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A TOPOLOGICAL OBSTRUCTION TO THE
GEODESIBILITY OF A FOLIATION OF
ODD DIMENSION

ABSTRACT. Let M be a compact Riemannian manifold of dimension n, and let # be a smooth
foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J.
Pasternack, to the existence of a metric on M for which % is totally geodesic. In this case,
necessarily that portion of the Pontryagin algebra of the subbundle % must vanish in degree
n if # is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and
Pasternack are given.
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0. INTRODUCTION

If # is a codimension-k distribution on a compact smooth manifold M, there
is a well-known topological obstruction, due to R. Bott, to the integrability
of & ; the Pontryagin algebra of T.(M)/% must vanish in degrees greater
than 2k [1]. This result was greatly improved by J. Pasternack in his thesis
under the additional assumption that the metric on M is fiberlike with respect
to the foliation & [7]. In that case, the characteristic algebra of T.(M)/#
must vanish in degrees greater than k. This article gives a simple proof of
these facts, using tensors similar to those introduced by B. O’Neill [6] (cf.,
[5]). Also, there is a similar obstruction theorem derived in the case where
Z is totally geodesic and of odd dimension. However, in this case the obstruc-
tion is in the characteristic algebra of the subbundle & itself; if M is
n-dimensional, the characteristic algebra of # must vanish in degree n.

1. PRELIMINARIES

Let M be, as above, a smooth, compact Riemannian n-manifold. Let & be a
foliation on M of codimension k. Denote also by # the associated distribu-
tion and the orthogonal projection onto this distribution. Similarly, if
H# = F* is the orthogonal distribution, denote by # the orthogonal projec-
tion, and, if 5 is integrable, denote the resulting foliation also by 4. Vectors
in # (resp., #) will be called horizontal (resp., vertical). As in [5] and [6],
define tensors T and A on M by, for all vector fields E, Fe % (M), ’

ToF=HV (FF+FV,  ,HF,
AgF = AN ,(FF+FV , HFE.
As in [5], it is easily seen that & is totally geodesic if and only if T =0,
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and that the metric is fiberlike (i.e., locally there are Riemannian submersions
defining the foliation) if and only if 4, Y = — A, X for all X, YeI'(s#).

The properties of the tensors 4 and T may equivalently be given in terms
of a single tensor £, where 2 is the automorphism #: T.(M) - T.(M) given
by # = # — #. In a forthcoming article the second author will classify the
various geometric almost-product and foliated structures defined naturally
in terms of this automorphism, analogously to the work of A. Gray and
L. M. Hervella on almost-complex structures [4]. At present there is the
following partial classification.

PROPOSITION (1.1)
(@) 2 is parallel if and only if M is locally isometric to a Riemannian product.
(b) V(Z?) = Ofor Vel (F)ifand only if F is totally geodesic.
() For X, YeI'(#), V(?), Y + V(Z), X =0 if and only if the metric is
fiberlike.
(d) For X, YeI'(£), V(Z?), Y — V(2), X = 0 if and only if S is integrable.
Proof. A calculation verifies that

V(@) F = —2FV , HF + 2HV  FF—2FV , HF
+2#V , FF.

By taking the various cases of E and F either vertical or horizontal it is clear
that 2 is parallel if and only if both A4 and T vanish. In that case [5] shows
that M is locally isometric to a Riemannian product, verifying part (a). The
remaining portions of the Proposition follow from this formula for V(%)

and [5]. U

XeI'(#) is basic if, for some local submersion f;: U — R* defining
Fly» X is f-related to a vector field X on R¥; that is, f,,.(X) = X.

PROPOSITION (1.2)

(a) If X is basic, and if V is vertical, then [ X, V'] is vertical.

(b) If the metric is fiberlike, it is possible to choose X and Y basic (with arbi-

trary horizontal values at a given point) so that VY is also vertical.

