PARTIAL REGULARITY OF MASS-MINIMIZING RECTIFIABLE SECTIONS

DAVID L. JOHNSON AND PENELOPE SMITH

ABsTRACT. Let B be a fiber bundle with compact fiber F' over a compact Riemannian n-manifold M™.
There is a natural Riemannian metric on the total space B consistent with the metric on M. With respect
to that metric, the volume of a rectifiable section o : M — B is the mass of the image o (M) as a rectifiable
n-current in B.

Theorem. For any homology class of sections of B, there is a mass-minimizing rectifiable current T'
representing that homology class which is the graph of a C' section on an open dense subset of M.

INTRODUCTION

The notion of the volume of a section of a fiber bundle over a manifold M was introduced by H. Gluck and
W. Ziller, in the special case of the unit tangent bundle = : T3 (M) — M, where sections are unit vector
fields, or flows on M. The volume of a section o is defined as the mass (Hausdorff n-dimensional measure) of
the image o(M). They were able to establish, by constructing a calibration, that the tangents to the fibers
of the standard Hopf fibration S — S? minimized volume among all sections of the unit tangent bundle of
the round S3.

However, in general calibrations are not available, even for the unit tangent bundles of higher-dimensional
spheres. For a general bundle 7 : B — M over a Riemannian n-manifold M, with compact fiber F', there is
a special class of rectifiable currents, called rectifiable sections, which includes all smooth sections and which
has the proper compactness properties to guarantee the existence of volume-minimizing rectifiable sections
in any homology class. Partial regularity of volume-minimizing rectifiable sections in general is the subject
of this paper.

The basic partial-regularity result established here is that a volume-minimizing rectifiable section exists in
any homology class of sections which is a C'! section over an open, dense subset of M. This does not state
that a dense subset of the section itself consists of regular points. In fact, there are simple counter-examples
of that statement. Denseness of the set of points in M over which the section is regular is straightforward,
but openness in M requires some work.

Our approach to this problem begins with a penalty functional, composed of the n-dimensional area integrand
plus a parameter (1/€) multiplied by a term measuring the deviation from a graph of a current in the total
space. Each penalty functional will have energy-minimizing currents which are rectifiable currents in the
total space, but which are not necessarily rectifiable sections. As the penalty parameter ¢ approaches 0, the
“bad" set of points in the base over which the current is not a section will have small measure, and outside
a slightly larger set the current will be a C! graph. These penalty minimizers will converge to a rectifiable
section which will be a minimizer of the volume problem.

Once fundamental monotonicity properties are established for this limiting minimizer, the program to estab-
lish partial regularity of energy-minimizing currents due to Bombieri in [2] can be applied, with significant
modifications for the current situation, to show that the limiting minimizer is sufficiently smooth on an open
dense set.

The main theorem of this paper is the following:
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Theorem 1. Let B be a fiber bundle with compact fiber F' over a compact Riemannian manifold M, endowed
with the Sasaki metric from a connection on B. For any homology class of sections of B, there is a mass-
minimizing rectifiable section T representing that homology class which is the graph of a C' section on an
open dense subset of M.

1. DEFINITIONS

Let B be a Riemannian fiber bundle with compact fiber F' over a Riemannian n-manifold M, with projection
7w : B — M a Riemannian submersion. F is a j-dimensional compact Riemannian manifold. Following [10],
B embeds isometrically in a vector bundle 7 : £ — M of some rank k£ > j, which has a smooth inner product
<, > on the fibers, compatible with the Riemannian metric on F'. The inner product defines a collection
of connections, called metric connections, which are compatible with the metric. Let a metric connection
V be chosen. The connection V defines a Riemannian metric on the total space E so that the projection
m: ' — M is a Riemannian submersion and so that the fibers are totally geodesic and isometric with the
inner product space E, = R¥ [14], [6].

We will be using multiindices « = (aq,...,@n—1), a; € {1,...,n} with oy < -+ < @, over the local base
variables, and 5 = (f1,....61), B € {1,....k} with 81 < --- < §;, over the local fiber variables (we will at
times need to consider the vector bundle fiber, as well as the compact fiber F'; which is considered will be clear
by context). The range of pairs (a, ) is over all pairs satisfying || 4+ |a| = n, where |(aq,...,ap)| == m.
As a notational convenience, denote by n the n-tuple n:= (1,...,n), and denote the null 0-tuple by 0.

Definition 2. An n-dimensional current 7" on a Riemannian fiber bundle B over a Riemannian n-manifold
M locally, over a coordinate neighborhood €2 on M, decomposes into a collection, called components, or
component currents of T, with respect to the bundle structure. Given local coordinates (z,y) on 7~ 1(Q) =
Q x R* and a smooth n-form w € E"(Q x R¥), w := wapda® A dy?, define auxiliary currents E,p by
Eop(w) := [wapd||T|, where | T is the measure 0H"|_Supp(T), with #" Hausdorff n-dimensional measure
in Q x R* and 6 the multiplicity of T [11, pp 45-46]. The component currents of T are defined in terms of
component functions tos : Q@ x R¥ — R and the auxiliary currents, by:

T| ;-1 (q) = {Tap} == {tapEas} -

The component functions t,s : 7~ 1(Q) — R determine completely the current 7', and the pairing between
T and an n-form w € E™(B)_Q x R* is given by:

T(w) ;:/ taswasd |1
QXng pres

Definition 3. A bounded current 7' in B is a quasi-section if, for each coordinate neighborhood 2 C M,

(1) tno > 0 for ||T'|]-almost all points p € Supp(T), that is < ?(q),e(q) >> 0, ||T||-almost everywhere;
where e(q) = % ARV 8%/ H% Ao A % is the (unique) horizontal n-plane at ¢ whose
orientation is preserved under m,, and ? is the unit orienting n-vector field of T'.

(2) mx(T) = 1[M] as an n-dimensional current on M.

(3) 9T = 0 (equivalently, for any Q C M, dT|_7—1(Q) has support contained in 7~ *(12)).

There is an M > 0 so that the fiber bundle B is contained in the disk bundle Fj; C E defined by Ey; :=
{v e El|v| < M}, by compactness of B. Define the space I'(F) to be the set of all countably rectifiable,
integer multiplicity, n-dimensional currents which are quasi-sections in E, with support contained in Ejy5,
called (bounded) rectifiable sections of E. The space I'(E) of (strongly) rectifiable sections of E'is the smallest
sequentially, weakly-closed space containing the graphs of C! sections of E which are supported within Ejy.

A quasi-section which also is rectifiable is an element of f(E) It would seem to be a strictly stronger
condition to be in ['(E), however, it is shown in [3] that, over a bounded domain Q, (€2 x RF) = T'(Q x RF).
The norm defined in [3] is finite in this case since all currents have support contained in Ej;. This extends
to the statement that I'(E) = I'(E) for a vector bundle over a compact manifold M, since any such can
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be decomposed into finitely many bounded domains where the bundle structure is trivial, by a partition of
unity argument.

The space f(B) of rectifiable sections of B is the subset of f(E) of currents with support in B, which is
a weakly closed condition with respect to weak convergence. This follows since, for any point z outside of
B, there is a smooth form supported in a neighborhood of z disjoint from B. The space I'(B) of strongly
rectifiable sections is the smallest sequentially, weakly-closed space containing the graphs of C! sections of
B. Since the fibers of B are compact, as is the base manifold M, minimal-mass elements will exist in T'(B) or
I'(B), and mass-minimizing sequences within any homology class will have convergent subsequences in f(B)
or T'(B). This follows from lower semi-continuity with respect to convergence of currents, convexity of the
mass functional, and the closure and compactness theorems for rectifiable currents. For compact manifolds,
as above, ['(E) = T'(E), but it is not the case that I'(B) = I'(B) in general.

Proposition 4. Let {T;} C [(B) (resp, T'(B)) be a sequence with equibounded mass. Then, there is a
subsequence which converges weakly to a current T in T'(B) (resp, I'(B)) .

Proof. The Federer-Fleming compactness and closure theorems (see also [9, Theorem 7.61, pp. 204-5] shows
that a weak subsequence limit will exist and will be a countably-rectifiable, integer-multiplicity current, with
no interior boundaries. Since the map 7 : B — M is proper, mx will then commute with weak limits, and so

7w (T) = 1[M]. Similarly, the conditions < ?(q), e(q) >> 0 ||T||-almost everywhere and Supp(T) C B are
directly seen to be preserved under weak limits, so the limit will be in T'(B). 0

Definition 5. Given a current 7', the induced measures ||T'|| and ||T,g]|| are defined locally by:

ITasll (A) = sup (Tap(w)), and

17 (A)

sup ZTQB(W) ,
aff

where the supremum in either case is taken over all n-forms on B, w € Ej(B), with comass(w) < 1 |5,
4.1.7]and Supp(w) C A.

2. COORDINATIZABILITY

Let T € f(B) have finite mass. Then, for each x € M, we say that 1" is coordinatizable over x if there
is an 7 > 0 so that TL7~1(B(x,7)) (note that 7' (B(xz,r)) = B(z,r) x F) has support contained within
B(z,r) x U, where U C F is a contractible coordinate neighborhood of F', U = R7.

Proposition 6. The set of all points x € M where T is coordinatizable over x is an open, dense subset of
M.

Proof. Openness follows from the definition, which involves open neighborhoods in M. Note that the closed
nested sets Supp(T)N7~*(B(z,r)), as r — 0, have a nonempty intersection of Supp(T) N7~ 1(x). So, given
any neighborhood U of Supp(T) N7~ (z) in F, for some r > 0 w5 (Supp(T) N7~ (B(x,r)) C U, where my
is the projection of 7= 1(B(z,r9)) = B(z,719) x F onto F. Certainly if Supp(T) N7 !(x) is finite, then, since
any finite set in F' is contained in a contractible coordinate neighborhood in F'; T will be coordinatizable at
x. So, any point x over which 7" is not coordinatizable must have a preimage under 7 which is infinite, thus
having infinite 0-dimensional Hausdorff measure. But, for

N := {z € M|Tisnot coordinatizable overx} ,
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then, if NV has positive Lebesgue measure on M, and if F is the volume (or mass) integrand,

FT) = Lﬂﬂ

> d||T
L%Mnn
1 d
> /N #(r (x))dx
00,

by the general area-coarea formula [11]. O

Remark 7. The Riemannian metric on U x V has the structure of a Riemannian submersion 7 : U xV — U,
that is, the projection 7 is an isometry on the orthogonal complement to the fibers, and the projection
onto the fiber, o : U x V' — V is an isometry restricted to each fiber. The fiber metric is not necessarily
Euclidean, and the orthogonal complements to the fibers will not necessarily form an integrable distribution,
but that will not affect the arguments which follow.

3. PENALTY METHOD

Let F (= M) be the standard volume (area) functional, applied to rectifiable sections. For an integer-

multiplicity, countably-rectifiable current 7' = (M, 6, ?), where M = Supp(T') and ? is the unit orienting
n-vector field, as in [11, p. 46]. Set, for each € > 0, the modified functional

Far)= [ £,
where d||T|| = 6H1"|_Supp(T) and

1
fe(&) = lIEl + he(&) = lIEll + = ([En.ol — &n0) s
for € € Ay (Ti(B,2)) =2 A (R*F) (||€]| is the usual norm of € in A, (T.(B, 2)) and &, ¢ :=< £, e >, where e
is the unique unit horizontal n-plane so that m.(e) = *dVyy).

