
MINIMAL TORI WITH LOW NULLITYDAVID L. JOHNSON AND OSCAR PERDOMOAbstra
t. The nullity of a minimal submanifold M ⊂ S
n is the dimension of the nullspa
e of these
ond variation of the area fun
tional. That spa
e 
ontains as a subspa
e the e�e
t of the groupof rigid motions SO(n+ 1) of the ambient spa
e, modulo those motions whi
h preserve M , whosedimension is the Killing nullity kn(M) of M . In the 
ase of 2-dimensional tori M in S

3, there is anadditional naturally-de�ned 2-dimensional subspa
e that 
ontributes to the nullity; the dimensionof the sum of the a
tion of the rigid motions and this spa
e is the natural nullity nnt(M). In thispaper we will study minimal tori in S
3 with natural nullity less than 8. We 
onstru
t minimalimmersions of the plane R

2 in S
3 that 
ontain all possible examples of tori with nnt(M) < 8. Weprove that the examples of Lawson and Hsiang with kn(M) = 5 also have nnt(M) = 5, and weprove that if the nnt(M) ≤ 6 then the group of isometries of M is not trivial.1. Introdu
tionLet ρ̃ : M → S3 be a minimal immersion of an oriented surfa
e without boundary M in the unitthree dimensional sphere S3 ⊂ R
4. Let N : M → S3 be the Gauss map, i.e. N(m) ⊥ TmMand 〈N(m),m〉 = 0. For any m ∈ M , a(m) will denote the nonnegative prin
ipal 
urvature of

M at m and W1(m) and W2(m) will denote two unit tangent ve
tors su
h that dNm(W1(m)) =
−a(m)W1(m) and dNm(W2(m)) = a(m)W2(m). When M is a torus, it is known that for every
m, a(m) is positive [2℄, therefore in this 
ase we 
an 
hoose W1(m) and W2(m) so that they de�nesmooth ve
tor �eld on M . In the following, for M a torus, W1 and W2 denote su
h unit tangentve
tor �elds and a : M → R will be the smooth fun
tion given by the positive prin
ipal 
urvature.Sin
e M is minimal, M is a 
riti
al point of the area fun
tional. Sin
e M →֒ S3 has 
odimension1, any variation of the surfa
e M is given by a fun
tion f ∈ C∞(M). The se
ond variation of thearea fun
tion at this 
riti
al point is given by the stability operator

J : C∞(M) → C∞(M) given by J(f) := −∆f − 2a2f − 2f.The nullity of a minimal surfa
e is de�ned as the dimension of the kernel of the operator J and willbe denoted by n(M). Elements of the nullity are in�nitesimal variations of M whi
h, up to order2, do not 
hange the area of M .1.1. Killing nullity. Given a �xed matrix B ∈ so(4), de�ne fB : M → R by fB = 〈Bρ̃(m), N(m)〉.It is 
lear that fB satis�es the ellipti
 equation J(fB) = 0 be
ause, when we move the immersion
M by the group of isometries eBt : S3 → S3 we indu
e a family that leaves the area and se
ondfundamental form 
onstant; fB is the fun
tion asso
iated with this family.In [3℄, Lawson and Hsiang 
lassify all the minimal surfa
es that are invariant under under a 1-parametri
 group of isometries in S3. One way to see this 
lassi�
ation is the following: De�ne theKilling nullity by setting KS := {fB : B ∈ so(4)} to be the spa
e of all variations arising from
SO(4), and the Killing nullity is de�ned as kn(M) := dim(KS). We have that kn(M) ≤ n(M)and in general the Killing nullity is expe
ted to be 6 sin
e the dimension of so(4) is 6. Lawson andDate: January 18, 2011.2010 Mathemati
s Subje
t Classi�
ation. 58E12, 58E20, 53C42, 53C43.1



MINIMAL TORI WITH LOW NULLITY 2Hsiang 
lassify all the examples of surfa
es with kn(M) < 6, i.e. they 
lassify all minimal surfa
eswith not full Killing nullity. More pre
isely, their 
lassi�
ation 
an be des
ribed in the followingway,
K3 = {M ⊂ S3 : kn(M) = 3},whi
h is the set of totally geodesi
 spheres. Up to rigid motions there is only one example.
K4 = {M ⊂ S3 : kn(M) = 4},is the set of Cli�ord tori, and
K5 = {M ⊂ S3 : kn(M) = 5},is a 
olle
tion of immersed minimal tori. There are in�nitely many non-isometri
 examples in K5.One of the goals of this paper will be to provide a better understanding of this set.1.2. Natural nullity. Minimal tori in S3 will have a potentially larger nullity than the Killingnullity. For a minimal torus, sin
e W1 and W2 are globally de�ned, we 
an de�ne hθ : M → R as thedire
tional derivative of−2a−

1

2 in the dire
tion cos(θ)W1+sin(θ)W2, that is, hθ = cos(θ)a−
3

2W1(a)+

sin(θ)a−
3

2W2(a). For tori, HS =
{
λhθ : λ ∈ R, θ ∈ S1

} form a subspa
e of ker(J), whi
h follows bya dire
t 
omputation. In general, dim(HS) := hn(M) is expe
ted to be 2. Re
all that the fun
tions
fB de�ned above also satisfy J(fB) = 0, that is, they represent in�nitesimal variations of the Mthrough minimal torus. The fun
tions fB are not only in�nitesimal variations but a
tually generatea family of minimal tori, namely the family t −→ etM . The fun
tions hθ are also in�nitesimalvariations of M through minimal immersions sin
e J(hθ) = 0, however, the authors have not yetbeen able to determine whether or not the fun
tions hθ generate a family of minimal tori.The prin
iple fo
us of this paper is to study the spa
e KS+HS := NS, the subspa
e of the nullityarising from these two natural sour
es. We 
all the natural nullity of the spa
e M nnt(M) :=
dim(NS). In this paper we 
lassify all minimal tori with nnt(M) < 8.The Lawson-Hsiang examples, beyond the Cli�ord torus, will be shown by a Liouville argumentto be the immersed minimal tori with dim(HS) = 1, as well as those having Killing nullity 5.We also show, using a result by Ramanathan about isometries of a minimal surfa
es of S3, that if
dim(HS) = 1 then M ∈ K5. In other words, we have that

NN5 = {M ⊂ S3 : nnt(M) = 5} = K5 = H1,where H1 = {M ⊂ S3 : dim(HS) = 1}.We 
onstru
t every possible torus with nnt(M) < 8 by building, for any angle θ ∈ S1 and anyskew-symmetri
 matrix B, an integrable distribution DB,θ in SO(4) × R
2 with the property thatthe proje
tion onto the �rst 
olumn in SO(4) always de�nes a smooth minimal immersion of R2. If

M is a torus with nnt(M) < 8 then there is a B and θ for whi
h M is the image of su
h a leaf. Inparti
ular, by our previous result we have that if M ∈ K5 then dim(HS) = 1, so hθ = 0 for some
θ. This observation tells us that K5 
an be obtained as 
oming from examples in the distribution
DB,θ. We prove that if M ∈ K5 then hθ+π

2

∈ KS. i.e., we prove that not only is kn(M) = 5 butalso nnt(M) = 5.To des
ribe our last result we point out that if M ∈ K5 then nnt(M) = 5 and M is invariant underin�nitely many isometries (a 1-parameter group to be pre
ise). We prove that if nnt(M) = 6 then
M has some nontrivial isometry.



