−) denote Brown-Peterson homology localized at 2. Its coefficient groups

BP∗ are a polynomial algebra over Z(2) on classes vj, j ≥ 1, of grading 2(2j − 1).

Let v0 = 2. As was done in [6] and [8], we consider
⊗k

BP∗
BP∗(BZ/2), which is a

BP∗-direct summand of BP∗(B(Z/2)k). We determine the BP∗-module structure of⊗k
BP∗

BP∗(BZ/2) modulo terms which are more highly divisible by vj’s. Information

about the action of v0 was applied to problems in topology in [2] and [9]. In the

forthcoming paper [3], we apply it to another problem, higher topological complexity

of real projective spaces. In Theorem 1.7 of the current paper, we obtain complete

explicit information about the v0-action (mod higher filtration). In Theorem 1.1,

we determine the action of all vj’s as quotients of symmetric polynomials, and in

Theorem 1.3 and Corollary 1.6 we give explicit formulas as symmetric polynomials

in certain families of cases. In Section 4, we discuss relationships of our symmetric

polynomials with the Dickson invariants.

Now we explain this more explicitly. There are BP∗-generators zi ∈ BP2i−1(BZ/2)

for i ≥ 1, and
⊗k

BP∗
BP∗(BZ/2) is spanned as a BP∗-module by classes zI = zi1 ⊗

· · · ⊗ zik for I = (i1, . . . , ik) with ij ≥ 1. Let Zk denote the graded set consisting of

all such classes zI . It was proved in [6, Thm 3.2] that
⊗k

BP∗
BP∗(BZ/2) admits a
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decreasing filtration by BP∗-submodules Fs such that, for s ≥ 0, the quotient Fs/Fs+1

is an F2-vector space with basis all classes (vtkk v
tk+1

k+1 · · · )zI with zI ∈ Zk, ti ≥ 0, and∑
ti = s.

Define an action of F2[x1, . . . , xk] on the F2-vector space with basis Zk by

xe11 · · · x
ek
k · zI = zI−E,

where I−E = (i1−e1, . . . , ik−ek); here, by convention, zJ = 0 if any entry of J is ≤ 0.

For positive integers t1, . . . , tr, let mt1,...,tr denote the monomial symmetric polynomial

in x1, . . . , xk, the smallest symmetric polynomial containing the monomial xt11 · · ·xtrr .

Over F2, if r = k and the ti are distinct, it equals the Vandermonde determinant∣∣∣∣∣∣∣
xt11 · · · xtk1

...
xt1k · · · xtkk

∣∣∣∣∣∣∣ .
Our first theorem determines the action of vj, 0 ≤ j ≤ k − 1, from Fs/Fs+1 to

Fs+1/Fs+2, as a ratio of monomial symmetric polynomials in x1, . . . , xk. Note that

k is fixed throughout, and we are always dealing with polynomials over F2. This

theorem will be proved in Section 2.

Theorem 1.1. If Fs is as above, and 0 ≤ j ≤ k − 1, the action of vj from Fs/Fs+1

to Fs+1/Fs+2 is multiplication by
∑
`≥k

v`p`,j, where

(1.2) p`,j =
m

20,...,2̂j ,...,2k−1,2`

m20,...,2k−1

.

(The 2̂j notation denotes omission.) Moreover, p`,j is a symmetric polynomial, mod

2.

It is not a priori clear that the quotient on the right hand side of (1.2) should be a

polynomial mod 2. In fact, if the 2` there is a replaced by a non-2-power and k ≥ 3,

then the ratio is not a polynomial mod 2.

We have obtained explicit polynomial formulas for p`,j in several cases. These will

be proved in Section 3. The first is the complete solution when k = 3.
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Theorem 1.3. If k = 3 and ` ≥ 3, then

p`,0 =
∑

i≥j≥k>0
i+j+k=2`−1

(
j+k
k

)
mi,j,k

p`,1 =
∑
i≥j>0

i+j=2`−2

(1 + j)mi,j,0 +
∑

i≥j≥k>0
i+j+k=2`−2

(1 +
(
j+k
k−1

)
+
(
j+k+1
k+1

)
)mi,j,k

p`,2 =
∑

i≥j≥k≥0
i+j+k=2`−4

(1 +
(
j+k+2
k+1

)
)mi,j,k.