Note also that, since the original integrand is positive, so is f., at any point £&. Moreover, f. satisfies the
homogeneity condition

fe(tg) = tfé(&)

for ¢t > 0.
Set
Ho(T) 1= [ ho (T) alT]
T
where ho(&) := (|€n,0] — &n.0), and set
1
H(T) = EHQ(T).
On the parts of T which project to a negatively-oriented current (locally) on the base, the functional Hq()

has value equal to twice the Lebesgue measure of the projected image, considered as measurable subsets of
the base.

Clearly f. satisfies the bounds

lel < 26 < (1+2) .
In addition, the functional satisfies the A-ellipticity condition with A =1
(3.1) M(X) = M(mD)] < Fe(X) — Fe(mD)

where mD is a flat disk with multiplicity m and X is a rectifiable current with the same boundary as mD.
This inequality is clear if 4 (mD) is positively-oriented, since in that case M(mD) = F.(mD), and (in all
cases) M(X) < Fo(X). If m4(mD) is negatively-oriented, though, then 74 (X) = 74 (mD) since they have
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the same boundary and are integer-multiplicity countably-rectifiable n-currents on R", by the constancy
theorem. However, in this case He(X) > H.(mD), and the result follows.

3.1. Minimization problem. We now consider the mass-minimization problem for rectifiable sections
T € T'(B) within a given integral homology class [T'] € H,,(B,Z) which includes graphs, that is, for which
there is a smooth section Sy € I'(B) with [So] = [T]. Set A :=||So||. Set

R[T]:={S € [T]| S is a countably rectifiable, integer-multiplicity n-current in B} .

For_a)ny € > 0, since the tangent planes at each point of Sy projects to an n-plane of positive orientation,
he(S0) = 1 (|€n0] — &n0) = 0, and so Fc(Sp) = ||So|| := A, which shows that {S € R[T]|F.(S) < A} # 0.
Thus, if By := {S € R[T]|||S|| < 24},

LevaF. :={S € R[T]|F.(S) < A} C By,

since for any current F.(S) > ||S||. Also, by the Federer-Fleming closure theorem, By is compact with
respect to the usual convergence of currents. Since the functional F is elliptic (eq (3.1)), it will be lower
semi-continuous with respect to weak convergence of rectifiable currents [5, 5.1.5]. Thus each LevaF, is
compact in this topology, and SO by [16], for each such €, an F.-energy-minimizing rectifiable current T, € [T]
exists, and F.(T¢) < [|So| =

Set
min(Fe) = min{F(T)|T € R[T]}
Argmin(F.) = {T € R[T]|F(T) = min(Fc)},
min(F) = min{F(T)|T € [T]NT(B)}, and
Argmin(F) = {T e [T)NT(B)|F(T)=min(F)}.

Similarly to [13], we have

Proposition 8. [Convergence of the penalty problems]
lifg min (Fe) = min(F),
limsup Argmin(F.) C Argmin(F).
el0

Remark 9. That is, the minimal values of the penalty functionals on that homology class converge to the
minimum of the mass of all homologous rectifiable sections, and the limsup of the set of minimizing currents
[13] of the penalty problems is contained in the set of mass-minimizing rectifiable sections. This does not
imply that each mass-minimizing rectifiable section is the limit of a sequence of minimizers of the penalty
problems, but that one such mass-minimizing rectifiable section is such a limit.

Proof. Since the set of countably-rectifiable integer-multiplicity currents in [T] (the domain of F.) contains
the rectifiable sections, and F.(S) = F(S) = ||S|| for any rectifiable section S, we have immediately that
min (Fe) < min (F). Moreover, min (Fe,) < min (Fe,) if €1 > €, since for T, minimizers of F,,

Fei(Te,) £ Fey(Tey) < Fer(Tey),
so lime o min(Fe) exists.

Take some T, € R[T] which minimizes F.within R[T]. Then

”TE” = ]:e(TE) - HE(Te)
< F(T)
= min(F.)
< min(F).

This shows that T, € By above, which, in the topology of weak convergence of countably-rectifiable, integer-
multiplicity currents, is compact. So, by the Federer-Fleming compactness and closure theorems [5, 4.2.16,
4.2.17], some subsequence of {T.} converges as € ] 0 to some S € By.
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Since the penalty component satisfies
Ho(Te) = eHe(Te) = € (min(Fe) — || Te]) ,

and the penalty functional F. is lower semi-continuous with respect to weak convergence of currents, we
have

Ho(95)

IN

hnibnf(/HO (Te))

= lim&)nfe (min(Fe) — ||Te|))
< lirri%nf € (min(F))

= 0.

So. immediately we have that S € T'(B), so that F(S) > min(F). Applying the same limit to the previous
equation,

F(9) IS1

lim inf || 7|
el0

IN

lirg%nf (Fe(Te) — H(T))

IN

lim inf F(T¢)
el0

= liminf min(F)
el0

< min(F),

which implies that all inequalities must be equalities, and S is a mass-minimizing rectifiable section in
[T] NT(B). In addition, we get that

liJ%l min(Fe) = min(F)

and, any limit current of a subsequence of minimizers {T }(for a sequence of €’s going to 0) will be a minimizer
To of F on [T]NT(B). O

The set of points B, C €2 where T, is not a section,

Bei=m ({p € Supp(T)| ho(T',) > 0}) ,
satisfies, where e is the horizontal n-plane,
7‘[0 (TE) = 67‘[5 (Te)

= [ mmd|]
QxF

:/ (‘<ﬁ,e>‘—<ﬁ,e>)d||TE||
QX F
_ —2/ <Te>d|T|
Bex F
_ 2/ < 5| a|m
Bex F

= 2T, (n*(d Valp,))
= 214(To)(d Valg,)
52 > 2||Bl,

where dVg is the volume element of the base, since 74 (Te)|5 is a (positive integer) multiple of the funda-
mental class of the base, restricted to B.. From the previous result,

limH(T.) =0,
el0

thus || B.|| approaches 0 more rapidly than e itself. Similarly to [16], we have the following:
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Lemma 10. If R > 0 is sufficiently small, ‘
and the homology class [T) € H,(B,Z).

B.|_B(x, R)H < Wi AR"™, where A depends only on dimension

Proof. If v, := F(T¢), for 0 < €1 < 1, then since v, is a monotone-decreasing function of e, it is differentiable
almost-everywhere, and

’ . . Ve Ve—h
o = |\l =
> lim fe(Te) - fe—h(Te)
- h—0 h
11
= |lim (6 E_h> Ho(Te)
h—0 h €
1
= e_QHO(TE)

In addition, for any fixed rectifiable section S in the homology class [T, for all € > 0 v, < F(S5), so that v,
is bounded.

Now, as in [16, p. 70, Theorem 7.3],

C = vg—un

1

> |ve] de
€1
! 1

> /ess inf (evl]) —de
€1 e1<e<l €

= 1 L~

= ess 611<1[1€f<1e|v€| (—1In(e1))

1
> inf - :
> ess ell<nef<15H0(T€) [In(ey)]

1
> inf = . )
> ess_inf =Bl ()]

applying (3.2). Since v, — v1is bounded (and nonnegative), there is a constant C' so that

€
B < ——C,
156l < Tiogen

where C' depends only on the homology class [T'] of sections being considered. Now, in addition,

BEI_B(xo,R)H <

wp R™, where w, is the mass of the unit n-ball, so that the above yields the Lemma.

4. EXISTENCE OF TANGENT CONES

Let T be a mass-minimizing rectifiable section, and presume that 7" is the limit of a sequence 7T, of minimizers
of the penalty energy F.,. (At least one minimizer of the mass functional among rectifiable sections is of
this form), by Proposition (8).

Proposition 11. For any point p € Supp(T), the mass-density O(p,T) is at least 1. Moreover, there is a
(possibly non-unique) tangent cone at p of T.

Remark 12. The proof will depend on a monotonicity of mass ratio result. Once that is established, the
result will follow similarly to the case for area-minimizing rectifiable currents.

Lemma 13. [Monotonicity of mass ratio|. For any p € Supp(T), the ratio
F (TI_B(p, r))

/r-’ﬂ
is a monotone increasing function of r.
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Proof. (of the Lemma). Consider, for a sequence € = ¢; converging to 0, the penalty energy function

fe(T) = ]:e (Tel—B(pear)> )
where p. € Supp(T.). We show that the penalty function satisfies the monotonicity differential inequality
(fe(r)/r™) >0, as in [11].
Choose a radius r for which the boundary 9 (Tel_B(pe, r)) is rectifiable (true for almost-all r by slicing). For

such an 7, note that d(T.[_B(pe, 7)) is the boundary of the restriction of T. to the ball. Let C[0(T.L_B(p,))]
be the cone over d(T.|_B(pe,r)) with cone point p, oriented so that C[d(T.l_B(pe,r))] + T.l_(B\B(pe,r))
is a cycle. Define a boundary penalty—energy 8]—' by restriction, that is:

OF.(D(T.L_B(p.,r E,e>‘—<ﬁ,e>)dHa(TELB(pe,r))H.

Since C,. := C[@((TEI_GE)I_B(pE,T))] is a cone,
FAC) < ZOF(0C)

n

- ;aﬁ(a(TELB(pe,r)))-

Now, set
fe(T) = ]:e(TEI—B(pevT))'

We claim that slicing by u(z) = ||x — pe|| yields that, for almost-every r (as above)
OF(A(T.LB(pe,r))) < fi(r).
To show this, let T" be a rectifiable current, and u Lipschitz. The slice
< Tyu,r4 >:= T {z|u(z) > r} — d(TL {z|u(z) > r})
satisfies, for OHo(< T, u,r+ >) := [, (‘ ,€e >‘ -< ?,e >) d||< T,u,r+ >||, the following:

OHo(< T,u,r+>) < Lip(u) hrllzlii()anO(T)l_{T <wu(z) <r+h}/h

= Lip(u)%HO(T)l_ {z|u(z) <r},

where we have abused notation and denoted the Dini derivative in the previous line by 9/0r. This follows by
considering, for a small, positive h, a smooth approximation f of the characteristic function of {x |u(x) > r}

with
)0, ifu(z) <r
J(@) = {1, ifu(z)>r+h

and Lip(f) < Lip(u)/h. Then (cf. [11, 4.11, p. 56])

OHo(< Tyu,r+ >) OHo((OT)_f —a(TLf))
OHo(TLdf)
Lip(f)Ho(T
Lip(u)Ho(T
Lip(u)

Q

W {r < u(z) <r+h}
)_{r <u(z) <r+h}/h

HQ(T)I_ {z|u(z) <r}.

In the present case, with u(z) := ||z — p.||, < T, u,7+ >= I(T.L_B(pc,7)), OF(I(T.LB(pe, 7)) < f/(r) as
claimed for almost-every r, since for the standard mass functional this result is standard, and F. = M+ %Ho.

NN
|@ir

Combining these two relationships together and using minimality of T,

folr) 1= FUTL B ) < FACWEL Blper))]) < 0701 B(pe,r) < 2 )

r dr

3

for almost-every r, hence the absolutely continuous part of fc(r)/r™ is increasing. Since any singular part is
due to increases in f.(r), fe(r)/r™ is increasing as claimed.
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Let p. — p be a sequence of points on the support of the penalty minimizers converging to p € Supp(T).
Set f(r) :=F (TI_B(p, r)) Since f.(r)/r™ is monotone increasing as a function of r for each fixed € > 0,
so will be f(r)/r™. O

Arguing precisely as in [5, 5.4.3], (see also [11, pp. 90-95]), Proposition (11) follows.