MINIMAL TORI WITH LOW NULLITY 3The authors would like to thank the referee for numerous suggestions and 
omments.2. PreliminariesThis se
tion reviews some known results that will be used later on. The �rst result, due to BlaineLawson, has already been used in the introdu
tion in order to de�ne the unit tangent smooth ve
tor�elds W1 and W2 in an immersed minimal torus of S3.Theorem 2.1. [Lawson [2℄℄ If M ⊂ S3 is a 
losed minimal surfa
e and a : M → R denotes thenonnegative prin
ipal 
urvature fun
tion, then a is positive everywhere if and only if χ(M) = 0.The next theorem also was mentioned in the introdu
tion in order to de�ne the natural nullity fortori. Even though this is a known result, for 
ompleteness sake we will provide a proof at the endof this se
tion.Theorem 2.2. If M ⊂ S3 is a minimal immersed torus, and W1 : M → S3 and W2 : M → S3 areunit ve
tor �elds that de�ne the prin
ipal dire
tions, then the fun
tions
h0, hπ

2

: M → R given by h0 = a−
3

2W1(a) and hπ

2

= a−
3

2W2(a)satisfy
J(h0) = −∆h0 − 2h0 − 2a2h0 = 0 = J(hπ

2

).There is a 
orresponden
e between 
onstant mean 
urvature (CMC) surfa
es in Eu
lidean spa
e andminimal surfa
es in S3. The proof of the Theorem (2.2) for the 
ase of CMC surfa
es in Eu
lideanspa
e is established in se
tions �2 and �3 of [5℄.In se
tion 4 we 
onstru
t a family of minimal immersions of the plane into S3. The following theoremwill be used to show that Lawson-Hsiang examples 
orrespond to a subfamily of those immersions.Theorem 2.3. [Ramanathan [6℄℄ Let ρ̃ : M → S3 be a minimal immersion of an oriented 
ompa
tsurfa
e. Suppose that M admits a one parameter group of isometries φt : M → M with respe
t tothe indu
ed metri
. Then, there exists a one-parameter family of orientation preserving isometries
Φt of S3 su
h that ρ̃ ◦ φt = Φt ◦ ρ̃ for all t ∈ R.The next theorem is a 
onsequen
e of the uniformization theorem applied to a minimal torus in S3.Theorem 2.4. For every minimal immersion of a torus ρ̃ : M → S3, there exists a 
overing map
τ : R2 → M , a doubly periodi
 
onformal immersion ρ : R2 → S3, a Gauss map ν : R2 → S3, anda �xed angle α, so that

ρ(u, v) = ρ̃(τ(u, v)), ν(u, v) ⊥ ρ∗(T(u,v)R
2), ν(u, v) ⊥ ρ(u, v),and

∂2ρ

∂u2
= −

∂r

∂u

∂ρ

∂u
+

∂r

∂v

∂ρ

∂v
+ cos(2α)ν − e−2rρ

∂2ρ

∂v2
=

∂r

∂u

∂ρ

∂u
−

∂r

∂v

∂ρ

∂v
− cos(2α)ν − e−2rρ

∂2ρ

∂u∂v
= −

∂r

∂v

∂ρ

∂u
−

∂r

∂u

∂ρ

∂v
− sin(2α)ν

∂ν

∂u
= e2r(− cos(2α)

∂ρ

∂u
+ sin(2α)

∂ρ

∂v
)

∂ν

∂v
= e2r(sin(2α)∂ρ

∂u
+ cos(2α)

∂ρ

∂v
)where e−2r = 〈 ∂ρ∂u ,

∂ρ
∂u〉 = 〈∂ρ∂v ,

∂ρ
∂v 〉. Moreover, ∆r + 2 sinh(2r) = 0.



MINIMAL TORI WITH LOW NULLITY 4Proof. The idea of the proof is the following: the existen
e of the 
onformal map ρ and the 
overing
τ follows from the uniformization theorem, the existen
e of the 
onstant α follows from the fa
tthat

f(z) = f(u+ iv) = 〈
∂2ρ

∂u2
, ν〉 − i 〈

∂2ρ

∂u∂v
, ν〉is an analyti
, doubly periodi
 fun
tion in the whole plane, and therefore is 
onstant. Clearly this
onstant fun
tion f is not identi
ally zero otherwise M would be totally geodesi
. By s
aling the
oordinates u and v by a 
onstant, we 
an make f(u+ iv) = cos(2α) + i sin(2α) for some 
onstantangle α.To 
omplete the proof, the equations for the se
ond derivatives of ρ are just the standard 
ompu-tation of the Christo�el symbols, and the ellipti
 equation of r follows from 
omputing the Gauss
urvature using the Christo�el symbols and setting it to 1 − e4r, i.e, this ellipti
 equation followsfrom the Gauss equation. �Remark 2.5. We 
an 
hange the angle α to any value by rotating the 
oordinates u and v.Corollary 2.6. Using the same notation as in Theorem (2.4), the prin
ipal dire
tions of the minimalimmersion are given by

V1 = er(cos(α)∂ρ
∂u

− sin(α)
∂ρ

∂v
) and V2 = er(sin(α)∂ρ

∂u
+ cos(α)

∂ρ

∂v
).More pre
isely,

dν({dρ(u,v)}
−1(W1 ◦ τ)) = −e2rV1 and dν({dρ(u,v)}

−1(W2 ◦ τ)) = e2rV2.Moreover, it follows from the last expression that the prin
ipal 
urvatures are ±a where the fun
tion
a : M → R is de�ned by a(τ(u, v)) = e2r(u,v). We also have that hα ◦ τ = 2 ∂r

∂u and hα+π

2

◦ τ = 2∂r
∂v .Proof.

−dν({dρ(u,v)}
−1(W1 ◦ τ)) = erdν(− cos(α)

∂

∂u
+ sin(α)

∂

∂v
)

= e3r(− cos(α)(− cos(2α)
∂ρ

∂u
+ sin(2α)

∂ρ

∂v
) + sin(α)(sin(2α)

∂ρ

∂u
+ cos(2α)

∂ρ

∂v
)

= e2rV1Similarly, dν({dρ(u,v)}−1(W2 ◦ τ)) = e2rV2. In the same fashion,
hα ◦ τ = (e2r)− 3

2 ( cos(α)V1(e2r) + sin(α)V2(e2r) )
= e−3r er ( cos(α) (cos(α)∂ρ

∂u
− sin(α)

∂ρ

∂v
)(e2r) + sin(α) (sin(α)

∂ρ

∂u
+ cos(α)

∂ρ

∂v
)(e2r) )

= 2
∂r

∂u
,and hα+π

2

◦ τ = 2∂r
∂v . �Proof. [Of Theorem (2.2)℄ Take maps ρ, V1, V2, ν : R2 → S3, τ : R2 → M and r : R2 → R su
hthat they satisfy the 
ondition of Theorem (2.4) with α = 0, i.e., with V1(u, v) = W1(τ(u, v)) =er(u,v) ∂ρ∂u(u, v) and V2(u, v) = W2(τ(u, v)) = er(u,v) ∂ρ∂v (u, v). Sin
e ∆R2r+2 sinh (2r) = 0, we obtainthat

∆R2

∂r

∂u
+ 4cosh (2r)

∂r

∂u
= 0.