Incorporating Theorem 1.3 into Theorem 1.1 gives the v0-, v1-, and v2-action, mod

higher filtration, in BP∗(BZ/2)⊗BP∗ BP∗(BZ/2)⊗BP∗ BP∗(BZ/2). For example, v0

acts as

(1.4) v3m4,2,1+v4(m12,2,1+m10,4,1+m8,6,1+m9,4,2+m8,5,2+m8,4,3)+· · · ,

where the omitted terms involve v` for ` ≥ 5.

We have also obtained the explicit polynomial formula for (1.2) for any k if ` = k.

Theorem 1.5. If ` = k, then p`,j = pk,j equals the sum of all monomials of degree

2k−2j in x1, . . . , xk in which all nonzero exponents are 2-powers. Here 0 ≤ j ≤ k−1.

Theorem 1.5 gives the formula for the vk-component of the BP∗-module structure,

modulo higher filtration, of
⊗k

BP∗
BP∗(BZ/2). It is complete information, mod higher

filtration, for BP 〈k〉 homology. Johnson-Wilson homology BP 〈k〉, introduced in [7],

has coefficients Z(2)[v1, . . . , vk]. By [6, Thm 3.2] and [8, Thm 1.1], as an abelian group⊗k
BP 〈k〉∗ BP 〈k〉∗(BZ/2) has basis {vjkzI : j ≥ 0, zI ∈ Zk}.

Corollary 1.6. In
⊗k

BP 〈k〉∗ BP 〈k〉∗(BZ/2), for 0 ≤ j ≤ k − 1,

vj · zI ≡ vk
∑
E

zI−E

mod higher filtration, where E = (e1, . . . , ek) ranges over all k-tuples such that all

nonzero ej are 2-powers, and
∑
ej = 2k − 2j.

This generalizes [8, Cor 2.7], which says roughly that v0 acts as vkm2k−1,2k−2,...,1.

Finally, our most elaborate, and probably most useful, explicit calculation is given

in the following result, which gives the complete formula for the v0-action, mod higher

filtration. This is useful since v0 corresponds to multiplication by 2.
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Theorem 1.7. In
⊗k

BP∗
BP∗(BZ/2), v0 acts as

∑
`≥k

v` · p`,0 mod higher filtration,

where

p`,0 =
∑
f

`−1∏
i=0

x2
i

f(i),

where f ranges over all surjective functions {0, . . . , ` − 1} → {1, . . . , k}. Equiva-

lently, p`,0 =
∑
m‖S1‖,...,‖Sk‖, where the sum ranges over all ‖S1‖ > · · · > ‖Sk‖ with

S1, . . . , Sk a partition of {1, 2, 4, . . . , 2`−1} into k nonempty subsets. Here ‖S‖ is the

sum of the elements of S.

See (1.4) for an explicit example of p3,0 and p4,0 when k = 3. For example, the

term m10,4,1 in p4,0 corresponds to S1 = {8, 2}, S2 = {4}, and S3 = {1}, and this

corresponds to the sum of all surjective functions f : {0, 1, 2, 3} → {1, 2, 3} for which

f(3) = f(1).

We thank a referee for many useful suggestions. See especially Section 4.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let Q =
⊗k

BP∗
BP∗(BZ/2). Let zi and zI be as in the second

paragraph of the paper. By [6], Q is spanned by classes (vt00 v
t1
1 · · · )zI with only

relations
∑

j≥0 ajzi−j in any factor, where aj ∈ BP2j are coefficients in the [2]-series.

By [11, 3.17], these satisfy, mod (v0, v1, . . .)
2,

aj ≡

{
vi j = 2i − 1, i ≥ 0

0 j + 1 not a 2-power.

Let Fs denote the ideal (v0, v1, . . .)
sQ. Then Fs/Fs+1 is spanned by all (vt00 v

t1
1 · · · )zI

with
∑
tj = s, with relations

(2.1)
∑
j≥0

vjzi−(2j−1) = 0

in each factor. As proved in [6, Thm 3.2] (see also [8, 2.3]), this leads to an F2-basis

for Fs/Fs+1 consisting of all (vtkk v
tk+1

k+1 · · · )zI with
∑
tj = s.