5. DOMAIN OF THE PENALTY-MINIMIZERS

Let Q = B(zo, R) be a ball. It follows from the structure theorem for rectifiable currents [5] that, except
over the bad set B., which is a set of mass less than eR™, the penalty-minimizer T, will be the graph of a
vector-valued BV function u..

The points x € Q\ B, so that for all p = 7~ (z) N Supp(T:), O(p) = 1, is of measure (1—¢) || = (1—¢€)w, R"™
because of our bounds on B.. Since T.|_ 7~ '(Q\B.) is a rectifiable section, the structure theorem for
rectifiable currents implies that for Q-a.e. points z of Q\B,, there is one point in 7~ !(z) N Supp(T.).

Define u. as a vector-valued BV-function over Q\B. whose carrier is Supp(T¢) [2, Section IV], defined
coordinatewise by integration, first defining S; as n-dimensional currents in U by S;(¢) := T'(y;n*(¢)) for
¢ € E™(U) and y; the j*® coordinate of the fiber (U must be a coordinatizable neighborhood). Then, the
components of u. can be defined by S;(¢) = [(ue);j(x)¢, which define the components as BV q.-functions
onU.

It is not clear (compare [2, p. 106]) that this BV map will be a Lipschitz graph a.e. in general. For example,
if T is the simple staircase current T, = [[(¢, o |[¢])]] + [[([t], (t — 1))]], t € [0,n], T € T'([0,n] x R), then T
will be a polyhedral chain, and so the image of a Lipschitz map. However, the set A on which T|_7~(A)
will have a single point in each preimage is the base interval minus finitely many points (excluding the points
that are the projections of the risers of the stairs), and Supp(T) N7 *(A) cannot be a Lipschitz graph on
all of A. By controlling the height « of the risers the total cylindrical excess F of this example can be as
small as needed as well.

However, it is the case that there will be, for any positive number § > 0, a Lipschitz map ¢ so that g = u.
except on a set of measure less than §, by Theorem 2 page 252 of [4]. In fact, g can be taken to be C! by
Corollary 1, p. 254, of the same reference. The Lipschitz constant of the map g will clearly depend upon 4§,
as is illustrated by the example above.

Now, it is not necessarily true that the graph of g will agree with Supp(T.) on the set where g agrees with
U, since that graph does not necessarily agree with Supp(T;) itself.

Proposition 14. For any ¢ > 0, there is a set D. O B, of measure less than 2| B.|| and a C' map
ge : U\D. — F so that, as rectifiable currents,

graph(go)_a=Y(U\D,) = T.l_x=~Y(U\D,).

Proof. For § > 0 sufficiently small, Choose g, by [4, Corollary 1, p. 254] to agree with u. on U except for a
set of measure 6, and to be C' and Lipschitz there. Take D. to be the union of this set with B., which if §
is chosen small enough will have measure bounded by 2 || B¢||. It suffices to show that these currents agree
except over a set of measure 0 in the domain, outside of D.. However, if they disagree on a set A, within
U\D., of positive measure, then for some i, g;(z) = (u.);(z) is different from y;(Supp(T.) N7 *(z)) on A.
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However, for any form ¢ on the base, over any subset V' C U\ D, since m4(T) =1 - [U],
[ wisuwn(z)ne @) o
v
/ vy (Supp(T) N7 (@) < 7°(9), T > dH”
Supp(Te)Nm=1(V)

/ < ij*(@, T, > dH"
Supp(Te)Nm—1(V)

= (nLa) (@)
= 5i(9)

= [ sty

Since this equality must hold for all ¢ and V' C U\ D, as above, the two functions must agree on a set of full
measure. ]

Note 15. The mass || D.|| will satisfy
1
lim = ||D]| =0
e—0 €
by the construction of both B, and the extension D, as defined in the proof of the previous result. Similarly,

Lemma [10] will imply that
2
|De]l < o AR
[log(e)]|

with A depending only on dimension.

6. HOMOTOPIES AND DEFORMATIONS

Let T be a one-parameter family of countably-rectifiable integer-multiplicity currents with T° = T, smooth

in t. The derivative h := % 0 T! at t = 0 is a current, but in general will not be a rectifiable current. The

support of h will be T,, but h will be represented by integration as
_>
ho)i= [ <o d|T],
E

where
— d| =
Rd||T.| = —| T'd||T"||.
Il dt}o 1|

If T, is a smooth graph, T. = graph(g.), then T* will be also, for ¢ sufficiently small, T* = graph(g. + tk +
O(t?)), by the implicit function theorem, and

d —
RAIT) = 5| Th||T|
dt
0
= = (e1 4+ Vige +tVik +12%) A+ A (en + Vige + 1V k + t25)dL™
0

= (Vlk/\(ez—i—Vng)/\---/\(en—i—Vnge)#—---+(61+V196)/\---/\Vnk)d£”.

Remark 16. Note that this derivative is first-order with respect to the derivative Dk. The derivative will
be first-order with respect to Dk for places where T, is not a graph, since, being rectifiable, Dk is a sum of
terms of that sort.

Equivalently, we can consider maps H; : [0,1] x U x R/ — U x R’, ambient homotopies of the region into
itself, and the push-forward (H;)x(T) = T*. Of particular interest will be in families which are vertical in
the sense that H;(z,y) = (x,y +n(t,z)) for some n : [0,1] x U — R7. These are, of course, in the graph case
equivalent to families T = graph(g. + n(t, z)).
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6.1. Euler-Lagrange equations for 7,. Restrict the deformations T to be, for each ¢ > 0, deformations in
the vertical directions only. For a rectifiable section, such a deformation will remain a section. If the domain
U = B(xzg, R), is a coordinatizable neighborhood, so that the fiber can be considered to be a compact subset
of R7, and if coordinates are chosen so that (zo,%) is (0,0) (for a particular value of 7 to be determined),
then, following [2], a deformation given by T* = (Hy g)4a(T.), where

(6.1) Hyr(2,y) = (z,y + tn(z/R)),

so that, over B(zq, R)\D., T.|_C(z¢, R) = graph(g.), where g;(z) = ge(x)+tn(z/R), and where  : B(0,1) —
R* is a smooth test function with support within the open ball and with ||V7|| < 1 pointwise. Set H; := H; ;.

Over a set of full measure in Supp(T.) the tangent cone at (x, g(x)) € Supp(Te) is an n-plane and is defined
as usual from the graph of g.. Since the area functional, as a functional over the base, is then

2

[\ I 190 AT+ ac,
2\D.

n
Vge ﬁ Vge

then the Euler-Lagrange equations, obtained from calculus of variations methods (using a vertical variation
g1(x) = ge(x) + tn(x/R)), is

2

d acr

n
Vg —~—V
dt Qt/\“./\ 9t

/ L+ [V grll? + [ Ve A Vae]]? + - +
0Ja\D.

n Z.l
= / Z < vigeu Vm(x/R) >+ Z Z (_1)il+im <vi1g€ AN A vikgﬁa
Q\D. i

k=2 i1 <---<ig,l,m A

im
7vilg€ AN A vizgﬁ >> < vilgﬂvimn(x/R) > /
A\

2

L+ |[Vael? + [Vge AVge2+ - + e

n
Vge m v.ge

Since the quadratic form A, at a fixed point x, defined by (v, w) —< V,g., Vige >:=< Av,w > is symmetric,
there is an orthonormal basis {e;} of T.(U,x) for which A; := V.,g. = Ae; are mutually orthogonal,
simplifying the calculations above somewhat.

0 = /U\De (Z <A, Vin(z/R) > +

n i
+ > 1w l* - 1140 |* < Ai, Vin((x — o) /R) > /

k=2 i1 <-<ig,l=1...k A

LY >0 AP A 1P ) den

k=1 i1 <---<ig

Additionally, since

n

1430 30 Il Aal? =TT (1 + 14:0P)

k=1 i1 < <iy, i=1
and similarly, for each j

n

n—1
1+ > Al =TT (1 1aP),

k=1 i1 <---<ip,i1#j i=1,i#j
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as a functional over the base,

0 = / < AR Vinla/ B> (0SS ST a2 g, )2 ) e
U\D. ;3 L+ [ 4] k=1 i1 <---<ig

As a parametric integrand, the Euler-Lagrange equations simplify, in this basis at each point, to

d —
2 (THd || T
dt o/wl(U\De)f( T

< Vige, Vin(xz/R) >
[ ¥ S|
71 (U\D) L+ [[Vigell

0

where g, is the BV-carrier of T, on the good set. Note that, although not explicitly manifest, the derivative of
d ||T|| with respect to t is included in the formula above, since the preceding calculations are nonparametric
on the good set.

On the bad set, the deformation is

4
di

—
/ f(ThHd||T!| = / <T o >d|T.|+B,
0Jm (D) m=1(D.)

where, since the deformation is vertical, B = 0. This follows since a vertical deformation, that is, T :=
(Hy)pa(T) for Hy(z,y) = (z,y+tn(z/R)), the boundary of the set where the penalty energy is nonzero, and
the penalty-energy H. itself, will not change under such a deformation. Also, the mass of that part of T,

which is vertical (for which m4(T¢) = 0) will also remain unchanged under such a deformation.

7. SQUASH-DEFORMATION

Let E be the cylindrical excess of the penalty-minimizer 7¢,
1
E = Bre(T; R,20) = = (M(Tl_w_l(B(:z:O, R))) — M(ma (T 7 (B(xo, R)))) ,

and for a given R, 0 < R < 1, define the non-homothetic dilation ¢r(z,y) = (%, ﬁ) = (X,Y) of the

cylinder 71 (B(zo, R)) (we restrict to a coordinatizable neighborhood, so that the fiber can be considered
to be a compact set within R’, and we assume without loss of generality that zo = 0), and set T, p =

(PR) 4 (Tél_wfl(B(xo, R))) T¢,r minimizes the penalty functional F, r defined by
—_—
() Fon(s)= [ R ((057), 9)) | (051, 8]
7~ 1(B(xz,R))

which contracts the current S back to the cylinder of radius R, evaluates the original penalty functional there,
and scales to compensate for the factors of R and some of the factors of E. Consider the Euler-Lagrange
equations of this functional, on I'(B(zo, 1) x R¥). Applying a vertical deformation as before,

@ For ((h)y (Tom)

E €
= % ﬂl(B(mo)R))E1R”fe<(¢§1)#((ht)# (Te,R)))dH(gz);)#(ht)# (Ten)|

— d E-'R™"f. (((ht,R,E)# (Te)>) d H ((ht,R)# (Te))

dt 71 (B(z0,R))

)

where h¢ g g(z,y) = (z,y + VERtn(z/R))

For a given z in the good set, then for sufficiently small R this integral consists of two pieces, the integral
over the good set within B(x, R), which is the integral of a C' graph, and the integral over the bad set,
which shrinks with e.
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Case 1. On the good set, where g; and G¢(X) := g;(RX)/(VER) are C', denote also by V,G; the
covariant derivative of G in the direction of 9/9X; on the ball B(0,1), with the metric stretched by
the factor of 1/R, and similarly for other maps. For maps defined on B(0,1), the notation V; will
refer to covariant differentiation with respect to 9/90X;, and for maps defined on B(xg, R), V; will
refer to covariant differentiation with respect to 9/0x;.

d
dt Ferl Bao1)\on(D.) ((ht)# (T@R))

- %/w1<B<10,R>\DE>E_1R_nf6((%1)# ((ht) (T. )>dH PR )y (he)y (T@R)H

%

B /ﬂwB(mo,R)\Dé)ElR a [fé<((ht’R’E)#(TE))>dH((ht’R’E)#(TE))H]