MINIMAL TORI WITH LOW NULLITY 5Sin
e ∂ρ
∂u(u, v) = e−rV1(u, v) = e−rW1(τ(u, v)) and a(τ(u, v)) = e2r(u,v), we have

∂r

∂u
= a−

1

2W1(
1

2
ln(a)) =

1

2
a−

3

2W1(a).Denote by ∆M the Lapla
ian in the surfa
e. Sin
e the metri
 indu
ed by ρ in R
2 is given by

ds2 = e−2r(du2 + dv2), we obtain that,
∆M (

1

2
a−

3

2W1(a)) = a∆R2(
∂r

∂u
) = −a(2(a+ a−1)(

1

2
a−

3

2W1(a)))Therefore the fun
tion h0 = a−
3

2W1(a) satis�es J(h0) = 0. J(hπ

2

) = 0 follows similarly. �3. Minimal tori with hn(M) < 2The Lawson-Hsiang torus examples are 
hara
terized as those immersed minimal tori in S3 that arepreserved by a 1-parameter group of ambient isometries [3℄. It is 
lear that if for some B ∈ so(4),
M ⊂ S3 is invariant under the group of isometries {eBt : S3 → S3 : t ∈ R}, then the fun
tion fBvanishes. This is be
ause the fun
tion fB is the fun
tion asso
iated with the variation Mt = eBtMand, under our assumption, Mt = M for all t, therefore this variation is 
onstant and fB must beidenti
ally zero. We will start this se
tion showing the 
onverse of this observation.Proposition 3.1. If ρ̃ : M → S3 is an immersed 
losed minimal surfa
e, su
h that fB : M → Rvanishes for some B 6= 0, then ρ̃(M) is invariant under the group {etB : t ∈ R}, so that M is oneof the examples of Hsiang-Lawson.Proof. Let X : S3 → R

4 be the tangent ve
tor �eld on S3 given by X(p) = Bp. Sin
e 0 = fB(m) =
〈Bρ̃(m), N(m)〉, then X indu
es a unit tangent ve
tor �eld on M . Therefore the integrals 
urvesof the ve
tor �eld X that start in ρ̃(M) remains in ρ̃(M), i.e. if ρ̃(m) ∈ ρ̃(M) then etB ρ̃(m) ∈
ρ̃(M). �We 
ontinue this se
tion showing that if M is an example in K5, then hn(M) = 1.Proposition 3.2. If ρ̃ : M → S3 is a minimal immersion of a torus in the set K5, then, for someangle θ, hθ : M → R vanishes, and therefore hn(M) = 1.Proof. Sin
e M ∈ K5, fB vanishes for some B ∈ so(4). As in the previous proposition, theve
tor �eld X(m) = Bρ̃(m) de�nes a tangent ve
tor �eld on M . Sin
e the fun
tion a is invariantunder isometries and X is a Killing ve
tor �eld, then the fun
tion X(a) is identi
ally zero. Wewill prove the proposition by showing that for some �xed angle θ and some �xed real number λ,
X = λa−

1

2 (cos(θ)W1 + sin(θ)W2). Choose maps ρ, ν, V1, V2 : R2 → S3, a 
overing τ : R2 → M anda fun
tion r : R2 → R using Theorem (2.4), and its 
orollaries, su
h that
W1(τ(u, v)) = V1(u, v), W2(τ(u, v)) = V2(u, v) and N(τ(u, v)) = ν(u, v).With this spe
ial parametrization of this torus and having in mind that a(τ(u, v)) = e2r(u,v), wehave that α = 0 and

V1 = er ∂ρ
∂u

,

V2 = er ∂ρ
∂v

,

W1(a)(τ(u, v)) = 2e3r(u,v) ∂r
∂u

(u, v) and
W2(a)(τ(u, v)) = 2e3r(u,v) ∂r

∂v
(u, v).



MINIMAL TORI WITH LOW NULLITY 6Using the previous identities and the Theorem (2.4) we 
an 
he
k that(3.1) ∇W1
W2 = −

W2(a)

2a
W1 and ∇W2

W1 = −
W1(a)

2a
W2.Sin
e X is a tangent ve
tor �eld, X(τ(u, v)) = f(u, v)V1(u, v) + g(u, v)V2(u, v) for two doublyperiodi
 smooth fun
tions f, g : R2 → R. Sin
e, moreover, X is a Killing ve
tor �eld,

〈∇W1
X,W1〉(τ(u, v)) = V1(f)(u, v)−

W2(a)

2a
(τ(u, v))g(u, v) = er(∂f

∂u
− g

∂r

∂v
) = 0,

〈∇W2
X,W2〉(τ(u, v)) = V2(g)(u, v) −

W1(a)

2a
(τ(u, v))f(u, v) = er(∂g

∂v
− f

∂r

∂u
) = 0, and

(〈∇W1
X,W2〉+ 〈∇W2

X,W1〉)(τ(u, v)) = V1(g)(u, v) +
W2(a)

2a
(τ(u, v))f(u, v) +

V2(f)(u, v) +
W1(a)

2a
(τ(u, v))g(u, v)

= er(∂g
∂u

+ f
∂r

∂v
+

∂f

∂v
+ g

∂r

∂u
)

= 0.A dire
t veri�
ation gives that the three equations above imply that the fun
tion h(u + iv) =
(erf)(u, v) + i(erg)(u, v) is an analyti
 fun
tion. Sin
e h is doubly periodi
 in R

2, and in parti
ularis bounded, then we get that the fun
tion h is 
onstant. We 
an write this 
onstant as λ cos(θ) +

iλ sin(θ) with λ 6= 0. Sin
e f = e−rλ cos(θ), g = e−rλ sin(θ) then X = λa−
1

2 (cos(θ)W1+sin(θ)W2).Sin
e X(a) = 0 vanishes, then hθ = λ−1a−1X(a) also vanishes. Noti
e that hn(M) has to be 1,otherwise M would be a Cli�ord torus. �The previous proposition shows that if H1 is de�ned as in the introdu
tion, then K5 ⊂ H1. Thefollowing proposition shows that H1 is also a subset of K5.Proposition 3.3. Let ρ̃ : M → S3 be a minimal immersion of a torus. If for some θ, hθ : M → Rvanishes, then fB vanishes for some nonzero skew-symmetri
 matrix B. Therefore, M is either aCli�ord torus or a torus in K5.Proof. De�ne the ve
tor �eld X by X = a−
1

2 cos(θ)W1 + a−
1

2 sin(θ)W2. Using equation (3.1) we
an prove the following identities whi
h show that X is a Killing ve
tor �eld on M .
〈∇W1