We claim that if zI ∈ F0 and 0 ≤ j ≤ k − 1, then we must have

(2.2) vjzI =
∑
`≥k

v`p`,jzI ,
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where p`,j is a symmetric polynomial in variables x1, . . . , xk of degree 2` − 2j, acting

on zI by decreasing subscripts as described in the third paragraph of the paper. That

the action is symmetric and uniform is due to the uniform nature of the relations

(2.1). That it never increases subscripts of zi is a consequence of naturality: there are

inclusions
⊗

BP∗
BP∗(RP

2ni)→
⊗k

BP∗
BP∗(BZ/2) in which the only zI in the image

are those with it ≤ nt for all t, and the vj-actions are compatible.

Note that (2.1) can be interpreted as saying that, for any i ∈ {1, . . . , k},

(2.3)
∑
j≥0

vjx
2j−1
i = 0.

Since the v`-components are independent if ` ≥ k, and (2.2) says that for j < k ≤ `

the v`-component of the vj-action is given by the (unknown) polynomial p`,j, we

obtain the equation
k−1∑
j=0

p`,jx
2j−1
i = x2

`−1
i

for any i ∈ {1, . . . , k} and ` ≥ k. After multiplying the ith equation by xi, we obtain

the system

(2.4)

x1 x21 x41 · · · x2
k−1

1
...

xk x2k x4k · · · x2
k−1

k


 p`,0

...
p`,k−1

 =

x2
`

1
...

x2
`

k

 ,
whose solution as (1.2) is given by Cramer’s Rule. Our argument shows that the

components p`,j of the solution are polynomials, mod 2.

The ratios on the RHS of (1.2) can also be shown to be polynomials by the follow-

ing algebraic argument, provided by the referee. Let V denote the F2-vector space

with basis x1, . . . , xk. The denominator m1,2,...,2k−1 in (1.2) equals the product of the

nonzero elements v of V . We show that a Vandermonde determinant D in x1, . . . , xk

with distinct 2-power exponents 2tj is divisible by each v in the unique factorization

domain F2[x1, . . . , xk], and hence is divisible by their product.

By induction on k and expansion along rows, the determinant is divisible by all

elements except perhaps
k∑

i=1

xi. Let Mk,j denote the minor associated with x2
tj

k .
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Replacing the last row by the sum of the others shows that∑
j

Mk,j

k−1∑
i=1

x2
tj

i = 0

since it is the determinant of a matrix with dependent rows. Thus

D =
∑
j

Mk,jx
2tj
k =

∑
j

Mk,j

k∑
i=1

x2
tj

i =
∑
j

Mk,j

( k∑
i=1

xi

)2tj

is divisible by
k∑

i=1

xi.

The vj-action formula on F0 applies also on Fs by the nature of the module.

3. Proofs of explicit formulas for certain p`,j

In this section, we prove Theorems 1.3, 1.5, and 1.7.

Proof of Theorem 1.3. Let hd(x1, . . . , xr) denote the complete homogeneous polyno-

mial of degree d. With k = 3, after a few row operations, (2.4) reduces to1 x1 x31
0 1 h2(x1, x2)
0 0 x1 + x2 + x3

p`,0p`,1
p`,2

 =

 x2
`−1

1

h2`−2(x1, x2)
h2`−3(x1, x2, x3)

 .
Using Pascal’s formula, one easily verifies, mod 2,

hn+1(x1, x2, x3) ≡ (x1 + x2 + x3)
∑
k,j

((
n+2−k
j+1

)
− 1
)
xn−j−k1 xj2x

k
3.

Since
(
2`−2−k
j+1

)
≡
(
j+k+2
j+1

)
, the result for p`,2 follows.

Now we have

p`,1 = h2`−2(x1, x2)− h2(x1, x2)p`,2
=

∑
xi1x

2`−2−i
2 + (x21 + x1x2 + x22)

∑
i≥j≥k≥0

i+j+k=2`−4

(1 +
(
j+k+2
k+1

)
)mi,j,k.

If k > 0, the coefficient of mi,j,k in this is

(1 +
(
j+k+2
k+1

)
) + (1 +

(
j+k+1
k+1

)
) + (1 +

(
j+k
k+1

)
),
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which equals the claimed value. If k = 0 and j > 0, there is an extra 1 from the∑
xi1x

2`−2−i
2 , and we obtain

(
j+2
1

)
+
(
j+1
1

)
+
(
j
1

)
≡ 1 + j, as desired. The coefficient of

m2`−4,0,0 is easily seen to be 0.