1 (L 195001°)

= E7'R™ < Vig:, Ving > dL"
/B<wo,R>\De 2 1+ || Vige|®

%

oy V(L 195001°)

/ < VEV:GyNEVy > dL"
B(O>l)\¢R(De)

- = 1 Vgl
r=RX
V(1 19500°)
= / 3 < V,Gy, Vin > dL”.
B(0,)\¢r(D.) 1+ [ Vigd
rz=RX
Now, as R — 0, the integral formally becomes
Hj (1 + af)

———— < VG, Vin > dL",
/13(0,1)\111111?%0 ¢r(D) 1+ A2

where a? are the critical values of the quadratic form (v, w) —< V,ge, Vipge >:=< Av,w > as before, for
unit vectors v and w, defining a linear operator A as at the end of the previous section. g is the BV-carrier
of the rectifiable section T.. The operator A = \/det(I + A)(I + A)~! will by elementary calculation have
the same eigenvectors as A, and eigenvalues:

Hj (1 + a?)
7.2 P i 1
(7.2) < Ae;,e; > 0+
Case 1. On the bad set,
Since the measure || D. N B(xzg, R)|| < *IZQRH lor(De) N B(xo,1)]| < ﬁ, thus the variation of the

stretched functional is bounded by the mass of the current to which it is applied over ¢r(D.). This is,
a priori, not a very useful bound, but as € shrinks to 0, the bad set D, also shrinks to 0 measure, and the
variation of vertical portions of the current remains 0. In addition, the mass of T, over the ball B(z,1) is
bounded in terms of the excess E. Specifically, we have:

Lemma 17. Given E = Exc(T., R), and for any € > 0,

*1(D€DB(3:0,R))H < ER" + eAR"/ [log(e)|.
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Proof.
(|[rlm (D Blao, R))|| = 1D 1 Blao, R

+ 1 De 0 B(zo, R)||
< FER"+|D.N B(xo, R)||
= ER"+eAR"/|log(e)],

T =Y(D. ﬂB(;vO,R))H

where the first inequality follows from the fact that the excess is that same difference between the mass of
T. and its projection (multiplicity 1) over a larger area than D, N B(xo, R). O

Conversely, the excess E will give a bound on the measure of D., which will allow us to re-estimate the mass
‘ T..7=Y(D. N B(xy, R))H in terms only of the excess.

Lemma 18. ||D.N B(zo, R)|| < ER™.

Proof. On the slightly smaller set B, C D, B, := {x hé((ﬁ)z) > 0for some z € 7~ 1(z) }, there will be at
least 3 points in 7~ (x) N Supp(T,) for a.e. x € B, because homologically mx(T.) = 1[B(zo, R)] and, where
he £ 0, m(ﬁ) = —11[@, applying the constancy theorem. Thus,

ER" > | T.La (B Blao, R)|| - 1B 0 B(eo, B)]
> 2||BEQB(I05R)”5

and the Lemma follows from the fact that | D. N B(zo, R)|| < 2||Be N B(xo, R)||, by Proposition (14). O

Remark 19. On cursory examination, this Lemma would seem to imply that there is a relationship between
the excess and the penalty parameter €, that is, the excess could not be chosen arbitrarily small unless € is
itself sufficiently small. Since, however, D, can be empty independent of €, that is not necessarily the case.

Corollary 20. Given ¢ >0 and E = Exc(T., R),

Proof. 1f e is the unique unit horizontal n-plane so that m.(e) = *xdVi,

T._7=Y(D. N B(zo, R))H < ER"

ER" = ||[Tla (Blao, B)| - | Bao, B)]
- / (1—<ﬁ,e>)d||T€||
©=1(B(z0,R))
> (1-<Tie>)d|T
=Y (D.NB(zo,R))
= |rLr (Den Blawo, R)|| - 1D Blao, R
> ‘ T.L_x=Y(D. N B(o, R))H — ER"
by Lemma (18). O
In addition, we have
Proposition 21.
d

= Ferlonin.) ((ht)#(TE,R)) < OVE.
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Proof.

d
i Ferloncon ()4 (Tem)

- 2 / iy BRI ((Gﬁ}}l)# (P (TE,R>)) a[[(¢r"), (hy (Ten)|

o 7 (]l o )|

—
_ / E'R™ < T hopp>d|T|
©—1(D,)

IN

/ E'R™™Ed||T.|
7=1(D.)
CVE.

IN

8. TECHNICAL ESTIMATES

There are a number of technical estimates we will need of higher Sobolev and L? norms for the BV carrier
f of T. over B(zp, R). The notation is as in the previous section. These results are all slight modifications
of results in [2]. The present situation is, unfortunately, slightly different from that considered by Bombieri,
so that the statements, and proofs, need to be altered.

Following [2], first we show that

Lemma 22.

[ wap)-nac < pre.
B(Io,R)

Proof. If n is smooth and of compact support in the interior of B(zg, R), then

0
[ = - [ 421,

= T <yjﬁda:1 ARERWN dazn)

ox;
= T ((—1)iyjd (ndxl Ao Ndag A A da:n)>
= T ((—Uid (yjndxl Ao Ndag A A da:n)) +
+Te ((—1)i_177dyj Adzy A Adag A A dxn)
= (—1)'0T. (yjndxl Ao Ndzi A A da:n) +
+Te ((—1)i’177dyj ANdzy A ANz A A d:z:n)
= T ((—1)i‘1ndyj Ndzy A~ A d; /\---/\d;vn> .
Thus, by the definition of mass and the definition of f as the BV-carrier,
(8.1) SHP/B( " nodwy A -+ Adxy, + ZWijDifj < M(T.LL7~"(B(x0, R)))
o, =

where the supremum is over all (1, 7;;) of pointwise norm less than or equal to 1. Since that supremum on
the left is the total variation of (dz,df), subtracting |, B(z0,R) 1dL"™ from both sides yields the statement. [J
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Lemma 23.

/ |df | < VER™.
B(zo,R)

Thus, there is a y* so that
/ |f(x) —y*|dL™ < VER™.
B(IU,R)

Proof. In the inequality (8.1), set 7o =1 — 7, 7 > 0, put all but the D, f; terms on the right hand side, and
we get

/ E ni;Dif; | < (wnT+ E)R"
B(zo,R) \ 3j
for all n;;with >- 77, < 27 — 72, s0
(wnT+ E)R"
B(zo,R) V2T — T
Choose 7 = E/(E + wy,), then

/ ldf| < VE + w.VER".
B(zo,R)

The second inequality follows from the first by a Poincaré-type inequality for BV functions, proved by the
standard contradiction argument using the compactness theorem for BV functions. |

Remark 24. Note that the implicit constant in the < of the statement of the Lemma is independent of E.
Lemma 25. For each € > 0, the bad set D, can be chosen so that |Vg| < 1/vVE on B(zo, R)\D..

Proof. By Lemma (23), there is a constant C so that fB(IO R) ldf|| dL™ < CvER™. For each A > 0,
|[{x € B(zo, R)|||df ()| > A}|| < CVVER"/A. Given 1 > ¢ > 0, enlarge the bad set D, to also include
{:1: € B(zo, R)| ||df ()| > 1 /\/E}, which will still keep the measure of the bad set || D.| < ER". O

Lemma 26. For each penalty-minimizer T, there is a v1 >0 so that if the excess E < 1, we have
Supp(T.|_n~(B(xo, R")) C {|y -y < EﬁR} :

where R' = (1 — EY/*")R.

Proof. Initially, we need some basic estimates.

From Corollary [20], || D|| < CE. For any given v,
(vR) - meas (B(xzg, R) N {x ¢ D.||f(x) —y*| >vR})

< / (@) — g dL”
B(I(),R)
< El/anJ’_l,

by (23) for the last inequality. Then,
1
meas (B(zo, R) N {z ¢ D.||f(z) —y*| > vR}) < —EY2R".
v
This implies that

ITel {2 = (z,9) lly — y"| > vR}
< Tl ba(De) + meas (B(zo, R) N {z & De||f(z) = y*| > vR}) + ER"

1
< (2ER" + 5El/Q)R".
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The proof of the Lemma now follows by a contradiction argument. Choose v = %El/ 47 and suppose there
is a zg € supp(T), z0 = (%0, Yo), With |yo — y*| > 20R, and with |z¢| < (1 — 2v)R (without loss of generality
we can take zp = 0). Then,

{zllz =20l <vR} C{z= (@, 9) [ly —y"| > vR , |&—wo| < R}
and so the previous inequality implies
M (T Az = (5,9) |z — 20| <vR}) < (E+ %El/Q)R”
Now, the monotonicity result Proposition(11) implies that for € > 0 sufficiently small
(WR)" < M (TEI_ |z = 20| < UR}) :
stringing these inequalities together implies
2iﬂEl/‘lR” < (E+2B"Y*7 "R < (E+2E'/?~1/*")R",

However, since the constant implied in the < of this inequality is again independent of E, for sufficiently
small F this inequality will fail. Thus, there is a sufficiently small ¥, F < -1, for which there is no such zy;
that is, for which the statement of the Lemma will hold. O

Lemma 27. Set

1 /
7= fdcr.
| B(zo, R/2)\ (De 0 B(zo, R/2))|| JB(20,r/2)\(D.NB(z0,R/2))
Then
/ ly -3 d||T.| <<E””2”R"+2+/ If — 7% dcn.
7~1(B(z0,R/2)) B(zo,R/2)\D.

Proof. We have, from the proof of Lemma (26) that, for any s > 0,

|ITell (== (B(zo, R/2)) N {ly — 7| > s})
< ER"
+meas(B(zo, B/2)\ (De N B(xo, B/2)) N {ly — Y[ > s}),
where the first term on the right-hand side is a bound on the mass over the bad set D, N B(xzo, R/2). Set

Y = suPyeSupp(Tl_rl(B(zo,R/z))) ly — 7|, and we have

/ ly— 7P I
7=1(B(xo,R/2))
Y
= 2/ sM (Tl_ﬂ'*l(B(xo,R/2)) N{ly—7| > s}) ds
0
< YZ?ER" +/ |f =g dLc™.
B(z0,R/2)\D.

Choose T with [T — x| < R/2 and so that (Z,7) is in the convex closure of supp(T.l_7—'(B(xo, R/2))) for
e sufficiently small so that the estimates in Lemma(26) hold. That lemma then implies that

Y < sup ly—y*| +|y* — 7 < 2BY'"R.
71 (B(zo,R/2)

For € > 0 sufficiently small, substituting this inequality in above yields the Lemma. g

The following result, unlike the others of this section, is not merely closely modeled upon the results of [2],
it is precisely as given in that paper. See [2] for the proof, where it is Lemma 7.
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Lemma 28. Let 0 < 0 < 1,1 < p < -"5. there is a constant 7 = 7(0,p) such that if A is a measurable
subset of B(xg, R), if

meas(A) > 0 meas(B(zo, R)),
if h € BV(B(z0,R), and if either

/ hdL" = 0 or/ sign(h) |h|"* dC™ = 0,
A A

1/p
R—"/ |n|P dL™ < TRl_"/ |Dh|dL™.
B(IU,R) B(IU,R)

then

Lemma 29. For

; J,
7= face,
| B(wo, R/2)\ (De N B(wo, R/2)|| JB(20,R/2)\(D.NB(x0,R/2))
as in Lemma (27), and if E <1, 1 <p < 2=, we have

n—17’

/ |f _y|2p dﬁn <<p Rn+2pEp(l+l/2n)'
B(zo,R/2)\(B(z0,R/2)ND¢)

Proof. We may assume that 7 = 0. For ¢ = ¢(x)dzy A -+ A dx, a horizontal form, define currents V; by

Vi(9) == Te(y;ly;|o)

and represent it by integration as

Vi(6) = /B @

with h; € BV (B(zg, R)). By the definition of the good set B(zo, R/2)\(B(zo, R/2) N D.), h; = f;|f;| on the
good set. If v = >~ ahidxi A--- A dzi A+ Ndy, is smooth, with compact support in the interior of B(zg, R),
we have
Vi) = Te(ysly;lde)
= OT(y;ly;1v) — 2Tc(|y;1dy; A )
= —2Tc(ly;ldy; A ).