X,W1〉 = −
1

2
a−

3

2W1(a) cos(θ)− a−
1

2

1

2a
W2(a) sin(θ) = −

1

2a
hθ = 0

〈∇W2
X,W2〉 = −

1

2
a−

3

2W2(a) sin(θ)− a−
1

2

1

2a
W1(a) cos(θ) = −

1

2a
hθ = 0

〈∇W1
X,W2〉 = −

1

2
a−

3

2W1(a) sin(θ) + a−
1

2

1

2a
W2(a) cos(θ)

〈∇W2
X,W1〉 = −

1

2
a−

3

2W2(a) cos(θ) + a−
1

2

1

2a
W1(a) sin(θ) = −〈∇W1

X,W2〉.Therefore the �ow of the ve
tor �eld X, ΘX(t, ·) : M → M de�nes a 1-parameter group of isometriesinM . By Theorem (2.3), M is invariant under a 1-parameter group of isometries of S3, and therefore
fB vanishes for some nonzero B ∈ so(4). �



MINIMAL TORI WITH LOW NULLITY 7The previous two propositions show that H1 = K5. For a minimal torus in K5, we have that thespa
e HS is one dimensional. What 
an we say about the fun
tion that spans this one dimensionalspa
e? We will prove, in Se
tion 5, that this fun
tion is 
ontained in KS, i.e. we will show that
HS ⊂ KS. 4. minimal tori with natural nullity less than 8In this se
tion we �nd an integrable distribution that produ
es every possible minimal torus with
nnt(M) < 8. This distribution will be used to show that if kn(M) = 5, then NS ⊂ KS and alsothat whenever nnt(M) ≤ 6, then the group of isometries of M is not trivial.Remark 4.1. The 
ondition nnt(M) < 8 is equivalent that for some θ and some B ∈ so(4), hθ = 2fB .Proof. Re
all that nnt(M) = dim(NS), therefore, if nnt(M) < 8, then, there exist 
onstants λ and
θ and a matrix B ∈ so(4) su
h that

λhθ − 2fB = 0If the spa
e KS has dimension 6, then λ 
annot be zero and then we 
an res
ale so that λ = 1,whi
h will give us the relation hθ = 2fB. On the other hand, if the dimension of KS is less than 6then M is one of the Lawson-Hsiang examples, i.e. M is either a Cli�ord torus or a torus in K5. Ineither of these 
ases there exists an angle θ su
h that hθ vanishes (3.2). Taking this θ and the zeromatrix B, on
e again we obtain the relation hθ = 2fB. �4.1. Distributions that produ
e all examples of minimal tori with nnt(M) < 8. We de�nethe integrable distributions DB,θ, depending upon B ∈ so(4) and θ ∈ S1, that generate all minimalimmersions of the plane with nnt(M) < 8. As a bonus we will �nd a family of solutions the theellipti
 sinh-Gordon equation given by ∆r + 2 sinh(2r) = 0, where r : R2 → R.
DB,θ is a 2-dimensional distribution in the tangent bundle

T
(
SO(4)× R

2
)
,where, for a 
hoi
e of B ∈ so(4) and θ ∈ S1, at (g, r, s) = ([p, ν, V1, V2], r, s) ∈ SO(4) × R

2,
Z,W ∈ X

(
SO(4)× R

2
) spanning the distribution are de�ned by

Z(g,r,s) :=


g




0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0


 ,

〈Bp, ν〉, cos(θ)〈BV2, e−rν − erp〉 − sin(θ)〈BV1, e−rν + erp〉)
W(g,r,s) :=


g




0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0


 ,(4.1)

s, e−2r − e2r − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉)The following theorem will be used to generate the desired family of minimal immersions, andprovides a family of solutions of the ellipti
 sinh-Gordon equation.Theorem 4.2. The ve
tor �elds Z and W 
ommute, and if we de�ne the map φ : R2 → SO(4)×R
2to be the immersion of the plane so that φ∗(∂/∂u) = Z, φ∗(∂/∂v) = W ,

φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)),where φ1 : R
2 → SO(4) and φ2, φ3 : R

2 → R, we have
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olumn of φ1(u, v), φ1(u, v)(e1), gives a minimal immersion of R2 into S3 withprin
ipal 
urvature fun
tion a = e2r.(2) The fun
tion r(u, v) = φ2(u, v) solves the equation ∆r + 2 sinh(2r) = 0.Remark 4.3. Not only will the �rst 
olumn of φ1 give a minimal immersion, but the Gauss map isthe se
ond 
olumn and the third and fourth 
olumns are the prin
ipal dire
tions V1 and V2. So,these immersions of the plane will also have the prin
ipal dire
tions globally de�ned, and a > 0,whether or not they are 
ompa
t.Proof. Commutativity of Z and W is a dire
t 
omputation. Using the de�nitions from (4.1)
[Z,W ] =


Z (g)




0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0




+gZ







0 0 e−r sin(θ) −e−r cos(θ)
0 0 −er sin(θ) −er cos(θ)

−e−r sin(θ) er sin(θ) 0 〈Bp, ν〉
e−r cos(θ) er cos(θ) −〈Bp, ν〉 0







−W (g)




0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0




−gW







0 0 −e−r cos(θ) −e−r sin(θ)
0 0 er cos(θ) −er sin(θ)

e−r cos(θ) −er cos(θ) 0 −s
e−r sin(θ) er sin(θ) s 0





 ,

Z (s)−W (〈Bp, ν〉) , Z
(e−2r − e2r − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉)

−W
(
cos(θ)〈BV2, e−rν − erp〉 − sin(θ)〈BV1, e−rν + erp〉)) .Continuing, noting that Z(g) = Z, W (g) = W , Z(p) = e−r cos(θ)V1+e−r sin(θ)V2, et
., substitutingfor the various derivatives and 
an
eling massively, [Z,W ] = 0.We now show that r(u, v) = φ2(u, v) is a solution of the ellipti
 sinh-Gordon equation. We havethat

∆r =
∂2r

∂u2
+

∂2r

∂v2
=

∂ 〈Bp, ν〉

∂u
+

∂s

∂v
= 〈B(e−r(cos(θ)V1 + sin(θ)V2)), ν〉+ 〈Bp, er(− cos(θ)V1 + sin(θ)V2)〉

−2 sinh(2r)− sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉
= −2 sinh(2r).That φ1(u, v)(e1) is a minimal immersion of R2into S3 is straightforward. �Theorem 4.4. If ρ̃ : M → S3 be a minimal immersed torus in S3 su
h that, for some angle θ andsome matrix B ∈ so(4), hθ = 2fB, then it is possible to 
hoose a 
overing map τ : R2 → M , maps

ρ : R2 → S3, ν : R2 → S3, V1, V2 : R2 → S3, and a fun
tion r : R2 → R using Theorem (2.4) andits 
orollaries, so that
φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)) =

(
(ρ(u, v), ν(u, v), V1(u, v), V2(u, v)) , r(u, v),

∂r

∂v
(u, v)

)