Finally, we obtain p`,0 from x2
`−1

1 + x1p`,1 + x31p`,2. The coefficient of mi,j,0 in

this is (1 + j) + (1 +
(
j+2
1

)
) = 0, as desired. If k > 0, the coefficient of mi,j,k is

(1 +
(
j+k
k−1

)
+
(
j+k+1
k+1

)
) + (1 +

(
j+k+2
k+1

)
) ≡

(
j+k
k

)
, as desired.

Proof of Theorem 1.5. It suffices to show that

(3.1)
k∑

i=1

x2
i−1

1 g2k−2i−1 = x2
k

1 ,

where gm is the sum of all monomials in x1, . . . , xk of degree m with all nonzero

exponents 2-powers. (Other rows are handled equivalently.)

The term x2
k

1 is obtained once, when i = k. The only monomials obtained in the

LHS of (3.1) have their xi-exponent a 2-power for i > 1, while their x1-exponent

may be a 2-power or the sum of two distinct 2-powers. A term of the first type,

x2
i

1 x
2t2
2 · · ·x2

tk

k with
∑

2ti > 0, can be obtained from either the ith term in (3.1) or

the (i+1)st. So its coefficient is 0 mod 2. A term of the second type, x2
a+2b

1 xt22 · · ·x
tk
k ,

can also be obtained in two ways, either from i = a+ 1 or i = b+ 1.

Theorem 1.7 is an immediate consequence of the following proposition, which shows

that, in F2[x1, . . . , xk],

m21,...,2k−1,2` = m20,...,2k−1 ·
∑

m‖S1‖,...,‖Sk‖,

with Si as in Theorem 1.7 or Proposition 3.2.

Proposition 3.2. For ` ≥ k, the only k-tuples (n1, . . . , nk) that can be decom-

posed in an odd number of ways as ni = si + ti with (t1, . . . , tk) a permutation of

(1, 2, 4, . . . , 2k−1) and si = ‖Si‖, where S1, . . . , Sk is a partition of {1, 2, 4, . . . , 2`−1}
into k nonempty subsets, are the permutations of (2, 4, 8, . . . , 2k−1, 2`).

Proof. We will show that all

(3.3)

(
S1 · · · Sk

t1 · · · tk

)
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as in the proposition can be grouped into pairs with equal column sums (‖S1‖ +

t1, . . . , ‖Sk‖+ tk) except for permutations (by column) of

(3.4)

(
20 21 · · · 2k−2 {2k−1, . . . , 2`−1}
20 21 · · · 2k−2 2k−1

)
.

It is easy to see that (3.4) is the only matrix (3.3) with its column sum.

Our proof uses the following lemma, whose proof appears at the end of this section.

Lemma 3.5. If S is a finite set and f : S → S is a function, there exists T ⊆ S such

that f |T is a cyclic permutation of T . If all such T have |T | = 1, and f 6= 1S, then

some such T has |f−1(T )| > 1.

LetM be a matrix (3.3), and define f : {20, . . . , 2k−1} → {20, . . . , 2k−1} by f(x) = ti

if x ∈ Si.

Case 1: f is bijective and not the identity. We pair M with the matrix obtained

by interchanging x and f(x) in all columns. Note that this preserves column sums

and is reversible, in the sense that the new matrix is also of Case 1 type, and would

lead to M . For example,(
20 {21, 23} 22

21 20 22

)
is paired with

(
21 {20, 23} 22

20 21 22

)
.

Case 2: Not Case 1, and there exists T ⊆ {20, . . . , 2k−1} such that 2 ≤ |T | < k

and f |T is a cyclic permutation. Choose such T with maximal number of elements

and, of these, the smallest sum of elements. We pair M with the matrix obtained by

interchanging x and f(x) for all x ∈ T . Note that this preserves column sums and is

reversible.

Case 3: Not Case 1 or 2, and there exists t < k − 1 such that f(2t) = 2t and

|f−1(2t)| > 1. Choose the smallest such t. Then(
· · · {2t, D} · · · E · · ·
· · · 2t · · · 2t+1 · · ·

)
is paired with

(
· · · D · · · {2t, E} · · ·
· · · 2t+1 · · · 2t · · ·

)
.

Here D and E represent nonempty collections of 2-powers. Note that it is possible

here (if 2t+1 ∈ E or D) that one of the functions f here could be the identity. Indeed,

if f equals the identity and some 2t with t < k − 1 is accompanied in the top row, it

will fall into this case.

Case 4: Not Cases 1, 2, or 3. By Lemma 3.5, f(2k−1) = 2k−1 and |f−1(2k−1)| > 1.