If ¢ has compact support within B(xo, R/2),

V()| < 2/ j (0
1OV ()] B(mg,R/2)|yJ|Zi| |

<dyjAdx1A~-~AJ£iA-~-Adxn,ﬁ>

d|[Te]|

1/2
— 2

< 2(sup vl [ |yj|(ZKdyjAdxlA---AdziA...Ad%,fQ ) a|T.)

B(zo,1/2) i

1/2 , 1/2

< 2(sup ) (/ |yj|2d||T€||> (/ - (e T) ]dnTen)

C(wo,R/2) C(wo,R/2)
<

1/2
2 (sup |¢)) ( / |yj|2d||T€||> QER'?.
C(z0,R/2)
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Lemma (27) and this inequality implies that

/ \DhyldL® = M ((avj) I_B(xo,R/2))
B(z,R/2)

1/2
< ( / |yj|2d||T€||> (2ER™)"?
C(zo,R/2)

1/2
< (2ERn)1/2 <E1+1/2an+2+/ |hj|d£"> .
B

Now apply Lemma(28) with A := B(xg, R/2)\D. inside of B(xg, R/2), which implies that

/ |hj|dL" < R/ |Dhj;|dL™.
A B(xo,R/2)

Combining this with the previous inequality,

2
/ |Dh;|dL™ | < (2ER™) E1+1/2”+R/ |Dhj|dc™ |,
B(z0,R/2) B(z0,R/2)

which by the quadratic formula and the fact that £ < 1 implies that

(w0, R/2)\De

/ |Dhj| dL" <« EY+Y/2n et
B(z0.R/2)

Applying Lemma (28) gives the statement. O

Lemma 30. There is an r with R/4 < r < R/3, for which, given 0 < u <1, there is a current S so that

(1) O(SLC(z0o,7)) = O(T)]_C(xo,7)),
(2) 9(my(SLC(zo, R)) = 9B(x0, R),

(3) diam(Supp(Sl_C'(xo, R))U Supp(TEI_C'(xO, 7)) < R,

(4) Bxc(S,R) < pE+ B2 ju [o oo, [f =TI d,cn/ (R"E).

Proof. As before, normalize so that 7 = 0. If S is any normal current in £ x R¥, the slice
< S,r >=8(SLC(xo,7)) — (8S)|_C(x0,7)

satisfies, for smooth functions g,

<Sr>lLg=<SLg,r>

for almost every r, where Sl_g(qS) = S(g¢), and
P
/ M(< 8,1 >)dr < M(SLC(z0.p))
0
(cf. Morgan, p. 55). Applied to T,, with g = |y|?, and p = R/2, we have

/R/2 (M(< Te,r >) = napr™™ N dr < M(T.|_C(z¢,R/2)) — an, R /2"
0

IN

(g)nExc(Te,R/Z)

(8.2) R"E,

IN
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and, from Lemma (27)

R/2 R/2
/ M Tor > LyP)dr = M(< TL|yf2,r >)dr
0 0
< [ whdm
C(xo,R/2)
(83) < E1+1/2an+2+/ |f|2 drr.
B(zo,R/2)\ D¢

Note also that
M(< Ty >) = napr™™t > M(< 7y (T, r >) — na,r™ ™' =0,
since my is mass-decreasing.
From (8.2), there is some r with
M(< T, >) —nopr™ ' < ER™,
and due to the implicit constant in the inequality, such an r can be found in [R/4, R/3]. We can also find,
using (8.3), a choice of r € [R/4, R/3] also satisfying

1
M(< T.,r > Ljy?) < VY2 grtt 4 —/ |FI2dcn.
B(x0,R/2)\D.

We now construct a comparison current. Set S to be the current
§ = Blao, (1 — 1)r) x {0} + hip([1 = 1+ plx < Toy ) + (Blo, B) — Blo, (1+ ) x {0},
where
h(t,z,y) = (tw,y — |t = 1ly/p).
S is a deformation of the horizontal current B(zg, R) x {0} that matches with the slice of T, at radius r, but

which is still flat off of an annulus of width 2u. It is clear from the construction that this current satisfies
(1) and (2) of the statement.

Since |0h/0t| < (r? + |y|?/p?)'/? (also cf. |5, 4.1.9])

1+u

Mlbgp((1 =i+ plx < Tar>) < [0 [ 4 P P2d ) < T > .
1—p
Performing the indicated integration with respect to ¢ and noting that (2 + |y|?/u?)"/? < (r + M),

w3

n __ _ n 2
My (L =1+ plx <Ter>)) < <(1 el - (L=n ) / (T+ ZJTL) d||< Te,r >||
(8.4) < (2np) <TM(< T.r>)+ %Mk T.,r> |_|y|2)> .
Now,
Exzc(S,R) = M(SLC(x0,R))/R" — an,

My (1= p, 1+ px <Te,r >))/R" + o (1= p)"r" + (14 p)"r") /R

IN

1
2nu <T./\/l(< Te,r >)+ W./\/l(< Te,r > |_|y|2)> /R"™ + apn(—2npr™)/R™

1 1
< ’I”(ERn_l) + — E1+1/2an+1 + _/ |f _y|2 drn /Rn
wer R JB(ao,R/2)\D.

1 1
< ppraping | i -gltacr),
H uR B(xo0,R/2)\D-

which is part (4) of the Lemma.
Part (3) of the Lemma follows from Lemma (26). O
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Lemma 31. If R < 3, then, for 0 < p < 1 chosen as before, and if E < min{~, (2/3)*"},

1 E1/2n 1
E;vc(TE,R/él) < uBE(l+ —) + F ( (1 + —)) + / |f —y|2 dﬁ"/ (MR"”).
1% B(z0,R/2)\D.

2¢ 2¢

Proof. Again, suppose that 7 = 0. Let S be as in Lemma (30). and set
T :=TJ| C(xo,r) + S — SL_C(xo,7),
which replaces T, by S outside of the cylinder of radius r, without introducing any interior boundaries by

the construction of S. Note that 8T = OB (20, R) x {0}. By construction, monotonicity of the unnormalized
excess, and the choice of r, R/4 <r < R/3,

(R/4)"Exc(T., R/4) < r"Exc(T.,r) = r"Exc(T,r) < R"Exc(T, R).
By the definition of the penalty functional,

Exze(T,R) = (M(f)—M(B(xO,R)x{O})) /R"
(

< (FT) = Fo(Blwo, R) x {0})) /R".

Using minimality,

FTL_C(z0,7)) < F(SL_C(20,7)),

so that
FAT) = FT.LC(zo,r)+ (S = SLC(x0,7)))
< Fe(9).
Thus,
Bee(T,R) < (FUT) - F(B(xo, R) x {0})) /R"
< (Fe(S) = M(B(xo, R) x {0})) /R".
Now,

Fe(S) = M(B(xo, (1 = p)r) x {0}) + M((B(xo, R) — B(xo, (1 + p)r)) x {0})
+Fe(hg ([l —p, 1+ plx < Te,r >)),
and the slice < T, r > is the graph of the C*! function f on dB(zq,r)\(De N OB (z0,7)). The integral over
the bad set D, NOB(zg,r) will, for some r € [R/4, R/3] consistent with all previous choices of r, be bounded
by the mass over that set plus (12/R)(ER")(5-) = 12R""!(E)(5) by Corollary (20) and the definition of
Fe. So, similarly to equation (8.4)the proof of Lemma (30), but using the height bound of Lemma (26) to
bound |y|, along with the estimate for |y| from Lemma (27),

Supp(T.Lx~"(B(ao, R)) € {ly —y’| < E¥ R},

and
sup |y —y*|+|y" —7| <2EV*"R,
7w=1(B(xzo,R/2)

with 7 = 0, implying that |y| < 2EY/*"R, to bound the contribution from the sloped sides of S on the bad
set,

Felhg(1 —p, 1+ plx <Te,r >)) M(hp([1 = p, 1+ plx <Te,r >))

IN

/B(rom(lJr#))\B(zom(lﬂ))

0+ oty (2O oty )

_|_

IN

/ M(ha([l = p, 1+ plx < Toyr >))
B(zo,r(1+p))\B(zo,r(1—p))

2R2E1/2n

o <r + T) (12R"1)(E) (=

3)
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Combining this inequality with Lemma (30),

Exzc(T.,R/4) < 4"Exc(T,R)
4" (Fe(S) = M(B(xo, ) x {0})) /R"
4" (M(S) = M(B(zo, R) x {0})

+2nu <r + ﬁ#) (12R”1)(E)(2—16)) /R

IAINA

2R2E1/2n

< g <E3:c(S) o <r + T) (1231)(13)(%))

1 E/2n 1 —|2 n n+2
< pEl+—)+FE (1+=))+ |f —7l"dL (uR™2),
2¢ 1z 2¢ B(z0,R/2)\D.

as required. 0

9. FIRST VARIATION OF F.(T)

Consider the deformations (h;)4(Te) of T, where h; is given by
hi(x,y) == (z,y + tVERn(z/R)),
for —1 <t < 1, and n smooth with compact support in | X| < 1, with ||[Vn|| < 8. Given the blow-up map

onla) = (o) = (XY,

F(X) = f(RX)/(VER),
where f is, as before, the BV-carrier of T.. On the good set, moreover, G¢(X) = g.(RX)/VER, and so
VxG. = ﬁvzge, where g, is the graph representing 7T, on the good set.

define F : B(zg,1) — R7 by

Lemma 32. If n(X) is smooth with compact support in |X| < 1, |Vn| < 1, then given a deformation hy
given by

hi(e,y) := (z,y + tVERn(z/R))
and if Te g = (9r)%(T.), where ¢r(z,y) = (z/R,y/(VER)), then

d

—J e h TE — i in, F t n E
dt}',R (( t)#( ,R)) /B(Xo,l)i)ZkAk (Vin, Ve F +tVin) dL™| < VE

Proof. By Lemma (20), and the definition of the bad set D, in Proposition (14), we find a C* function
ge : B(zo, R)\D. — F whose graph agrees with T, over B(zo, R)\D., and g;(z) := gc(x) + tvVERn(z/R).
Then

L(t) = Fe((ho)g(graph(ge)(C(zo, R)\n~"(De))/(ER"),
Fe((he) g (T)L(Clao, R) N7~ (D)) /(ER")

=
—
~
~

so that
Fe((he)#(Te))/(ER") = L(t) + K (¢).

Apply the squash-deformation ¢ (z,y) := (z/R,y/(VER)). I T. p == (¢r)%(T.L_C(xo, R)), it will minimize
the functional F, g defined by

Fer(9) = Fel(6")#(9)/(ER"),
so that, on T, g, Fe.r(T-.r) := Fe(T._C(z0, R))/(ER™). Explicitly, for S a graph on 7—(Q) ¢ C(Xo,1),
_ . 1
ForlS) = @4 /ER™) + - Ho(S),
where H is as defined in the beginning of §4.