MINIMAL TORI WITH LOW NULLITY 9is a solution of the system (4.1) with matrix B and angle θ.Proof. We 
an rotate 
oordinates so that the maps ρ, ν, V1, and V2 in Theorem (2.4) and Corollary(2.6) satisfy
V1(u, v) = W1(τ(u, v)), V2(u, v) = W2(τ(u, v)), ν(u, v) = N(τ(u, v)) and α = θ,with a(τ(u, v)) = e2r. Sin
e α = θ,

V1 = er(cos(θ)∂ρ
∂u

− sin(θ)
∂ρ

∂v
) and V2 = er(sin(θ)∂ρ

∂u
+ cos(θ)

∂ρ

∂v
),if 2fB = hθ, then

2〈Bρ, ν〉 = cos(θ)e−3r(er(cos(θ)∂ρ
∂u

− sin(θ)
∂ρ

∂v
))(e2r)

+ sin(θ)e−3r(er(sin(θ)∂ρ
∂u

+ cos(θ)
∂ρ

∂v
))(e2r)

= 2
∂r

∂uso that(4.2) 2〈Bρ, ν〉 = 2
∂r

∂u
= hθand, similarly,(4.3) 2

∂r

∂v
= 2s = hθ+π

2

.From the formulas for V1 and V2 in Corollary (2.6), we have that
∂ρ

∂u
= e−r(V1 cos(θ) + sin(θ)V2) and ∂ρ

∂v
= e−r(−V1 sin(θ) + sin(θ)V2).Also, using the equation above and the formula for ∂ν

∂u and ∂ν
∂v in Theorem (2.4), we get that

∂ν

∂u
= er(− cos(θ)V1 + sin(θ)V2) and ∂ν

∂v
= er(sin(θ)V1 + cos(θ)V2).A dire
t 
omputation shows that derivatives of ∂Vi

∂u 
ombine with the above to satisfy the equationsfor φ1 to be an integral submanifold of the distribution. In order to 
omplete the proof of thistheorem, let us 
he
k the equation for ∂s
∂v . We have that

∂s

∂v
=

∂2r

∂v2
= −2 sinh(2r)−

∂2r

∂u2

= −2 sinh(2r)−
∂

∂u
〈Bρ, ν〉

= −2 sinh(2r)− 〈B
∂ρ

∂u
, ν〉 − 〈Bρ,

∂ν

∂u
〉

= − sin(θ)〈BV2, e−rν − erp〉 − cos(θ)〈BV1, e−rν + erp〉,whi
h veri�es the equation in the system (4.1). The equation for ∂s
∂u is similar. �Remark 4.5. Arguing as in the proof of the previous theorem, if

φ(u, v) = (ρ(u, v), ν(u, v), V1(u, v), V2(u, v), r(u, v), s(u, v))is a doubly-periodi
 solution of the system (4.1) and M is the torus R
2

∼
, then,
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hθ(u, v) = 2

∂r

∂u
(u, v) and hθ+π

2

(u, v) = 2
∂r

∂v
(u, v) = 2s.Moreover, for any 4 × 4 skew-symmetri
 matrix B̃, fB̃(u, v) = 〈B̃ρ(u, v), ν(u, v)〉. Finally, sin
e φsatis�es the system (4.1), then hθ = 2fB .Note 4.6. It follows that doubly-periodi
 solutions of the system (4.1) indu
e minimal immersionsof tori with natural nullity less than 8, sin
e for the B and θ de�ning the distribution, 2fB = hθ.So far, the authors have not been able to �nd a method to determine whi
h solutions are doublyperiodi
.The previous theorem shows that for any 
hoi
e of B ∈ so(4), θ ∈ S1 and x0 ∈ SO(4) × R

2 wehave a solution of the sinh-Gordon equation. The following theorem shows that this solution andits derivatives are de�ned in the whole plane and are bounded. Re
all that ∂r
∂v = s and that ∂r

∂u isan algebrai
 fun
tion of the 
omponent fun
tions of (φ1(u, v), φ2(u, v), φ3(u, v)).Theorem 4.7. The fun
tions φ1(u, v), φ2(u, v) = r(u, v), and φ3(u, v) = s(u, v) are de�ned in thewhole plane and are bounded in T∗

(
SO(4)× R

2
).The proof of this result appears in an appendix.The main tool we use to study minimal tori with natural nullity less than 8 is that we have arepresentation of them in term of integral submanifolds of the distribution DB,θ (4.1). Re
all thatby the Remark (4.1), for every torus M ⊂ S3 with nnt(M) < 8 there exist θ and B ∈ so(4) su
hthat hθ = 2fB .4.2. Auxiliary identities. In order to simplify the study of the system (4.1) we give additionalrelationships among 
omponents of the solutions.Theorem 4.8. Let φ1 := (p, ν, V1, V2) : (−ǫ, ǫ) × (−ǫ, ǫ) → SO(4) and φ2, φ3 := r, s : (−ǫ, ǫ) ×

(−ǫ, ǫ) → R be a solution of the system (4.1), that is, an integral submanifold of DB,θ. If B̃ ∈ so(4)is any skew symmetri
 matrix, and if we de�ne the fun
tions
ξ1 = 〈B̃p, ν〉, ξ2 = 〈B̃V1, V2〉, ξ3 = 〈B̃V1, p〉, ξ4 = 〈B̃V2, p〉, ξ5 = 〈B̃V1, ν〉, ξ6 = 〈B̃V2, ν〉then, the following identities hold

∂

∂u




ξ1
ξ2
ξ3
ξ4
ξ5
ξ6




=




0 0 er cos(θ) −er sin(θ) e−r cos(θ) e−r sin(θ)
0 0 −e−r sin(θ) e−r cos(θ) −er sin(θ) −er cos(θ)

−er cos(θ) e−r sin(θ) 0 s 0 0
er sin(θ) −e−r cos(θ) −s 0 0 0

−e−r cos(θ) er sin(θ) 0 0 0 s
−e−r sin(θ) er cos(θ) 0 0 −s 0







ξ1
ξ2
ξ3
ξ4
ξ5
ξ6


and

∂

∂v




ξ1
ξ2
ξ3
ξ4
ξ5
ξ6




=




0 0 −er sin(θ) −er cos(θ) −e−r sin(θ) e−r cos(θ)
0 0 −e−r cos(θ) −e−r sin(θ) −er cos(θ) er sin(θ)

er sin(θ) e−r cos(θ) 0 −〈Bp, ν〉 0 0
er cos(θ) e−r sin(θ) 〈Bp, ν〉 0 0 0e−r sin(θ) er cos(θ) 0 0 0 −〈Bp, ν〉

−e−r cos(θ) −er sin(θ) 0 0 〈Bp, ν〉 0







ξ1
ξ2
ξ3
ξ4
ξ5
ξ6


Proof. This is a long dire
t 
omputation. �



MINIMAL TORI WITH LOW NULLITY 114.3. Solutions of the system with hn(M) < 2 and natural nullity of the Lawson-Hsiangexamples. The following theorem 
hara
terizes the integral submanifolds of the system (4.1) that
ontain every torus M with hn(M) < 2 in terms of the matrix B. Re
all from equation (4.3) in theproof of Theorem (4.4) that s(u, v) = ∂r
∂v , so that s = 0 implies that hn(M) < 2.Theorem 4.9. Let φ : R2 → SO(4)×R

