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VOLUMES OF FLOWS 

DAVID L. JOHNSON 

(Communicated by David G. Ebin) 

ABSTRACT. If F is an oriented nonsingulax flow on a Riemannian manifold 
M, the volume of F is defined as the n-dimensional measure of the unit vector 
field tangent to F, as a section of T. (M) with the induced metric. It is shown 
that, for any metric of the two-dimensional torus, and for any homotopy class of 
flows on the torus, there is a unique smooth flow of minimal volume within the 
homotopy class. It has been shown that the Hopf foliation on the round three- 
sphere absolutely minimizes the volume of flows on S3. In higher dimensions 
this is not the case; the Hopf fibrations are not even local minima of the 
volume functional for flows on the round five-sphere. It is not known whether 
a volume-minimizing flow on S5 exists. 

0. Introduction. The problem we will be considering is an extremely natu- 
ral one: Any transversely-oriented, codimension-q foliation 7 on a Riemannian 
manifold M defines a section of the Grassmann bundle of n - q planes tangent to 
M, G,-: M -* G(n - q,T*(M)), by mapping x E M to G4(x): = 7x C T*(M). 
G(n - q, T. (M)) has a natural metric induced from the metricon M and the Rie- 
mannian connection. In this setting the image of G_- is thought of as the graph 
of the foliation S7. A natural question, due to H. Gluck and W. Ziller [7], to ask 
about such foliations is the following: which foliation is most efficient, in that its 
graph has minimal volume (n-dimensional measure)? 

In this article we will be concerned only with the case of flows, or one-dimensional 
foliations. The general case will be considered elsewhere. 

If Y is an oriented flow on a manifold M, with unit vector field (, then the 
volume of the flow is given by: 

IM (1 + ZIVei (I + Ej IVeil ( A Ve2 612 + 

1 /2 

+ E I'Veil ( A ..A Vejn-1 41| dV, 
il < * *<in-i1 

for any orthonormal basis {ei} of T. (M). The top (nth) wedge will vanish since ( 

has values in the unit sphere bundle. The metric on the tangent bundle used here 
is defined by Sasaki in [15], and is the natural metric on T. (M) induced from the 
Riemannian metric on M. 
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Note that there is a trivial absolute minimum of the volume integrand when ( 

is parallel. That will usually not be possible, since that is equivalent to 7 and the 
orthogonal distribution X being totally geodesic. 

In the following sections, special cases of the variational problems involved in 
minimizing the functional are considered, and the variations are derived using the 
specific properties of each case. 

1. Flows on surfaces. If Y is a flow on a compact surface M, which must 
be topologically a torus, then the graph GF is just a choice of unit vector field 
( tangent to S. The integrand which gives the area of the unit vector field ( is 
(1 + IVel 412 + IVe2 412)1/2 dV, which can be computed in terms of any orthonormal 
basis of tangents at x E M; take a unit vector field {X} normal to the leaves, 
and the vector field ( itself. Thus the integrand is (1 + IVxe12 + IVgl2)1/2 dV. 
The terms represent the square of the norm of the second fundamental form of the 
orthogonal distribution, which for curves is the square of the (geodesic) curvature, 
plus the square of the geodesic curvature of the flow. 

The homotopy classes, or path-components, in the space of all flows on a torus 
are given by the net number of oriented Reeb components in the flow, with Reeb 
components having different orientations counted with opposite signs. The main 
result of this section (below) locates a minimum-volume representable within each 
such class. 

THEOREM 1. 1. For any homotopy class of flows on a two-dimensional torus 
M with any given Riemannian metric, there is a smooth flow 7 of smallest area, 
unique up to rotation by a constant angle. 

PROOF. Let {e1,e2} be a chosen orthonormal framing of T*(M). Any flow 
Y can then be described, in terms of a unit vector field ( tangent to 7, by 

= cos(0)e1+sin(0)e2, where 0: M- R/2irZ v S1. Conversely, any such function 
determines Y, and homotopy classes of foliations correspond to homotopy classes 
of such maps, that is, {homotopy classes of foliations} v rl(M) H1 (M, Z) 
H1 (M, Z). The volume integrand then becomes 

(1 + ((Vele1, e2) + el(0))2 + ((Ve2el e2) + e2(O))2)1/2 dV. 