Proof. The first statement is trivial; since X is f;~related to X, and Vis
fy-related to zero, [X, V] is f-related to [X, 0]=0. For the second, the
definition of a fiberlike metric [5] implies the existence on R* of a metric for
which f,,: U - R* is a Riemannian submersion. In this case, if X and Y are
basic, f,-related to X and Y, respectively, then, for V the Riemannian
covariant derivative on RY, #'V, Y is f,-related to V, ¥ [6]. Choosing vector
fields X, ¥ so that V;¥ =0 completes the proof. Note that, in the general
case X and Y may be chosen with [ X, Y] vertical by a similar argument. []

2. THEOREMS OF BOTT AND PASTERNACK

On #, define a connection V by V X = #V X — 4, FE, for Ee #(M) and
XeI'(#). It is evident that V is a connection; V is a geometrically natural



AN OBSTRUCTION OF GEODESIBILITY 349

choice of Bott’s connection on T*(M)/% ~ #. Unfortunately V is not, in
general, symmetric.

THEOREM (2.1). IfQis the curvature of V, &V, W)= 0 if both V and W are
vertical.
Proof. For X basic,

V, X=#V,X -V, V)=2[V,X]=0,
by Proposition (1.2). Then,
ay,mx=YV,x-V,9x-V, . X=0
due to the integrability of #.

COROLLARY (22) [Bott]. Char? (5#) =0 for p > 2k, where Char? (#) is
that part of the real characteristic algebra (Pontryagin or Chern) of # in
degree p.

Remark. In general, this is the Pontryagin algebra of #, and specifically
does not include terms involving the Euler class, since the connection is not
symmetric. In the case where # is complex, all appropriate Chern classes
must vanish.

Proof. If #7% is the space of all g7(k, R)-invariant polynomials of degree
p/2 (resp., g£(k/2, C)-invariant polynomials), it is well-known [2] that Char?
(#) is generated by all P(Q), for Pe.#?2. As P(Q) is tensorial, it suffices to
compute P(Q) (4,,...,4,) where each A, is chosen to be either vertical or
horizontal. However if p > 2k each monomial must possess a component of
Q(A A;) with both 4; and A; vertical. O

In the case where the metric is fiberlike the connection V will be symmetric:
an exactly analogous argument yields Pasternack’s theorem.

PROPOSITION (2.3). If the metric is fiberlike, V is symmetric.
Proof. The condition that

VX, YO +(X,V, Y)=E(X,Y)

is clearly tensorial, thus it suffices to consider only the case where X and Y are
basic. If E is vértical, Proposition (1.2) implies that the left-hand side vanishes.
That the right-hand side is also zero may be found in [5]. If E is horizontal,
taking E to be basic yields

VX, Yy +4X,V, Yy =(V, X, T+ (X, V. 7>
by [6] As V is symmetric the proposition is verified, since E( X, Y =
E{ X, Y ) at corresponding points.

THEOREM (24). If the metric is fiberlike, (X, V) =0 Jor X horizontal,
V vertical.

Proof. Let Y be chosen to be basic and so that V, Ye =I"(#) by Proposition
(1.2). X, as usual, will be assumed to be basic. Then V, Y= HV,Y=0as
wellas V, Y = 0. As [ X, V] is vertical, evidently ((X, V)Y 0. O
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COROLLARY (2.5) [Pasternack]. If the metric on M is fiberlike,
Char?(#) = 0for p > k.

Remark. Here the appropriate terms involving the Euler class may be
included;; that is, if 5# is orientable, consider all so(k)-invariant polynomials
of degree p/2.

Proof. In this case~it is necessary that each monomial in P(Q)(A Lseee ,Ap)
has a component of (}(4,, 4;) where at least one of 4; and 4 is vertical. []

3. TOTALLY GEODESIC FOLIATIONS

A foliation # is totally geodesic if each leaf is a totally geodesic submanifold
of M. In [5] the first author and L. Whitt found a strong obstruction to the
existence of a totally geodesic foliation & of codimension one under the
assumption that # has at least one closed leaf; in that case M must fiber over
a circle. In contrast, H. Gluck has shown that there is no obstruction to the
existence of a totally geodesic foliation of dimension one on a simply-
connected manifold of odd dimension. It thus seems reasonable to suspect
that the topological obstructions to geodesibility of a foliation %, above the
integrability obstructions, should lie in the bundle # rather than the normal
bundle.