2, φ = (φ1, φ2, φ3), be an integral submanifold of DB,θ, andlet r(u, v) = φ2(u, v) and s(u, v) = φ3(u, v). Assume that φ(0, 0) = x0 = (I, r0, 0) and ∂r
∂u(0, 0) = 0.If

B =




0 b1 b2 b3
−b1 0 b4 b5
−b2 −b4 0 b6
−b3 −b5 −b6 0


 ,then, s vanishes, and so hn(M) < 2, if and only if b1 = b6 = 0 and(1) −er0 cos(θ)b2 + er0 sin(θ)b3 − e−r0 cos(θ)b4 − e−r0 sin(θ)b5 = 2 sinh(2r0),(2) −er0 sin(θ)b2 − er0 cos(θ)b3 − e−r0 sin(θ)b4 + e−r0 cos(θ)b5 = 0, and(3) −e−r0 cos(θ)b2 − e−r0 sin(θ)b3 − er0 cos(θ)b4 + er0 sin(θ)b5 = 0.Proof. We will use the identities of Theorem (4.8) with B̃ = B. Noti
e that

b1 = −ξ1(0, 0), b6 = −ξ2(0, 0), b2 = ξ3(0, 0), b3 = ξ4(0, 0), b4 = ξ5(0, 0), b3 = ξ6(0, 0).Assume that s(u, v) = 0 for every (u, v) ∈ R
2. The equation b1 = 0 follows be
ause we are assumingthat ∂r

∂u(0, 0) = ξ1(0, 0) = 0. Equation (1) in the statement of the theorem follows from the equation
∂s
∂v (0, 0) = 0. Equation (2) follows from the equation ∂s

∂u(0, 0) = 0. We now prove that s ≡ 0 alsoimplies that b6 = 0 and equation (3) in the statement of the theorem.A dire
t 
omputation shows the following two equations;
∂2s

∂v∂u
= ξ1

(
− 2 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3) + e−r(sin(θ)ξ6 + cos(θ)ξ5)

)

+s
(
− er(sin(θ)ξ3 + cos(θ)ξ4) + e−r(sin(θ)ξ5 − cos(θ)ξ6)

)
− 2 sin(2θ)ξ2and

∂2s

∂v2
= s

(
− 4 cosh(2r) + er(sin(θ)ξ4 − cos(θ)ξ3) + e−r(sin(θ)ξ6 + cos(θ)ξ5)

)

+ξ1
(er(sin(θ)ξ3 + cos(θ)ξ4) + e−r(cos(θ)ξ6 − sin(θ)ξ5)

)
− 2 cos(2θ)ξ2.From these equations we get that ξ2(0, 0) = −b6 = 0 and that ∂ξ2

∂v (0, 0) = 0 be
ause ξ1(0, 0) = 0,and
∂ξ1
∂v

(0, 0) =
∂s

∂u
(0, 0) = 0.A dire
t 
omputation shows that the equation (3) in the statement of the theorem is equivalent tothe equation ∂ξ2

∂v (0, 0) = 0. So we have shown one impli
ation in the theorem.We now show the other impli
ation. Assume that equations (1), (2) and (3) of the statement of thetheorem hold, and also b1 = b6 = 0. These 5 
onditions are equivalent to the 
onditions
ξ1(0, 0) = 0, ξ2(0, 0) = 0,

∂ξ1
∂v

(0, 0) =
∂s

∂u
(0, 0) = 0,

∂s

∂v
(0, 0) = 0, and ∂ξ2

∂v
(0, 0) = 0.Noti
e also that by assumption s(0, 0) = 0. Using the identities of Theorem (4.8), the initial
onditions above imply that(4.4) ∂ξi

∂u
(0, 0) =

∂ξi
∂v

(0, 0) = 0, for i = 2, 3, 5, 6,
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tion, given n ≥ 1, k and l non-negative integers su
h that k+ l = n, there existsa polynomial P = P (t1, . . . , t9) su
h that
∂nr

∂ul∂vk
= P (er, e−r, s, ξ1, . . . , ξ6).Along with the equations in (4.4), these equations imply that

∂ns

∂ul∂vk+1
(0, 0) =

∂( ∂nr
∂ul∂vk

)

∂v
(0, 0) =

∂P (er, e−r, s, ξ1, . . . , ξ6)

∂v
(0, 0) = 0.In the last equation we also used the hypothesis that ∂ξ1

∂v (0, 0) = ∂ξ2
∂v (0, 0) = 0. We should pointout that we have used the fa
t that the fun
tion r is real analyti
, whi
h follows from the fa
t that

∆r + 2 sinh(2r) = 0. �The next theorem shows that for the Lawson-Hsiang examples not only is kn(M) = 5 but also
nnt(M) = 5 by showing that the spa
e NS ⊂ KS.Theorem 4.10. If M ⊂ S3 is an immersed minimal torus invariant under a one-parameter groupof isometries of S3, then nnt(M) = kn(M) and therefore the natural nullity nnt(M) ≤ 5.Proof. By Proposition (3.2) we know that for some angle θ, (cos(θ)V1 + sin(θ)V2)(a) = 0 where
a : M → R is a positive fun
tion su
h that the prin
ipal 
urvatures of M at p are ±a(p). Withoutloss of generality, we 
an assume that

e1 ∈ M, ν(e1) = e2, V1(e1) = e3, V2(e1) = e4, ln a(e1) = 2r0, and ∇a(e1) = 0.Therefore, M de�nes a solution of the system (4.1) asso
iated with the matrix B = 0 and θ. Callthis solution φ : R2 → SO(4)×R
2. Without loss of generality we 
an assume that φ(0, 0) = (I, r0, 0).De�ne φ̃ to be the solution of the system (4.1) asso
iated with a matrix B = {bij} that satis�es the
onditions in the previous lemma and θ̃ = θ − π

2 . Moreover we will take the initial solution thatsatis�es
φ̃(0, 0) = (I, r0, 0).Now 
onsider the map φ̂ : R2 → SO(4)× R

2 given by
φ̂(u, v) =

((
ρ̂(u, v), ν̂(u, v), V̂1(u, v), V̂2(u, v)

)
, r̂(u, v), ŝ(u, v)

)

=
((

ρ̃(−v, u), ν̃(−v, u), Ṽ1(−v, u), Ṽ2(−v, u)
)
, r̃(−v, u),−〈Bρ̃, ν̃〉

)
,where

φ̃(ũ, ṽ) =
((

ρ̃(ũ, ṽ), ν̃(ũ, ṽ), Ṽ1(ũ, ṽ), Ṽ2(ũ, ṽ)
)
, r̃(ũ, ṽ), s̃(ũ, ṽ)

)
.It is 
lear that φ̂(0, 0) = (I, r0, 0). Noti
e that, by the way B was 
hosen, we have that s̃ = 0 forevery (ũ, ṽ) ∈ R