If a(A) = (VAe1, e2), then the integrand simplifies to (1 + Ia + d012)1/2 dV. Now, 

da(e1, e2) = el (Ve2el, e2) - e2(Vei el, e2) - (V[el,e2]el,e2) dV = K dV, 

where K is the Gaussian curvature, since (VAe1, VBe2) = 0. Also, dO = h + df, 
where h is the harmonic representative of the cohomology class of the difference 
between the homotopy classes of Y and the e1-flow. Choosing 0 so that dO = 
- h, + dg, where a = h, + dg + *da is the orthogonal decomposition of a into exact, 
coexact, and harmonic pieces, there is a flow ; for which a + dO = *da, where a 
is the unique function orthogonal to the constants so that Au = - *d *du = K. 

Replace {el, e2} by { , X} for the foliation ;, so it may be assumed that a = 

(Vel, e2) = *du. Then, for any Y with unit tangent field ( = cosOe1 + sin Oe2, 
the volume integrand becomes (1 + Ih + df + *duI2)1/2 dV. The task of minimizing 
volume within a given homotopy class of flows on M then reduces to minimizing 

F(f) = (1 + Ih + df + *duI2)1/2 dV 
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over f E Coo (M). 
If f is a critical point of F(f), then for all g E C??(M), 

0 = dtF(f + tg) = (dg, h + df + *da)(1 + Ih + df + *daI2)-1/2 dV 

= fM(g, d ((h + df + *da)(1 + I h + df + *daI2)-1/2)) dV, 

so the critical equation becomes 0 = d*((h + df + *do)(1 + Ih + df + *daI2)-1/2), 
equivalently, 

O = d *df + 2 (*h + *df- du) A (dlh + df + *dul2)(1 + 1h+d +*a2)-l. 

LEMMA 1. 2. The Euler-Lagrange equation for the volume functional F(f) of a 
flow on a surface is an elliptic, semilinear equation. 

PROOF. Set u = (*h+*df-da)(1+lh+df+*daI2)-l/2. 1u12 < 1, pointwise. At 
the center of a Riemann normal coordinate system, where g. = &ij, Ogj3/Ox, = 0, 
if h = aidxi and u = uidxi, then: 

dlh + df + 1*da|2 2 fa + O- a (9ai O2f 
9 
Oa '[\ ~~~~1 O-X2 + 9 1, Xi O2OXi 

( Of O9a \/9a2 092f 092a 
+ 1a2 + -I + Xi) + + 2 ) dzx. 

The Euler-Lagrange equation then becomes 

0= (0 1)2( u 2) + (922 (f u2) + 2u1u2 f 

&9l 2u N _U (9a2 &2a 
+ (u12) (9-2 9X2 ) +( U1) 5-X2 + 

9xl&X2) 

= (U2 2Xl + (ulU2) (&a2 + a a \ 

Since 42 (1-U2) +2 U2)+2 l 6UlU2 is positive-definite for lul < 1, the equation 
is elliptic. El 

LEMMA 1.3. There is a unique first-order linear map 

H: E1 (M) -+ Hom(E1 (M), E1 (M)) 

so that, for all a,,3 E E1(M), d(*(a,,3)) = Ho(6) - H(o(a). Moreover, Hf (,6) = 
(*(a A i3)) df + f Hoe (f3), and H* oe(*f3) = Ha (3). 

PROOF. Compute in terms of a Riemann normal coordinate system centered 
at x E M. (This will not be independent of coordinates, but will be independent 
of choice of Riemann normal coordinates, since any two will only differ at x by a 
rotation with vanishing derivatives at x.) Then, for a = ai dxt, ,3 = bi dx , 

d(*(a A (a)) 
- 

a2 dxt - ( dbx _ b2 d d(*(aAI3)) '9xib2 &9xibi &9xta2-&xaJ 

so setting 

Ho = ( & 

9 
2-a2& i 9 dx &9xi &2 

- 
_aXi0dX1 
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with respect to this coordinate system at the center gives a well-defined operator. 
It is easy to see that this definition is independent of choice of Riemann normal 
coordinates, and if a e E, the Sobolev space of functions with square-integrable 
derivatives of order < s, then H, E X,1 (T. (M) 0 T* (M)). The last statements 
are trivial. C 

This lemma easily implies that d(la12) = d(*(a A *a)) = H,(*a) - H* (a)= 

2H, (*a), if M is a two-manifold. Setting a = h + df + *da, the Euler-Lagrange 
equation of the volume functional, from the above, may be re-expressed as follows, 
where u = *a(l + a 12)1/2 as before: 

O = d *df + 2 (*h + *df-da) A(dlh+ df + *daI2)(1 + Ih+df +*daI2)- 

= d *df + u A Ho(*a)(1 + Ih + df + *du 2)-1/2 

= d *df + u A H,(u) = d *df + u A Hdf(u) + u A Hh+*do(U). 