Let 2e be the smallest 2-power ≥ 2k which does not accompany 2k−1; i.e., they are



BP -HOMOLOGY OF ELEMENTARY 2-GROUPS 9

not both in the same Si. Such an e must exist since the Si containing 2k−1 contains

another number less than 2k−1 and all Si are nonempty. There is a sequence 2t1 , . . . , 2tr

such that 2t1 lies below 2e in M , f(2tj) = 2tj+1 for 1 ≤ j < r, and 2tr accompanies

2k−1. This sequence of 2tj ’s must eventually accompany 2k−1 because otherwise it

would cycle, and be in Case 2. The matrix M is paired with one in which all the 2ti ’s

are moved up or down within their column, while the 2j’s with k − 1 ≤ j ≤ e are

interchanged between the columns containing the 2e and the 2k−1, with other entries

remaining fixed. We illustrate with a case r = 2, e = k + 2.(
2k+2 · · · 2t1 · · · {2t2 , 2k−1, 2k, 2k+1}
2t1 · · · 2t2 · · · 2k−1

)
↔
(
{2t1 , 2k−1, 2k, 2k+1} · · · 2t2 · · · 2k+2

2k−1 · · · 2t1 · · · 2t2

)
.

Proof of Lemma 3.5. Assume that f has no such T . Let m = max{|f−1(s)| : s ∈ S}.
For ` ≥ m, let P (`) denote the following statement: there exist distinct s1, . . . , s`+1

such that

f(sj) =

{
sm+1 1 ≤ j ≤ m

sj+1 m+ 1 ≤ j ≤ `.

The statement P (m) is true since, letting f−1(sm+1) = {s1, . . . , sm}, if f(sm+1) ∈
{s1, . . . , sm}, then T = (f(sm+1), sm+1) works (i.e., contradicts the assumption of no

T of the claimed type.)

Assume P (`) is true. If f(s`+1) ∈ {s1, . . . , sm}, then T = (f(s`+1), sm+1, . . . , s`+1)

works. If f(s`+1) = sj for m+1 ≤ j ≤ `+1, then T = (sj, . . . , s`+1) works. Therefore

we can choose s`+2 = f(s`+1), and P (` + 1) is true. Therefore P (|S|) is true by

Induction, yielding |S|+ 1 elements in S, a contradiction.

The second part of the lemma is proved by induction on |S|. It is true for |S| = 2.

Assume it is true for |S| − 1. If f−1(s) = {s}, then f : S − {s} → S − {s} has some

t with f(t) = t and |f−1({t})| > 1.

4. Relations with Dickson invariants

In this section, we discuss the relationship between our polynomials p`,j and the

Dickson invariants. Most of the results in this section were suggested by a referee.
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Let V be an F2-vector space with basis x1, . . . , xk, and S(V ) its symmetric algebra.

The general linear group GL(V ) acts on S(V ), and the ring of invariant elements

is called the 2-primary Dickson algebra Dk. Dickson showed in [4] that Dk is a

polynomial algebra on classes cj of grading 2k − 2j for 0 ≤ j ≤ k − 1. We suppress

the usual k from the subscript, as we did with our p’s, since it is fixed throughout

this paper.

If M is a Vandermonde determinant in x1, . . . , xk with distinct 2-power exponents,

then M is invariant under the action of GL(V ). This is easily proved using linearity

of determinants and that (
∑
αixi)

2t =
∑
αix

2t

i . Since our polynomials p`,j in (1.2)

are ratios of Vandermonde determinants with distinct 2-power exponents, they are

elements of Dk, and one might seek to express them in terms of the generators cj.

Our first result is that our polynomials pk,j (i.e., those with ` = k) are exactly the

generators cj.

Proposition 4.1. For 0 ≤ j ≤ k − 1, pk,j = cj.

Proof. By [10, Prop 1.3a], cj =
m

20,...,2̂j ,...,2k−1,2k

m20,...,2k−1

, which by (1.2) equals pk,j.

The following corollary is now immediate from Theorem 1.5.

Corollary 4.2. The Dickson invariant usually called ck,j over F2 is the sum of all

monomials of degree 2k−2j in x1, . . . , xk in which all nonzero exponents are 2-powers.

This result was certainly known to some, but we could not find it explicitly stated in

the literature. One place that essentially says it is [1, Prop 3.6(c)].