2. Also, a dire
t 
omputation shows that φ̂ is a solution of the system (4.1) with
B = 0 and the angle θ, therefore, φ̂(u, v) = φ(u, v), and so

∂r

∂v
= −

∂r̃

∂ũ
= −〈Bρ, ν〉.This equality is equivalent to the fa
t that sin(θ)u1 − cos(θ)u2 = fB, where the fun
tions u1 =

h0, u2 = hπ/2, and fB are de�ned in the �rst se
tion. This last equation implies that hθ+π

2

= −fB,therefore, hθ, whi
h is identi
ally zero, and hθ+π

2

are fun
tions in {fC : C ∈ so(4)}. Then, bothfun
tions u1 and u2 are also generated by the fun
tions in the set {fC : C ∈ so(4)}, i.e., the naturalnullity is 5. Re
all that the spa
e {uC : C ∈ so(4)} is 5-dimensional for any torus invariant undera 1-parameter group of isometries in S3. �
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tion 3 show that for a torus, the 
ondition kn(M) < 6 is equivalent to the 
ondition
hn(M) < 2. Therefore, M is invariant under a group of isometries {etB : t ∈ R}, if and only if, thefun
tion a : M → R is invariant under a 
onstant dire
tion with respe
t to the prin
ipal dire
tions.The following 
orollary establishes this relationship.Corollary 4.11. If M is a minimal immersed torus in S3, then nnt(M) ≤ 5 if and only if M isone of the examples of Hsiang and Lawson.Proof. If M has nnt(M) ≤ 5, then kn(M) ≤ 5. Therefore, for some nonzero skew-symmetri
 matrix
B, fB vanishes. By Proposition(3.1), M will be invariant under a 1-parameter subgroup of the rigidmotions of S3, whi
h, following [3℄, implies that M is one of Hsiang and Lawson's examples. On theother hand, sin
e any of the Hsiang-Lawson examples are preserved by a one-parameter subgroupof SO(4), there is a B ∈ so(4) for whi
h fB = 0. Then Theorem (4.10) implies nnt(M) ≤ 5. �4.4. Symmetry of tori with natural nullity less than 7. In this subse
tion we will prove thatif the natural nullity of a torus is less than 7, then the group of isometries is not trivial. Let us startwith the following lemma.Lemma 4.12. If for any solution of the system (4.1), the fun
tions ξ1 . . . ξ6 de�ned in Theorem(4.8) satisfy r(0, 0) = r0, ξ1(0, 0) = s(0, 0) = ξ4(0, 0) = 0, then r(u, v) = r(−u,−v).Proof. A dire
t 
omputation using the identities of Theorem (4.8) shows that the 
onditions ξ1(0, 0) =
s(0, 0) = ξ2(0, 0) = 0 give

∂ξi
∂u

(0, 0) =
∂ξi
∂v

(0, 0) = 0 for i = 3, 4, 5, 6.Let Cω(R2) be the set of analyti
 fun
tions on R
2 and let P0 be the ideal of Cω(R2) generated bythe fun
tions {er, e−r, ξ2, ξ3, ξ5, ξ6}. Given a nonnegative integer k, de�ne Pk as the set of fun
tionsin Cω(R2) that 
an be written as a homogeneous polynomial of degree k in the variables s, ξ1 and

ξ2 with 
oe�
ients in P0. A dire
t 
omputation using again the identities in Theorem (4.8) giveus that if f ∈ P0, then ∂f
∂u and ∂f

∂v are in P1. In the same way, if f ∈ Pk then ∂f
∂u and ∂f

∂v are in
Pk+1+Pk−1. Now with these observations in mind, we pro
eed to show that the fun
tion r satis�es
r(u, v) = r(−u,−v), by showing that all the partial derivatives of odd order of the fun
tion r vanishat (0, 0). To a
hieve this we �rst noti
e that the �rst derivatives of r, the fun
tions ξ1 and s vanishat (0, 0). Then, noti
e that the se
ond derivatives of r, i.e. the �rst derivatives of s and ξ1, arefun
tions in P0. The last statement implies that the third derivatives of r are in P1 and thereforevanish at (0, 0). On
e we know that the third derivatives of r are in P1 we get that the fourthderivatives or r are in P0+P2. If we 
ontinue with this pro
ess we noti
e that if k is a positive eveninteger, then the k-th derivatives of r are fun
tions in P0 + P2 + · · · + Pk−2, and in the 
ase that
k is a odd integer greater that 1, then, the k-th derivatives of r are in P1 + P3 + · · ·+ Pk−2. Now,sin
e ξ1(0, 0) = s(0, 0) = ξ2(0, 0) = 0, the odd derivatives of the fun
tion r vanish at (0, 0). �Theorem 4.13. Let M be a minimal torus immersed in S3. If nnt(M) ≤ 6, then the group ofisometries of M is not trivial.Proof. Unless there is some nonzero B ∈ so(4) for whi
h fB = 0, in whi
h 
ase Proposition (3.1)implies the existen
e of a one-parameter group of isometries of S3 whi
h restri
t to isometries of M ,then nnt(M) ≤ 6 implies that the span of {u1, u2}, u1 := a−

3

2W1(a) = h0 and u2 := a−
3

2W2(a) =
hπ

2

, will be 
ontained in the span of {fB |B ∈ so(4)}. Sin
e then u1 = 2fB for some B ∈ so(4),then M de�nes a solution φ of the system (4.1) asso
iated with the matrix B and with θ = 0. The
ondition u2 = 2fB̃ implies by Remark(4.5) that s = ξ̃1, for the identities of Theorem (4.8) asso
iated
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t matri
es B, B̃ and θ = 0. As before, we will assume that ξ1(0, 0) = s(0, 0) = 0and r(0, 0) = r0. De�ne the fun
tion f = s − ξ̃1. The hypothesis in the theorem is equivalent tothe 
ondition that f is identi
ally zero, in parti
ular, ξ̃1(0, 0) = 0, sin
e f(0, 0) = 0. The theoremis a 
onsequen
e of the previous lemma and will follow by showing that ξ2(0, 0) = 0. A dire
t
omputation shows that
∂f

∂u
= e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3and

∂2f

∂u2
= ξ1(−e−rξ6 − erξ4 + e−r ξ̃5 − er ξ̃3)

+e−r(−sξ5 + erξ2)− er(−sξ3 − e−rξ2)

−e−r(−sξ5 + erξ2)− er(−sξ3 − e−rξ2)

−er(sξ̃6 − e−rξ1)− er(sξ̃4 − er ξ̃1)
= ξ1(−e−rξ6 − erξ4 − e−r ξ̃5 − er ξ̃3)

+s(−e−rξ5 + erξ3 − e−rξ̃6 − er ξ̃4)
+2ξ2 + 2cosh(2r)ξ̃1.From the last equation, using the fa
t that s(0, 0) = ξ1(0, 0) = ξ̃1(0, 0) and ∂2f