Consider the elliptic linear operator L: X (M) --+ -2(M) given by L(y)= 
*d* dy + *(u A Hdy(u)) + *(u A Hh+*d, (u)), where u is defined as above for a fixed 
f EX(M). 

LEMMA 1.4. L(y) = 0 has a unique solution y E X+l orthogonal to the space 
of constant functions. 

PROOF. Existence and regularity of the solutions are standard linear elliptic 
theory. To show uniqueness, note that the difference of any two solutions gives a 
solution z of *d* dz + *(u A Hdz(u)) = 0. Assume that s is large enough so that 
z E C3 (M). Near a maximum of z, the hessian Hess(z) will be negative semidefinite. 
At any point p sufficiently near the maximum, pick a Riemann normal coordinate 
system centered at p so that u = adx1 at p, with 0 < a < 1(IuI < 1). Then 

0= (& 1)2 + 
(19X2)2 

+ *(adzl A (a x) dzi ) 

= (1 -a2 

But, since Hess(z) is negative semidefinite, and a2 < 1, Az = 0 in this neighbor- 
hood. The maximum principle then implies that z is constant. C 

Now consider the mapping K: , -* , defined by K(f) = y, y the unique 
solution orthogonal to the constants of L(y) = 0. Since K(f) E X+l C X, 
and HI+i C H8 is compactly embedded, K is a compact operator. A solution of 
0 = G(f) = f-K(f) will be a solution of the Euler-Lagrange equation of the volume 
functional, and will necessarily be C? by Lemma 1.4. Such a solution exists if there 
is a bounded domain Q c A (M) so that the Leray-Schauder degree d(G, 0, Q) is 
nonzero and G0 0 on &YQ [1]. Choose a one-parameter family gt of Riemannian 
metrics on M, smooth in t, so that gi is the given metric, and go is flat. Choose 
A so that A > 2 Supt {Inf{Vol9t (F) 1 is in the fixed homotopy class of Theorem 
2.3}}, and also take A > 2 Supt{Ft(0)}, where Ft is defined as above for the metric 
gt. Set Q = {f E L2(M)IFt(f) < A, for some t E [0, 1]}, where Ft is the volume 
functional for the metric gt. Since F(rf) = fM(1 + Ih + rdf + *daI2)1/2 dV, which 
is asymptotic to r fM Idf I dV > Cr(fM If 12 dV)1/2 for r large, for some constant C 
(by the Sobolev inequalities), Q is bounded in L2 [1]. Since aQ = {fIFt(f) > A, 
Ft(f) = A for some t}, the infimum of Ft will not lie on &YQ for any t E [0, 1]. 
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Let Kt: L2 -+ L2 be the compact operator above defined for the metric gt* 
Kt(f) :$ f for f E &Q, and {Kt(f)If E Q, t E [0, 1]} has compact closure since 
the mapping K: , x I -* X+I defined by K(f, t) = Kt(f) is continuous, so 
that the bounded set Q x I has bounded image in ,+,, thus in , the image has 
compact closure. Thus, by [12], the degree d(G, 0, Q) = d(G,, 0, Q) is the same as 
d(Go, 0, Q). It can be seen that in the flat case, where a = 0 and Ihi2 is constant, 
F(f) is minimized precisely when df = 0. Note that, since harmonic forms h with 
respect to a Riemann normal coordinate system on the flat torus are of the form 
h = a1 dx' + a2 dx2 with ai constant, Hh+*d, = Hh = 0. The claim that f is 
necessarily constant then follows from Lemma 1.4. 

d(Go, 0,) = d(Go, 0,s), where 0O is a small ball of radius E centered at 0, 
since Go(f) = 0 has only the one isolated solution, 0 [1]. However, since Hh = 0, 
K(f) = 0 for all f, so Go = Id, and thus d(G,0,Q2) = 1. Thus G(f) = 0 has a 
solution in Q, which shows that the volume functional has a critical point for any 
homotopy class. 