PARTIAL REGULARITY OF MASS-MINIMIZING RECTIFIABLE SECTIONS 23

On the good set, since the penalty term vanishes there,

d d .
oL = Efe((ht)#(gmph(ge))l—( (w0, R)\7~"(Dc))/(ER™)
d
= M)y (graph(ge))|-(C(zo, R)\w /(ER™)
< Vige, Vih > .
_ / §o =g Vil 2 |Tt||/ (ER")
7=1(B(zo,R\D:) 5~ 1+ Hvzgt”
by [6.1]. Since g¢(x) := g.(x) + tvERn(z/R) and h(zx) = = VERn(z/R),
d < Vige,Vi >+t\/E<V1- . Vin > N
aLo = [ VE Y SYige Vil LIS
dt 7= 1(B(wo,R)\D.) 1+ [[Vigel|
B / 1 Z < Vige,Vin > +tVE < Vin, Vin >
B(ao,R\D. VER" “= 1+ ||V;g.|* + 2tVE < Vige, Vin > +2E ||V ;n]|*

(e1 4 Vige + tVEVIN) A A (en + Vinge + t\/Evnn)H acr.

Now apply the squash-deformation ¢r(z,y) = (X,Y) := (z/R,y/(VER)). Explicitly, for S a graph, S =
gTa’ph’(P(X)) on C(XOa 1)7

Fer(S) = |[(9r1)# (9| /(ER™) + ERnHo(S)
1
= — / \/1 +E|VPIP+-- -+ E*||[V, PA--- AV, P|?dL",
L JB(zo,r)
keeping in mind that the penalty term vanishes on graphs. Use a coordinate system {z',...,2"} so that
the quadratic form A (v, w) — < Vyge, Vi ge >|I0 is diagonalized, with eigenvalues af. The operator A, :=
I, (1+a3)

det(I + Ac)(I + A.)~! with the same eigenvectors but with eigenvalues A, ; = is the first term

in the expansion of the previous expression.

1+a?

G0 = LEhw(graph(a) (Clao, R)\w~ (D) (ER")
B d

= E]:EvR((d)R)#(ht)#(Te)l_c(x(),R)\Trfl(DE))

d
= S Fer (graph(Ge + )l (C(Xo, D\ér(x (D)) )
_/ E<V,G;,Vin>+tE <V;n,V;n> .
E Jp(xo,10\6r(De) 5 1+ E||Vi(Ge + tn)||?

~\/1 + E|V(Ge+tn)|> + -+ E" |[V(Ge + tn) A - AV(Ge + tn)||>dL™

/ (< ViGe,Vin >4+t <V;n,Vn >) A dC" 4+ Q,

B(Xo,1)\¢r(D<)

where the coordinate basis { X1, ..., X, } is chosen at each point to be an orthonormal eigenbasis of (V, W) +—<
Vv (Ge+tn), Vv (Ge+tn) > and, at each point, V; := Vg 9x,5. Since {V;(G. + 1)} is orthogonal by choice
of basis,

\/1 + E|V(Ge+t)||>+ -4 E|V(Ge + tn) A--- AV(Ge + tn)]?

- \/Hj (1 +E|Vi(Ge + tn)l\z)

Choose {V;} to be an eigenbasis of A as above, that is, an eigenbasis of (V, W) —< Vv (G 4+ 0n), Vi (Ge +
OT]) > at Xp.
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Q@ is given simply as

/ < VG, Vin >+t <Vin,Vin >
B(Xo,\ér (Do) 5 1+ E[|Vi(Ge + tn)||?
— (< ViGe,Vin > +t < Vin, Vin >) AudL"

Q - 1 (1 B9, ilP)

/ (< ViGe,Vin >4+t < V;n,Vn >) Q.dL™.
B(Xo,)\¢r(De)

It

2
s (14 BB IE)
Qi(Plv--an) = > _Ai’ia
1+ BB

Qi = Qi(Vi(Gc+1n),...,Vo(Ge +tn)), then by a simple application of the mean value theorem at each x,
there is a ¢ := c(z) € (0,1) for which, since if Vv,Ge|, = A, Qi(A1,...,Ay) =0,

9Qi
Qi = 55 (Pi(c), .., Po(€))(Vj(Ge +tn) — Aj)

\/Hk;zéi,j (1 +E ||Pk(C)H2)
E
7 L+ EIR@IP 1+ E P
s (1+ BB @)

—F 3/2 < Pi(C),VZ‘(GE + tn) —A; >
2
(1+EIPO)

< Pj(C),Vj(GE +t’l7) —Aj >

for some (Py(c),..., Py(c)) = (A1,..., Ap) + c(V1(Ge +tn) — A1, ..., Vo (Ge +tn) — Ay), c € (0,1).

Now, f(t) =t/+/1+t is increasing for t > 0 and ||P(c)|| < [|[ViG¢|| < ||P(c)|| (which follows because ||[V7)|
and A; are bounded), so that

\/nk#,j (1 Y E ||Pk(c)|\2) < \/H,#i,j (1 tE Hvkceuz)

and

E<Pe VGt =4 > __ EIREIF_ _ _ EIV,G]?
1+ BB (o) VIFEIBOP 1+ EIV,G°

Then, applying these inequalities to the expression for @); above,

BIV,G \ M (14 B [9:6.1)

Qi < Y

7 T+ BIVGPY 1+ BIR)P

3
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and so, this time because f(t) =t/v/1+ t? is also increasing, and using Lemma (25) in the second step,

VTG BI,61* Ty (1 + EI.GIP)

7,
VE Joon\entp) VI+EIVGI 1+ B IV,GP

Q] < acr

» 195019597 T (1 4+ 1910l
VE Jsomen®0 55 14 |Vigd P14 190

1 / \/ 2
< — I (1 + Hvkge” - 1) dﬁn(X)
\/E B(Xo0,1)\¢r(D.) ( ( ) r=RX
= VE.

The last inequality follows from the fact that

b2
4(\/1+a2\/1+b20—1)—ﬁ20

AL (X)

r=RX

for any ¢ > 1, which is a straightforward calculation.

On the bad set D, by the strong approximation theorem [5, 4.2.20] we can assume without loss of generality
that T.[_7~'(D,) is the image 14 (P), where P is a polyhedral chain and 1 is Lipschitz. The definition of
K (t) and the fact that the deformation h, is vertical [cf. (6.1)] implies that

d d

ki) = 2 (T))d T, /(ER"

G5O = g [ @ R

d
—d ||T; ER"
[, s

since the deformation will leave the penalty part fixed. In addition, the derivative of this integrand will be
0 at all points with a vertical tangent plane, again due to the fact that the deformation is vertical. At all
points where the tangent plane is not vertical, the mean-value theorem approximation used for the good set
will again hold, where we can replace ge(x) by ¥ (p), where (¢ (p)) = z. In the notation above, if

Fen(S) = (05" (S)| /(BR") + o2 H(S),
then applying the squash-deformation, for which ¢ry := ¥
KW = S F () (WpalP)L (6 (D.)))
- =%/ \/ S B H)p (VyalPap P
PV lal+181=n

where again the penalty part is irrelevant since the deformation is vertical, and the deformation H; defined
by H; = ¢rhidy" becomes translation vertically by tn(X), where X = 7(p), p € Supp(P). Also as a
consequence of the verticality of the deformation, the 5 = 0 term of the integral will be unchanged under
the deformation, so

SR = S Fon ((H)# (P (6r(x (D))

1 / E Y ai181=npz0 BT (H) (Vs (P))ag g (He) (W ya(P))
Bh Je Ve t1812n B (H) 4 (¥ 5(P))as)?

“2a11P|l (p)

1
= Rn (/ Z (< ViE,Vin >+t <V, Vin >) AudL" + Q) ,
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The factors Q;, Q = fDe > (K Vi, Vi F +tV;n >) Q;dL"™ can be bounded as before. The factorization of
the integrand

la|+|Bl=n
since we only are concerned with points at non-vertical tangents, P; = V,;(F + tn), is well-defined, where
the covariant derivative is in the direction of 0/0X; as before, and the basis is chosen to diagonalize the
quadratic form (VW) —< Vy F+tn, Vi F+tn > as in the previous case, A is this quadratic form at t = 0,
and A is derived from A as before. Each such @; can also be bounded as (since E < 1) by

S EVI(H) 4 (ga(P))ap)? = \/H (1+EB1RP).

(Vo ViF +09) Qi < VE\ Ty (14 512
< \/E\/H(1+E|Pj|2>

= VE | S EV((H)(Vsa(P))as)?,

lee|+18]=n
so that
d
AUR A SETEA A
< g ] X BN paPas ] P
ER" [, dt @
lee|+18]=n
< }TELw—l(DE) /(VER™)
< VE
by Corollary (20). This establishes the Lemma. O

Lemma 33. With the hypotheses of Lemma (32), if the support of 1 is contained in |X| < 1 — EV/*" we
also have

< VE.

/ > A (Vin, Vi F) dL"
B(Xo,1)

Proof. Here we use the minimality of T,. From Lemma (32), we have that

d
L Fon ((ht) . (Te,R)) J(ER™) — / 3" A (Vin, ViF + tVin) dL”| < VE.
dt B(Xo.1) 7
However, since T, minimizes F., T grwill minimize F. r by its definition. This implies that
d
2| For ((h)y (Tor)) =0,
p Of,R (( t)y (Te,R)
and the Lemma follows from setting ¢ = 0. O
Lemma 34. For any L : B(zo, R) — R* so that, for some o, |grad(L)| < o < 1. , let h(z,y) = (x,y— L(z)).
Then
Exc(hy(T),R) < E +o°.

Proof. Since h is vertical, if e = dx! A --- A dz™ is the horizontal n-vector in A, (B(zq, R) x R¥),
<ehy (ﬁ) >=< e,ﬁ >

and so, for any multiindex

< dz® AdyP hy (?) > — < de* Nyt T >‘ <o.
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Since
Hh#(?)H - S <de AdyP hy(T) >?
le|+|Bl=n
< <e,?>—|— Z (< da:o‘/\dyﬁ,?>+ca)2
lal+]8]=n,|8|>0
< 1+cdo Z <d3:°‘/\dy5,?> + o2
la|+]B8|=n,|8|>0
< 1+ o Z (< d;va/\dyﬁ,? >)2 4+ o2
la+]B]=n,|8|>0
< 1+d0y/1- <e, T >2 + 02,
[he (D) < (A +"0®) T + C”U/ V1-<e, T >2d|7
C(zo,R)
< (A+o)|T)+¢ (oV/TTT) VER"
S ||T|| —|—CWO'2 ||T|| + CWERH.
Since ||T']] < R", the Lemma follows. O

10. ITERATIVE INEQUALITY

Fix 8,0 <3< 1/4.

Proposition 35. If T is a mass-minimizing rectifiable section T € f(B) which is the limit of a sequence of
penalty minimizers Te, and there exists a positive constant o = () and a constant ¢, so that if
R+ Exzc(T;R) < a,
then
(10.1) Exc(hyT; BR) < ¢B*>Exc(T; R)
for some linear map h(z,y) = (x,y — l(x)) with

(10.2) lgrad 1| < a~'\/Exc(T; R).

Remark 36. Note that, if this Lemma holds with some one value of «, it will also hold with any smaller
a. Also, recall from Theorem [8] that for any homology class of rectifiable sections there will be one such
section which is the limit of penalty minimizers.