∂u2 = 0, we 
on
ludethat ξ2(0, 0) = 0, whi
h implies, by the previous lemma, that r(u, v) = r(−u,−v). To �nish theproof of the theorem, we noti
e that the fun
tion A(u, v) = −(u, v) preserves the latti
e in R
2 givenby the double-periodi
ity of the fun
tion φ and therefore indu
es a fun
tion in the torus τ(R2) = M ,sin
e the �rst fundamental form of M in the 
oordinates u and v is ce−2r(du2 + dv2) where c is apositive 
onstant, then, this fun
tion from M to M indu
ed by A is an isometry. �5. Appendix: First integrals and existen
e of global solutionsIn this subse
tion we prove Theorem (4.7), that the integral submanifolds of DB,θ are de�ned inthe whole of R2. The theorem will follow from the following lemmas.Lemma 5.1. For a given solution of the system (4.1), the fun
tions ξ1, . . . , ξ6 de�ned in Theorem(4.8) satisfy the 
ondition that

M =
1

2
{ξ21 + · · · + ξ26}is a 
onstant.Proof. A dire
t 
omputation using Theorem (4.8) gives us that

∂M

∂u
= ξ1

∂ξ1
∂u

+ · · ·+ ξ6
∂ξ6
∂u

= ξ1(er(cos(θ)ξ3 − sin(θ)ξ4) + e−r(cos(θ)ξ5 + sin(θ)ξ6))

+ξ3(sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2)

+ξ4(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2)

+ξ2(er(− sin(θ)ξ5 − cos(θ)ξ6) + e−r(cos(θ)ξ4 − sin(θ)ξ3))

+ξ5(sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1)

+ξ6(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1)

= 0.
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∂M

∂v
= ξ1

∂ξ1
∂v

+ · · ·+ ξ6
∂ξ6
∂v

= ξ1(−er(cos(θ)ξ4 + sin(θ)ξ3) + e−r(cos(θ)ξ6 − sin(θ)ξ5))

+ξ3(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2)

+ξ4(ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2)

+ξ2(e−r(− cos(θ)ξ3 − sin(θ)ξ4))

+ξ5(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1)

+ξ6(ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1)

= 0,therefore, M is a 
onstant. �Lemma 5.2. For a given solution of the system (4.1),
E =

1

2
{〈p, p〉+ 〈V1, V1〉+ 〈V2, V2〉+ 〈ν, ν〉}is a 
onstant.Proof. As in the proof of the previous lemma, a dire
t 
omputation shows that ∂E

∂u = ∂E
∂v = 0. �Lemma 5.3. For a given solution of the system (4.1), the fun
tions ξ1, . . . , ξ6 de�ned in Theorem(4.8) satisfy the identity that

A = er(cos(θ)ξ3 − sin(θ)ξ4)− e−r(cos(θ)ξ5 + sin(θ)ξ6) +
1

2
s2 + cosh(2r)−

1

2
(ξ1)

2is a 
onstant.Proof. Similarly to the previous two lemmas, we prove that ∂A
∂u = ∂A

∂v = 0.Denote by
B = er(cos(θ)ξ3 − sin(θ)ξ4)− e−r(cos(θ)ξ5 + sin(θ)ξ6) and
C =

∂ξ1
∂u

= er(cos(θ)ξ3 − sin(θ)ξ4) + e−r(cos(θ)ξ5 + sin(θ)ξ6).Noti
e that B + 1
2s

2 − 1
2ξ

2
1 + cosh(2r) = A. A dire
t 
omputation shows that

∂B

∂u
= ξ1C + er{cos(θ)(sξ4 − er cos(θ)ξ1 + e−r sin(θ)ξ2)

− sin(θ)(−sξ3 + er sin(θ)ξ1 − e−r cos(θ)ξ2)}

−e−r{cos(θ)(sξ6 + er sin(θ)ξ2 − e−r cos(θ)ξ1)

+ sin(θ)(−sξ5 + er cos(θ)ξ2 − e−r sin(θ)ξ1)}

= ξ1
∂ξ1
∂u

+ s(er cos(θ)ξ4 + er sin(θ)ξ3 − e−r cos(θ)ξ6 + e−r sin(θ)ξ5)

+ξ2(cos(θ) sin(θ) + cos(θ) sin(θ)− cos(θ) sin(θ)− cos(θ) sin(θ))

+ξ1(−e2r cos2(θ)ξ4 − e2r sin2(θ)ξ3 + e−2r cos2(θ) + e−2r sin2(θ))

= ξ1
∂ξ1
∂u

− s
∂s

∂u
− 2ξ1 sinh(2r)

=
1

2

∂ξ21
∂u

−
1

2

∂s2

∂u
−

∂ cosh(2r)

∂u
.
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∂u = 0. Similarly,
∂B

∂v
= sC + er{cos(θ)(−ξ1ξ4 + er sin(θ)ξ1 + e−r cos(θ)ξ2)

− sin(θ)(−ξ1ξ3 + er cos(θ)ξ1 + e−r sin(θ)ξ2)}

−e−r{cos(θ)(−ξ1ξ6 + er cos(θ)ξ2 + e−r sin(θ)ξ1)

+ sin(θ)(ξ1ξ5 − er sin(θ)ξ2 − e−r cos(θ)ξ1)}

= s(−2 sinh(2r)−
∂s

∂v
) + ξ1(−er cos(θ)ξ4 + e2r cos(θ) sin(θ)

−e2r sin(θ) cos(θ)− er sin(θ)ξ3)
+e−r cos(θ)ξ6 − e−2r cos(θ) sin(θ)− e−r sin(θ)ξ5 + e−2r sin(θ) cos(θ)

+ξ2(cos
2(θ)− sin2(θ) + cos2(θ) + sin2(θ))

= −
1

2

∂s2

∂v
−

∂ cosh(2r)

∂v
+

1

2

∂ξ21
∂v

.

�Lemma 5.4. Given a solution of the system (4.1). If M and A are the 
onstants given by Lemmas(5.1) and (5.3), respe
tively, if (u0, v0) is any point in the domain of the solution, and if R is a realnumber su
h that
cosh(2R) > A+ 4M cosh(R) +

M2

2
and R > |r(u0, v0)|Then, |r(u, v)| < R and

1

2
s2(u, v) + cosh(2r(u, v)) ≤ A+

M2

2
+ cosh(2R)for any (u, v) in the domain of the solution.Proof. We have that

1

2
s2(u, v) + cosh(2r(u, v)) = A+

1

2
ξ21 + e−r(cos(θ)ξ5 + sin(θ)ξ6)− er(cos(θ)ξ3 − sin(θ)ξ4)

≤ A+
M2

2
+ 4M cosh(r).This inequality above shows that the result will follow on
e we prove that |r(u, v)| ≤ R. We provethat |r(u, v)| < R by 
ontradi
tion. If, for some (u, v), |r(u, v)| = R, then, the inequality aboveimplies that at that (u, v),

cosh(2R) ≤ A+
M2

2
+ 4M cosh(R).This is a 
ontradi
tion with the 
hoi
e of R given in the hypotheses. �Theorem (4.7) is a 
orollary of the previous lemmas, sin
e the solution of the system (4.1) remainsbounded in SO(4)× R

2 for all (u, v), guaranteeing the existen
e of the solution for all (u, v).Referen
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