To show that this critical point is unique, and is an absolute minimum within 
the homotopy class, it suffices to show that there is a two-form on the unit tangent 
bundle To (M) calibrating the graph ( if and only if ( is a solution to the Euler- 
Lagrange equations of the volume functional [7]. 

Any section ( determines a flat connection w on To (M), considered as a principal 
S'-bundle over M, by the condition that ((M) be horizontal. The surface ((M) C 
To (M) extends to a w-horizontal foliation by the action of the group, which acts by 
isometries. The unit normal field of this foliation is divergence-free precisely when 
the leaves are minimal, that is, when ( satisfies the Euler-Lagrange equations of the 
volume functional. Since the two-form a = *w/lwl (pointwise norm) is dual to the 
normal field, it will be closed precisely when the foliation is minimal, and since its 
comass is one, and a(T*(((M))) _ 1, when da = 0 it will calibrate precisely ( and 
its translates under the action of the group. Thus, each critical point of the volume 
functional is calibrated, and so absolutely volume minimizing within its homology 
(homotopy) class. E 

The author would like to thank the referee for suggesting several improvements 
of this proof, particularly the final argument. 

2. Hopf fibrations. Consider now the special cases of the Hopf fibrations 
S'+ S2n - CPn. For n = 1, H. Gluck and W. Ziller [7] have shown that 
the Hopf fibration of the round S3 is the flow with least volume, using calibrated 
geometries. They point out, however, that their techniques break down for n > 2, 
in that the corresponding calibration does not have the Hopf flow as the minimum 
within its homology class in the unit tangent bundle. It is not known whether the 
minimum achieved by the calibration corresponds to the graph of a flow on S2n+l. 

In this section their result is extended using direct methods. It is shown that, in 
contrast to the first case, the Hopf flow on S5 is not even a local minimum of the 
volume functional. For all n, it is clear that the Hopf flows are critical flows of the 
volume functional. 

Let F(t) be the function Vol(,), where Yt is a deformation of the Hopf fibration 
on M = S5, and set A = ' = h(() [9, 10]. As shown in [10], A is an arbitrary 
horizontal (perpendicular to () vector field. 
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Let p E CP2, and choose a local framing {f2,...,f5} so that Vf ifI = 0. 
This can be accomplished by choosing a section a of the frame bundle over some 
neighborhood of p with a(p) = {f2,...,f5} and a*(T*(CP2,p)) = H = ker(w), 
w being the Riemannian connection. It may further be assumed that this framing 
is unitary, i.e., Jf2 = f3, Jf4 = f5, throughout the neighborhood U. 

Now let e1 = ( be the unit tangent field to the Hopf fibration 7, and set 
{e2,... ,e5} to be the horizontal (s'), basic (in the sense of foliations, [11, 14]) 
vector fields in V = 7r- (U) which are 7r-related to {f2,...,f5}, the basic lifts of 
those fields. In that case, [el, ei] will always be vertical, and Vei ei, i, j > 2 has 
horizontal portion the basic lift of Vfift [11, 14]. Along the fiber 7r-4(p), then, 
Veie3 will be vertical, for i, j > 2, Ve3e' = Aqe1. Then 

(Vei e ee) (e I Vei e) =-Aq, (Vei el ,e) = 0 

S5 Veie1 =-Aqej. Since [el,et] is vertical, and (Veie,el) =-(ei,Velel) =0, 

Vele = -A -e Veiel. Since A- = -Q(e",e3), where Q is the curvature of the 

canonical connection on the universal bundle over CP2, which is a lift of the Kahler 

form on Cp2, {f2, ..., f5}, hence {e2,..., e5}, may be chosen so that Ve2e3 =el = 

-Ve3e2, Ve4e5 = el = -Ve5e4, and all others vanish. 