Proof. If this is not the case, then we will be able to find a sequence R; — 0, ¢; — 0, along with functionals
Fi = Fe, R, as above and T; — T (minimizers of F;), and excesses F; := Exc(T.,; R;, zo) for which E; — 0
and (by choosing each R; sufficiently small) El1 /4n /€i — 0, and
(10.3) limsup E; ' Exc((hi)4(T}); BR;) > cf?
i—00
for all linear maps h;(z,y) = (x,y — l;(x))with
lim sup Ei_l/2|grad l;] < o0.

1—00
Such a sequence {T;, F;, R;}, following [2], will be called an admissible sequence.
As before, let D, be the bad set over which T} := T, is not necessarily a C' graph with bounded gradient,
and let D; := ¢g,(De,) N B(Xo,1). Then, on B(Xo,1)\D;, T; := T, r,will be the graph of a C* function
G;, agreeing on B(Xy, 1)\ D; with F;, which is the BV carrier of T; on B(Xj, R). We need to show:
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Lemma 37. For all i sufficiently large

(1)
/ [|dF;||dL™ < 1,
B(Xo,1)
(2)
lim || D;|| = 0
(3) ,
[ o EPace
lim 2B C0:1/2\éria(D) <1 1<p<—"
i (E;)P/*m n—1
(4)
/ \Fy|dLm < 1
B(Io,l)
(5)

Ezce(T;, R; /4 1 . 1N\ 4
Brelu Bi/d) (o LY gy (o0 L B3/
E; 2¢; ’ 2¢; !

(6) The limit
lim A; := Ap

is the symbol of an elliptic PDE.
(7) for every smooth n(X) with compact support in |X| < 1 we have

o
lim/ A). <—,Dkﬂ>dcn —0,
i JB(wo,1) Z( )Jk 0X;
(8) Finally, if h;(z,y) = (x,y — l;(x)) is a sequence of linear maps with
o lgradd)]

U
then 5 , T\ R
Proof. Set, for each 7 in the sequence,
1

y(i) =

[ B(zo, B/2)\ (De N B(xo, R/2))|| J B(20,R/2)\(D."B(20,R/2))
For each i, translate the corresponding graph so that so that 7(i) = 0. By Lemma(28), there is a constant 7
so that for all p, 1 <p < 2=

n—17?

n\ 1/p n
(fB(:co,R) |fi|p ac ) < TIB(IO’R) dez” ac — TIB(CEO,R) dezH

fidcr.

Rn — Rn—1 ' Rn—1 ’

and since we have by Lemma (23) that fB(zo R) lldf;] < E;R™, with p = lwe conclude that

/ |fildL™ < /E;R™,
B(:Eo,R)
which since F;(X) = f;(RX)/(vV/F;R), as before yields that for all ¢ sufficiently large,
/ ||[dF;|| dL™ <« 1, and / |F;|dL™ < 1,
B(:Eo,l) B(:Eo,l)
which are statements (4) and (1), respectively. Lemma (29) and the definition of F; immediately gives

(
statement (3), and statement (2) follows from the bound ||D.|| < Iffg—l(f;l’ so that || Di]| < qzimyr, and the
choice of ¢;.

To show statement (5), use Lemma(31) to show that (with 7 = 0) and Lemma (29)
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Fxc(T;, R; /4 n(1 n
Bzc(T:, Rif4) < (/H—EUQ (—)) |fil*dL™ [ (nEiRPT?)
b /L B(zo,R;/2)\De,
L1
< (142 <u B} <—>) \F2de™ [ (w)
2¢; Iz B(z01/2)
nf1
< 1+— <N+E1/2 <—>) \F[2dc™ [ ()
H B(z01/2)

1 1 1

= (1+—)+— (1+—)E"*" + |Ey|*der | .
2 2" ¢
€ € B(z01/2)

Taking x4 to minimize the right hand side above,
1/2n 2 1
VO B 4 fyog1y [P dL

‘LL:‘LL,L: 1 5
1+ sc

which for 7 sufficiently large will be less than one, by (3) above, and the fact that E; N\ 0, gives

E T“ 4) n
Bac(T, Ri/4) R/ ,/1+— 1+— E}? +/ \F, > der
261 261 B(z01/2)
. 3/2
+ (1+—)E3/2"+/ |Fi[* dcn
2¢; B(x1/2)

1\3/2
< \/1+—\/2+ —EV" 4 (24 E3/4n
2¢; 2€

Statement (6) follows from Equation (7.2). Statement (7) follows from Lemma (33).

easily giving (5).

Finally, statement (8) follows from Lemma (34). O

By statements (1) and (3) of this Lemma, invoking the closure and compactness theorems for BV functions
[5], we can assume that there is an element F' € BV (B(Xy,1)) so that a subsequence (which by standard
abuse of notation we do not re-label) F; — F strongly in L'(B(Xo, 1)) and DF; — DF as distributions. We

then have
/ 3 A < ! DkF> L =
B(Xo,1)

for all smooth n with compact support in | X| < 1. Thus, F will be A-harmonic, and thus is a real-analytic
function. It then follows from the Di Giorgi-Moser-Morrey estimates for diagonal elliptic systems [12] that

sup |F| <« / |F|dL" = hm/ |F3ldL" < 1,
B(Xo0,1/2) B(Xo,1) B(Xo,1)
so we can shift the graph so that F(Xy) = 0. Our previous shift was chosen so that, for each 4, F(i) = 0,

where
1

1B(zo, Ri/2)\ (De; N B(zo, Ri/2))|| JB(2o,Ri/2)\(D.,nB(x0,Ri/2))

The bounds on the L! norms of F' and the BV-norm of DF are not worsened by this assumption except for
possible change of constants, which are implicit in the notation. In addition, the bound of statement (3) in
Lemma(37) continues to hold as well, since the bound %(i) = 0 becomes

y(i) ==

fidcr.

/ FdL" =0
B(Xo0,1/2)\¢r;a(Di)
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from which follows the fact that

|E5|? dLr < |F; + C)*dLn

/B(Xo)l/Q)\¢Ri-a(Di) /B(X0>1/2)\¢R15(Di)
for any constant vector C.

Lemma 38. Let {T;, F;, R;} be admissible. Under a suitable translation (or change of coordinates), F(0) =
0, F; — F strongly in L', F is a solution to the equation

/ 3 Ajk< On DkF>d£"
B(Xo,1)

as well as
/ |F|adc” +/ lgradF|dL" < 1,
B(Xo,1) B(Xo,1)
sup (|F|,|gradF|) < 1,
B(Xo0,1/2)
and

. Exzce(T;, R;/4)
lim =2\t W)
im 2

under the assumption that lim; E1/4"/ e =0.

=0

Proof.

/ \Fldcn = nm/ \Fy|den
B(Xo,1) v JB(Xo,1)

because F; — F strongly in L', and
[I0Fdzt <tiw [ DEjac”
* JB(Xo,1)
by lower semi-continuity with respect to BV-convergence. In order to complete the proof of the Lemma, we
need only show that
lim/ |Fy2der = / \F)*dLm.
" JB(X0,1/2)\¢r, (Di) B(Xo,1/2)
But, if ®; is the characteristic function of B(Xy,1)\¢r,(D;), then

lim |F5)? dc”

/B(X0,1/2)\¢Ri(Di)

_/ |F|?dcr| = nm/ &, |F;|> — |F|*dLn
B(Xo0,1/2) v B(Xo0,1/2)

— 1m| [ (IEP = |FP) + 00 FP - PP dc
v B( 01/2)

3

X
— lim / (F] — [FD) (F] + [F]) + (8 — 1) |[F|*dL”
B(Xo, 1/2)

IN

3

i [ WlE = FIORLE IED) + (@0 1) e
B(X0,1/2)

IN

lim / &, (|| + |F)) |F; - F|dC
4 Xo0,1/2)

+/ (1—®,)|F|*dL".
B(Xo0,1/2)
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Since F is uniformly bounded in B(Xy,1/2) and F; — F strongly in L!, a subsequence will converge
almost-everywhere pointwise, and lim; fB(XD 1)(1 — ®;)dL™ = 0, the last integral above goes to 0, and

/ &, |F;|> — |F|*dLn
B(X0,1/2)

lim
i

< 2lim [ ®; |F| |F; — FldL
v JB(Xo,1/2)

2p—1
lim/ @, |F, [ |Fy — FldL :
t \/B(Xo,1/2)

1—%%1
.(/ m_mﬁ) |
B(Xo,1/2)

The last step is Holder’s inequality for the measure pu = |F; — F|dL™. If 1 < p < -5 then the first of these
last two integrals is uniformly bounded by statement (3) of Lemma (37) by a power of E; (Note that E; — 0
as i — 00.), and the height bound on F; and F' coming from the compactness of the fiber of the bundle. The
second integral goes to 0 in the limit by the strong convergence of F; to F in L'. ]

IN

We can now complete the proof of Proposition (35). Let L = L(X) denote the linear forms
- OF
- L 0X,

hi(z,y) = (x,y - \/EL(CL‘)) ,

T; := (hi)#(T3).
Set F; := Exc(T;, R;). Since |gradL| = |DF| < 1, we apply statement (8) of Lemma (37), which shows that

L(X): (0)Xi,

and let h; be the maps

and

E;

1.
g <

lim
Case 1. lim; E/ E; = 0. This contradicts
limsup E; ' Exc((hi)#(T;); BR) > ¢B°,

1—00
which is a basic assumption on the sequence T;, since this case implies that lim; Exc(i-,BRi)/Ei <

Case 1. lim; E/El > 0. Then, the currents T; minimize Fi, so that {ﬁ-,]—}, R;} will still be admissible,
so that

F; — F,

F(X):= VE, Ei(F —L)(X), F(X)=lm\E E (F-L)X).

Since F satisfies the conditions of Lemma (38), in particular

where

—_1 ~
limE; FExzc(T;,R;/4) =0
and in addition we have B
DF(0) = 0,
and the inequality (10.3) in the beginning of the proof Proposition (35), becomes
lim B, ' Exc(T;, BR;) > 2.
Define s as the integer so that

<4°8 <1

RNy
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(assume that 8 < 1/4, so that s > 1), and for 0 = 0,1,2,...,s we consider
B = Eve(T,, 47 R,).
It is clear by the fact that lim; % < 1 that

5 < (@) E < (@) E,
that is, for some constant C,
5 <curp)E.

If, for some o we have

lim g —o,
then we have B

lilInEflExc(ﬂ, BR;) =0,

contradicting our assumption above. So, we can assume that

lim EE >o.

We also have

hmE;lE(g) <L (4°68)™" < 400,

for c =0,1,...,s. Now, these inequalities and the fact that {ﬁ, Fi, R;} is admissible implies that also
{T;1-C(20,4° BR:), Fi o hy', 47 BR;}
will be admissible. Thus, by the conclusions of Lemma (38),
’3(0*1)
lim — =0,

i /E‘((U)

i

or, given any a > 0, for i sufficiently large,

Iterating this inequality,
~ —~(0) —~(1) o5 (@) o(f0 A\—n
EIC(TZ,BRJ =F; < akF; <---<a’FE; <Ca (4 ﬂ) E;.
Choosing a sufficiently small will then guarantee that, for ¢ sufficiently large

Exc(T;, BR;
xC(EB ) <Cﬁ2,

contradicting the assumption, and completing the proof of Proposition (35).