Define a connection V on # by @E V=FV_V. V is clearly a symmetric
connection. Note that, since # is totally geodesic, T = 0. More generally it
would be desirable, analogously to Bott’s connection, to consider #V,V —
T, #E ; however, the nonintegrability of # prevents any transparent con-
sequences in general.

PROPOSITION (3.1). If X, e€T.M,m) is horizontal, and Y, € T.(M,m) is

vertical, there are extensions X e'(5#) and YeI () so that ?X V=0.
Proof. Choose X to be basic. Let 7 be any integral curve of X on R¥, where
f,,: U— RF is a chosen local submersion with f,,(X)=X. Let £=f;'(3).
]

LEMMA (3.2). IfZisgiven the induced metric, the restriction = of F to L is
totally geodesic. Also, note that the orthogonal distribution #* is integrable.
The metric on X is fiberlike with respect to the foliation H#™.

Proof. Since the Riemannian covariant derivative V* on ¥ is given by the
orthogonal projection I'l; ;. V, the first statement is trivial. That the metric on
% is fiberlike with respect to s follows from the duality between fiberlike
metrics and totally geodesic foliations described in [5]. 0

Now let g : X — R be a local submersion defining #. As the induced
metric on X is fiberlike, there is a metric on R so that g, is a Riemannian
submersion. Choose V to be basic with respect to g,.. Proposition (1.2) then
implies that [V, X]e[(#%). However, as V is vertical and # is totally
geodesic, V,, Xel'(#7) as well, so that V, Vel['(#%) =T (#) (V may be
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extended to a vector field on U using a smooth family of g,’s for the various
integral curves of X). Thus, V,, X =0. O

THEOREM (3 3). If # is totally geodesic, and if Q is the curvature of V,
then Q(V, X)=0ifV is vertical and X is horizontal.

Proof. Extend X to be basic, and, as in Proposition (3.1), choose V to be
#=-basic and so that V, V = 0. Let W be another #*-basic vector field, for
which, using Proposmon (1.2), V, W is in I'(F). As & is totally geodesic,
V,W =0, thusV W =0.The proof of Proposition (3.1) implies thatV W =0
as well, since W is #*-basic. Also, [X,V]=0 as [X, V] must be both
horizontal and vertical, applying Proposition (1.2) twice. Thus
X, V)W =0. O

COROLLARY (3.4). If & is totally geodesic and if dim(F) is odd,
Char(#) = 0, where n = dim (M).

Proof. If P is any o(n — k)-invariant polynomial of degree n/2, consider
P) (A,,...,A,) where A4, is either vertical or horizontal. Each monomial
must possess a component of Q(A A.) where one is vertical and the other is
horizontal, as dim (%) is odd, thus each monomial must vanish. 0

4, AN EXAMPLE

Let M be a compact 8-dimensional orientable manifold with y(M) = 0 but
Hirzebruch signature nonzero. Thurston [8] has shown that there is a folia-
tion # on M of codimension one. However,

PROPOSITION (4.1). No codimension-one foliation # on M is geodesible.
Proof. Let # =F*. As T. M)~ # ®F, the total Pontryagin class
p.(M) is given by p*(M) p () (F). But # is one-dimensional, so that
p(5£) = 1, hence p,(M) = 0 and p,(M) = p, (¥). By the Hirzebruch signature
theorem, the signature o(M) of M satisfies 6(M) = 5(7p,(M) — p, (M)*) =
1 p1 (#)?, which is nonzero by assumption. Corollary (3.4) then implies
that cannot be totally geodesic. O
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