Along this chosen fiber, then, we have the following table of covariant derivatives: 

Veie1 = 0, Vele2 =-e = Ve2e, Vee3 = e = Ve3e', 

Vei e4 = -e5 = Ve4e1, Vele5 =e = Ve5e 1 Ve2e3 =el = -Ve3e2, 

Ve4e5 = el -V se4 

and all other covariant derivatives vanish. 

If now A = a2e2 + ... + a5e5 (note. A being 7r-related to a vector field on Cp2 

will now be equivalent to ai being constant), 

VelA = (el(a2) + a3)e2 + (el(a3) - a2)e3 + (el(a4) + a5)e4 + (el(a5) - a4)e5, 

Ve2A = e2(a2)e2 + e2(a3)e3 + e2(a4)e4 + e2(a5)e5 + a3el, 

Ve3A = e3(a2)e2 + e3(a3)e3 + e3(a4)e4 + e3(a5)e5-a2el, 

Ve4A = e4(a2)e2 + e4(a3)e3 + e4(a4)e4 +e4(a5)e5 + a5e1, 

Ve5A = e5(a2)e2 + e5(a3)e3 + e5(a4)e4 + e5(a5)e 5- a4e'. 

Then, we can compute the first variation: F' = fM 2(div(JA)) dV = 0. Thus the 

Hopf fibration is a critical point of the volume functional, as claimed. 

THEOREM 2. 1. The Hopf fibration on the round S5 is not a local minimum of 
the volume functional. 
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PROOF. Consider the second variation at the Hopf fibration, where = l 
A = ', and A' = 9": 

F =IM 4 (Veil A/\ A . Veji,el 

+ + VeleA ...A Vej A', Vejil el A A VejAe') 

+I VeilA A A Vej,\e1 + . ++ Vejile A A VejAAI2 

+ 2(Vejl A AVej2A A * A VejA e1 + * 

+ Veil e 1A A Vejvi A A Veix A, Veil e A A .A Vej,\ el) 

- 4(-e2(a3) + e3(a2) -e4(a5) + e5(a4))2] dV, 

where the sum is taken over A = 1, .. ., 4, and 1 < ji < < jA\ < 5. 
If now A' = biel + . + b5e5 (note: A being 7r-related to a vector field on Cp2 

will now be equivalent to ai being constant on the fiber.), 

VelA' = e'(bl)e' + (e'(b2) + b3)e2 

+ (el (b3) - b2)e3 + (e'(b4) + b5)e4 + (e'(b5) - b4)e5, 

Ve2A' = (e2(bi) + b3)el + e2(b2)e2 + (e2(b3) - bl)e3 + e2(b4)e4 + e2(b5)e5, 

Ve3A' = (e3 (b1) - b2)e' + (e3 (b2) + bl)e2 + e3 (b3)e3 + e3 (b4)e4 + e3 (b5)e5, 

Ve4A' = (e4(bi) + b5)e' + e4(b2)e2 + e4(b3)e3 + e4(b4)e4 + (e4(b5) - bl)e5, 
Ve5A' = (e5(b1) - b4)e' + e5(b2)e2 + e5(b3)e3 + (e5(b4) + bl)e4 + e5(b5)e5. 

Then 

F" = JM(8b1 + 2(-e2(b3) + e3(b2) - e4(b5) + e5(b4)) + 2(a' + a 2+ a 2+ a2) 

+ 2((el (a2) + a3)2 + (el(a3) - a2)2 + (el(a4) + a5)2 + (el(a5) - a4)2) 

+ (e2(a2) + e3(a3))2 + (e2(a4) + e5(a3))2 + (e2(a5) -e4(a3))2 

+ (e3(a4) - e5(a2))2 + (e3(a5) + e4(a2))2 + (e4(a4) + e5(a5))2 

+ (e2(a3) - e3(a2) + e4(a5) - e5(a4))2) dV. 

Now, b1 = -A 12, as can easily be seen, and the terms involving b2,... ,b5 are 
exact, so the integral becomes 

F" = IM 6(a2 +a2 +a2 +a2) 

+ 2((e (a2) + a3)2 + (el(a3) - a2)2 + (el(a4) + a5)2 + (el(a5) - a4)2) 

+ (e2(a2) + e3(a3))2 + (e2(a4) + e5(a3))2 + (e2(a5) -e4(a3))2 

+ (e3(a4) - e5(a2))2 + (e3(a5) + e4(a2))2 + (e4(a4) + e5(a5))2 

+ (e2(a3) - e3(a2) + e4(a5) - e5(a4))2) dV. 