Some of our elements p`,j are related to one another in the following way.

Proposition 4.3. For ` ≥ k + 1, we have p`,0 = c0p
2
`−1,k−1. In particular, pk+1,0 =

c0c
2
k−1.

Proof. The denominator in (1.2) equals c0, so we have

c0p`,0 = m21,...,2k−1,2` = m2
20,...,2k−2,2`−1 = c20p

2
`−1,k−1.

The second part follows from Proposition 4.1.
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There is an action of the mod-2 Steenrod algebra on S(V ) and on Dk, and the

following complete formula was obtained in [5].

Proposition 4.4. ([5]) In the Dickson algebra Dk, for 0 ≤ s ≤ k − 1,

Sqi cs =


cr i = 2s − 2r

crct i = 2k − 2t + 2s − 2r, r ≤ s < t

c2s i = 2k − 2s

0 otherwise.

Without using that formula, we can easily obtain the following result.

Proposition 4.5. For 0 ≤ j ≤ k − 1,

Sq2i p`,j =

{
p`,j−1 i = j − 1

0 i 6= j − 1, i < k − 1.

Proof. For i < k−1, Sq2i(m20,...,2k−1) = 0 since each term with factor Sq2i(x2
i

s )x2
i+1

t is

paired with an equal term x2
i+1

s Sq2i(x2
i

t ). Using the Adem relations, it follows that

Sqn(m20,...,2k−1) = 0 for 0 < n < 2k−1. Similarly, for 0 < i < k − 1,

Sq2i(m
20,...,2̂j ,...,2k−1,2`

) =

{
m

20,...,2̂j−1,...,2k−1,2`
i = j − 1

0 otherwise.

The result follows from applying the Cartan formula to

m20,...,2k−1p`,j = m
20,...,2̂j ,...,2k−1,2`

.

This result meshes nicely with the following one.

Proposition 4.6. For ` ≥ k,

p`+1,k−1 =
∑
j

cj Sq2`−2k+2j p`,k−1.

Proof. We have

(4.7)

Sq2`(c0p`,k−1) = Sq2`(m20,...,2k−2,2`) = m20,...,2k−2,2`+1 = c0p`+1,k−1.
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As a special case of Proposition 4.4, we have, for i > 0,

Sqi c0 =

{
cjc0 i = 2k − 2j

0 otherwise.

Applying the Cartan formula to the LHS of (4.7) and cancelling c0 yields the result.

In principle, iterating Propositions 4.5 and 4.6 enables us to obtain complete for-

mulas expressing our polynomials p`,j in terms of the ci’s. For ` = k, this was initiated

in our Proposition 4.1. Here we do it for ` = k + 1 and k + 2. For ` ≥ k + 3, the

formulas become unwieldy.

Theorem 4.8. For 0 ≤ j ≤ k − 1,

a. pk+1,j = c2j−1 + cjc
2
k−1;

b. pk+2,j = cjc
4
k−2 + cjc

6
k−1 + c2j−1c

4
k−1 + c4j−2.

Proof. (a). By Propositions 4.1, 4.6, and 4.4, we have

pk+1,k−1 =
∑
j

cj Sq2j pk,k−1 =
∑
j

cj Sq2j ck−1

= c2k−2 + ck−1 · c2k−1.

Assume the result true for j. By Propositions 4.5 and 4.4,

pk+1,j−1 = Sq2j−1

(c2j−1 + cjc
2
k−1)

= (Sq2j−2

cj−1)
2 +

∑
m

(Sq2j−1−2m cj)(Sqm ck−1)
2

= c2j−2 + (Sq2j−1

cj)c
2
k−1

= c2j−2 + cj−1c
2
k−1,

extending the induction.

(b). Applying Proposition 4.6 to part (a), we obtain

pk+2,k−1 =
∑
j

cj Sq2k+2j(c2k−2 + c3k−1)

=
∑
j

cj(Sq2k−1+2j−1

ck−2)
2 +

∑
j,m

cj(Sq2k+2j−2m ck−1)(Sqm ck−1)
2.
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Using Proposition 4.4, the first sum equals ck−2c
2
k−3c

2
k−1 + ck−1c

4
k−2, while the second

equals

c4k−3 + ck−2c
2
k−1c

2
k−3 + c2k−2c

4
k−1 + c7k−1.

Combining these yields the result for j = k− 1. The result for arbitrary j follows by

decreasing induction on j, similarly to part (a).
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