There is a small extension of this Proposition that will be needed for its application:

Corollary 39. Given 3, T, «() as in Proposition (35), then the conclusion of the Proposition will still
hold, for some o > 0, for the current Hy(T'), where H(x,y) = (x,y + L(z)) is a fized linear map. That is, if

(10.4) R+ Exc(Hyx(T),R) < a,
then
(10.5) Exc(hy(Hy(T)), BR) < cf°Exc(Hy(T), R)

for some linear map h(z,y) = (x,y — l(x)) with

(10.6) lgrad || < o~/ Exc(Hy(T), R).
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Proof. This corollary will follow from Proposition (35) once it is shown that, under these conditions, |grad |

is bounded as indicated in (10.6). However, under the assumptions on R and the excess of Hx(T), if f is
the BV-carrier of T', so that (f + L) is the BV-carrier of Hy(T),

| aptrnaer = [0 - lerad Ll de”
B(0,R)

Y%

Y

[ e 2lae” = [ 1y ac”

)

s0, by Lemma (23)

lgrad L| R" < / |Df||dcr + / ID(f + L) dc”
B(0,R) B(0,R)

IN

VER" + ||Hy(T)||
< VER"+ (a+1)R™

Thus, by Proposition (35), which implies that there is a linear map h for which Ezc(hy(T), BR) < c¢f*Exzc(T, R),
so that, when k is given by k := [ — L, k satisfies the excess conditions (10.4) and (10.5) of this Corollary
and

A

lgrad k|| < [lgrad I|| + [|grad L]|,
which, for « > 0 sufficiently small satisfies the gradient bound condition (10.6). O

The primary use of Proposition (35) and its corollary is in the following Lemma. Let Fxzc(T,a,r) be the

excess of T over B(a,r).

Lemma 40. There is a positive constant Eo with the following property. If T is as in Proposition (35) and
R+ Exc(T,0,R) < Ey,

then, for all a, r with |a| < R/2, r < R/2 there is a linear map h(x,y) = (z,y — l(x)) so that

2
Exc(hy(T),a,r) <C (%) Exc(T,0,R).
Moreover, |grad(l)] < 1/FEy.

Proof. Since
Exc(T,a,R/2) < 2"FExc(T,0, R),
by replacing Eoby Ey/2"™ we see that it is sufficient to prove the Lemma in the special case a = 0. To do
so, we apply Proposition (35) and Corollary (39) several times. Each time, we may need to use a smaller «,
but since our iteration is finite there will be a sufficiently small a to work for all steps simultaneously. We
get linear maps hq, ho, ..., a8hs, hi(z,y) = (x,y — l;(x)) so that
Bae((hi)(T).0,5'R) < B Ere((hi-1)4(T).0. 5" R)

fori=1,...,s, and

lgrad(l; —1;_1)] < o™t \/Efcc((hi_l)#(T), 0, 1R),

with lp = 0, and « satisfying the conditions of Proposition (35) or Corollary (39) for (h;)x(T'). Iterating the
first inequality s times,

Exc((hs)#(T),0,8°R) < c¢B°Exc((hs—1)#(T),0,3 'R)
< AEB*Exc((hs—2)4(T),0, 3 °R)
< ¢*B¥Exc(T,0,R).

So, choosing s so that 3°T'R < r < 8°R, and h = h, we have the second claim of the Lemma. The second
inequality from Proposition (35) or its corollary becomes

graat; — ti—1 Saic-i - xceld, U, )
d(l; — 1 Le=0/25=1 [Ere(T,0, R
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SO

Z lgrad(l; — l;—1)| < Z o~ tei=V/23=1 /Ere(T, 0, R),
i=1 i=1

lgrad(ls)| <

which, assuming at no loss in generality that ¢BVE < 1/2, is less than 2/a. Choosing Ey = «/2 completes
the proof. 0

Proposition 41. With the hypotheses of Lemma (40), the BV-carrier function f(x) of T is of class C* in
B(0,R/2).

Proof. Recall that TLy; = B(0,R)_f;. If h(z,y) = (x,y — I(x)),with [ linear, then the corresponding
function for hx(T) is of course f — 1. Apply Lemma (23) to the current hy(T)|_C(a,r), implying from
Lemma (40) that

/ Df ~1dc" < VT () VE,
B(a,r) R

for all @ € B(0,R/2) and all r < R/2, for | = I, = D(l,,), where, from Lemma (40), note that the linear
map [ of that lemma, here denoted [, ,, depends on the center a and radius r of the ball. We need to show
that the limit
lo =lim{,,
r—0

exists for all a € B(0, R/2). Since

[ a-tpade < [ Df-tysaacns [ Dp-tacr
B(a,r/2) B(a,r/2) B(a,r)

< mJ/C (%) VE,
s0, by the fact that the first integrand above is constant,

Lo = Loy < VC (%) VE.

Iterating that inequality and adding,

T =
la = Lejon o] < \/5(}—%) @;2 g,

lr,a - [a <<

5o, by the triangle inequality, {lr/2n7a} is Cauchy in Hom(R™ R7). Set lp := lim lyj2n,q, then
r/R, and so

lo:=1liml, =1,
r—0

exists.
By a similar argument to the above, for a,b € B(0, R/2), with |a — b| < r/2,

|lr,a - lr,b| < T/Ra
and so

. — | < /R

if |[a — b] < r/2, and so a +— [, is continuous in B(0, R/2).
From this it follows that r—" fB(a " |Df|dL™ is uniformly bounded for « € B(0, R/2), r < R/2, and so the
measure | D f|dL™ is absolutely continuous, so that we can write

DfdL" = ¢dL"
for some ¢ € L'(B(0, R/2)). Since ¢ € L', almost every point in B(0, R/2) is a Lebesgue point, and

lim 7" /B 6w ol act =o.

r—0
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But we already have that

lim 7“7”/ |p(z) — 1| AL =0,
B(a,r)

r—0

so that ¢(a) = [, almost-everywhere in B(0, R/2), so Df = ¢dL™ with now ¢ continuous on B(0, R/2), and
so f € CY(B(0, R/2)). O

Similarly to the discussion in [2, p. 129, lines 12-24|, we have:

Let z € Supp(T) be a point with an approximate tangent plane Tan(Supp(T),z). By the rectifiability
theorem for currents and our lower bound on density Proposition (11), we have that Tan™(|T||,z) =
Tan(Supp(T), z), and is an n-dimensional vector space. If the oriented tangent plane T is not vertical, that
is, w*l_i = e, then there is a linear map H(z,y) := (2, y—L(x)) for which H4(T)g(.) = eo. By Corollary (39),
Lemma (40) and so Proposition (41) will apply to Hys(T) as well. By the monotonicity result, the density
O(T, z) =1 at each point. As a final assumption, assume that the tangent cone Tan(Supp(T'),z) C V, where

V C R™""7 is an n-dimensional plane. Since Tan(Supp(T),Z) D Supp(T.), the plane V = Supp(T.) is not
vertical. Apply a shear-type linear map H(z,y) := (z,y + L(x)) so that H(Tan(Supp(T),Z) =R"™ x {0} C
R"+J, Presume that coordinates are chosen so that z = (0,0).

Proposition 42. Under the conditions of Lemma (41), Supp(T) is a C', n-dimensional graph over some
ball B(0,7).

Proof. Tt of course suffices to show that Supp(Hx(T)) is a C! graph over B(0,r). Since the tangent plane
of Hy(T) over 0 is the horizontal plane in the coordinate system of the last line of the previous paragraph,
given 7 > 0, there is an r = 7, > 0 so that

Supp(H#(T)l_C(O,r)) CA{lz] < |yl < nr} = B(0,r) x B(0,nr), if r < ry,
and
Supp(d(Hy(T)_B(0,7) x B(0,7r))) C dB(0,7) x B(0,7r).
Once we show that
}13% Exc(Hy(T),0,7) =0,
then we can apply Lemma (40) and Proposition (41) to complete the proof of the present Proposition.

Let T be energy-minimizing among rectifiable sections, Ty the current B(0,r) x {0} C B(0,r) x B(0,nr),
and F, be the “fence” obtained by connecting each element of (x,y) € Supp(@H4(T)L_B(0,7) x B(0,77r)) to
(,0) € Supp(dTy). Note that Ty and Hy(T)l_B(0,7) x B(0,7r) — F, have the same boundary, 9Tp. It is
easy to see ([5, p. 363], or [2, p. 128]) that,

)

170 < (sup o) orar)LB(0.r) < B0.1)

and, by slicing and the monotonicity formula, for a generic p, 7 < p < 2r (r < R/2), there is a C so that
H@H#(T)I_B(O, p) x B(0, np)H < Cp"~t. Combining these two inequalities together,

|E,|| < Cnp™.

Since each penalty functional satisfies the ellipticity bounds (equation (3.1)),

([ (DB, p) x BO.1r) = Fy| | T0ll] < Fu(HA(T)LB(0.p) x BO.1p) = F,) = Fe(Th).
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then so will the limiting functional F. Then, by subadditivity, and minimality of T,
(| B©.p) % BO.10) — F, |~ I1T0ll] < F(HAT)LBO, p) x BO, 1) — F,) — F(Ty)

< |H|" | F(TLH (B0, p) x B(0,1p)))
—F(Hy ' (To + F,)) + 2F(H, ' (F,))
< 2(|H|" F(H ' (Fp))
< 2Cnp"
and so
Exc(Hy(T),r) = (‘H#(T)I_B(O,T)XB(O,W) —||T0||>/r"

< 2" (|| He(T)L B0, p) x BO.mp)|| - ITu]) / 0"

< 2 [IE|+|TLB.p) x BO.np) = ||~ ITol] / "

< 2"3Ch.

Since, for any 1 > 0 there is an r > 0 sufficiently small so that the conditions of Proposition (41) hold, the
conclusion of the Proposition holds. g

This proposition shows that the set of “good” points in the base manifold M, the set of points where there is
a non-vertical tangent space, is an open set, and on that open set the graph is of class C!. The next result
completes the proof of the main theorem, Theorem (1).

Proposition 43. Let T be an n-dimensional, mass-minimizing rectifiable section in f(B) which 1is the
limit of a sequence of penalty-minimizers. Then, the projection w(S) = Z onto e of the set S of all points
y € Supp(T) so that the oriented tangent cone is not a plane, or where T(T,y) has a vertical direction a
closed set of Hausdorff n-dimensional measure 0 in M.

Proof. The previous section shows that the set of points with non-vertical tangent planes is open in T,
and projects to an open set. So, the set of points with no tangent plane, or with one having vertical
directions, is closed. The set of points with no tangent plane is of measure 0 in any countably-rectifiable
integer-multiplicity current, by [5, 3.2.19]. Assume there is a set Sy C S of points of T' with Zy := m(Sp) of
positive Hausdorff n-dimensional measure, and with vertical tangent planes. For all but a set of Hausdorff
n-dimensional measure 0 in Sp, the density of the set will be 1 as well [5, 3.2.19]. For any such z € Sy, given
any € > 0, there is a ¢, ¢ > 0 so that the ratio of the measure of of the projection onto M of So N B(z,02.)
to that of the ball of radius ¢, ccentered at 7(z) in M will be less than e,

H"(m(So N Bp(2,04.))) - H"(m(So N Bp(2,05.)))
HW(BME(W(Z)NSZ&)) Wn(s?,e/2

since the tangent plane is vertical. But the measure H"(So N Bp(2,6..)) > wnd? /2 for small enough 4.
since the density is one, so by the Besicovitch covering theorem

€ >

H"(So) > %HW(ZQ)

Since this must be true for any € > 0, it would contradict the fact that T has finite mass if H"(Zy) > 0. O
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