Note that the terms involving ei(aj), i > 1, are all nonnegative. Thus the 
contribution of the baselike derivatives will be nonnegative. However, recombining 
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terms, 

F" = 6(a + a2 + a2 + a2) 

+ 2((e (a2) + a3)2 + (e1(a3) - a2)2 + (e1(a4) + a5)2 + (e1(a5) - a4)2) 

+ (e2(a2) + e3(a3))2 + (e2(a3) - e3(a2))2 + (e4(a4) + e5(a5))2 

+ (e4(a5) - e5(a4))2 + (e2(a4) + e3(a5))2 + (e2(a5) -e3(a4))2 

+ (e4(a2) + e5(a3))2 + (e4(a3) -e5(a2)) 

+ 2[(e2 (a4) - e4(a2))(e5(a3) - e3(a5)) + (e2(a5) - e5(a2)) 

* (e3(a4) - e4(a3)) + (e2(a3) - e3(a2))(e4(a5) - e5(a4))]) dV 

If a = (A, ) 0 a_2 + * * * + a505, where Oi = (ei, *), then, since [el, ei] = 0 for this 
framing, and [ei,ei] = A>e', dOt = 0, i > 1; it follows that the last terms in the 
integrand are 2 da A da A dx = d(2a A da A dx), where x is the fiber parameter. 
Thus, 

F" = IM(-W12 + 21el (w) - iwl2 + 41W 12) dV, 

where w = (a2 + ia3, a4 + ia5) and 

OWl = 
2 

((e 2(a2) + e3(a3))2 + (e2(a3) - e3(a2))2 + (e4(a4) + e5(a5))2 

+ (e4(a5) - e5(a4))2 + (e2(a4) + e3(a5))2 + (e2(a5) -e3(a4))2 

+ (e4(a2) + e5(a3))2 + (e4(a3) - e5(a2))2). 

We can perform the Fourier series decomposition on the C2-valued function 
W = (a2 + ia3, a4 + ia5), on each fiber. The nth Fourier coefficient will be identified 
with a section of T. (P2) 0 0(-n). Letting w = wneinx and integrating over the 
fiber, then 

F" = 47rf (E(n2 - 2n - 2)lWnl2 + aWn1l2) dV, 

where now ZiJn E F(T* (P2) 0 0(n), and a is the Deaubault operator. (The extra 
factor of I comes from the pointwise norm of the d? terms.) This is clearly positive 2 
definite, except perhaps at n = 0, 1, 2. 

Now, the case n = 2 will include the infinitesimal deformations of Hopf vector 
fields as a six-dimensional nullspace for the second variation. However, in contras.t 
to the case for the three-sphere, these vector fields do not correspond to holomorphic 
sections of the appropriate twist of the cotangent bundle of p2. Rather, these fields 
correspond to the first positive eigenspace of C. There is a six (real)-dimensional 
space of holomorphic sections, however, on which the second variation is negative- 
definite. Thus the Hopf fibration will not be area-minimizing on S5. Similar results 
will likely hold for higher dimensions as well. 

To show that there is a space on which F" is negative, note that HO (p2, 1 (2)) 
C3 [13]. Let a be a nonzero holomorphic section of 1 (2), Ze = w will then be a 
section of T* (p2) 0 0(-2). A vector field A perpendicular to ( will then be defined 
by 7r*A = w, where 7r: S5 X-C _ 0(-2) is the map defining 0(-2) as an associated 
bundle to the principal bundle S5 _* p2. For this infinitesimal deformation A of 
the Hopf fibration, F" = 87r fp2 -1w12 dV < 0. 
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ADDED IN PROOF. The author has recently been able to show that, in contrast 
to the situation on surfaces, the only homotopy class of flows on S3 having a 
minimum-volume representative is the class containing the Hopf flows. Within any 
other homotopy class (they are given by 7r3(S2)), the infimum is again the volume 
of the Hopf flow, and so is not obtainable within the homotopy class. (This result 
is similar to theorems of Brian White, though in a slightly different context.) I 
would like to thank Sharon Pedersen for describing an example which inspired the 
construction of a minimizing sequence within an arbitrary homotopy class. 
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