ABSTRACT. Let M be a compact Riemannian manifold of dimension n, and let \mathcal{F} be a smooth foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J. Pasternack, to the existence of a metric on M for which \mathcal{F} is totally geodesic. In this case, necessarily that portion of the Pontryagin algebra of the subbundle \mathcal{F} must vanish in degree n if \mathcal{F} is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and Pasternack are given.

Key words and phrases: Foliations, totally geodesic foliations, integrability obstructions, geodesibility.

0. INTRODUCTION

If \mathcal{F} is a codimension-k distribution on a compact smooth manifold M, there is a well-known topological obstruction, due to R. Bott, to the integrability of \mathcal{F}; the Pontryagin algebra of $T(M)/\mathcal{F}$ must vanish in degrees greater than $2k$ [1]. This result was greatly improved by J. Pasternack in his thesis under the additional assumption that the metric on M is fiberlike with respect to the foliation \mathcal{F} [7]. In that case, the characteristic algebra of $T(M)/\mathcal{F}$ must vanish in degrees greater than k. This article gives a simple proof of these facts, using tensors similar to those introduced by B. O'Neill [6] (cf., [5]). Also, there is a similar obstruction theorem derived in the case where \mathcal{F} is totally geodesic and of odd dimension. However, in this case the obstruction is in the characteristic algebra of the subbundle \mathcal{F} itself; if M is n-dimensional, the characteristic algebra of \mathcal{F} must vanish in degree n.

1. PRELIMINARIES

Let M be, as above, a smooth, compact Riemannian n-manifold. Let \mathcal{F} be a foliation on M of codimension k. Denote also by \mathcal{F} the associated distribution and the orthogonal projection onto this distribution. Similarly, if $\mathcal{H} = \mathcal{F}^\perp$ is the orthogonal distribution, denote by \mathcal{H} the orthogonal projection, and, if \mathcal{H} is integrable, denote the resulting foliation also by \mathcal{H}. Vectors in \mathcal{H} (resp., \mathcal{H}) will be called horizontal (resp., vertical). As in [5] and [6], define tensors T and A on M by, for all vector fields $E, F \in \mathcal{X}(M)$,

$$T_E F = \mathcal{H} \nabla_{\mathcal{F}E} \mathcal{F} F + \mathcal{F} \nabla_{\mathcal{F}E} \mathcal{H} F,$$

$$A_E F = \mathcal{H} \nabla_{\mathcal{F}E} \mathcal{F} F + \mathcal{F} \nabla_{\mathcal{F}E} \mathcal{H} F.$$

As in [5], it is easily seen that \mathcal{F} is totally geodesic if and only if $T = 0$,

Copyright © 1981 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A.
and that the metric is fiberlike (i.e., locally there are Riemannian submersions defining the foliation) if and only if $A_X Y = - A_Y X$ for all $X, Y \in \Gamma(H)$.

The properties of the tensors A and T may equivalently be given in terms of a single tensor \mathcal{P}, where \mathcal{P} is the automorphism $\mathcal{P} : T_v(M) \to T_v(M)$ given by $\mathcal{P} = \mathcal{F} - H$. In a forthcoming article the second author will classify the various geometric almost-product and foliated structures defined naturally in terms of this automorphism, analogously to the work of A. Gray and L. M. Hervella on almost-complex structures [4]. At present there is the following partial classification.

Proposition (1.1)

(a) \mathcal{P} is parallel if and only if M is locally isometric to a Riemannian product.

(b) $\nabla_Y(\mathcal{P}) = 0$ for $Y \in \Gamma(H)$ if and only if \mathcal{F} is totally geodesic.

(c) For $X, Y \in \Gamma(H)$, $\nabla(\mathcal{P})_X Y + \nabla(\mathcal{P})_Y X = 0$ if and only if the metric is fiberlike.

(d) For $X, Y \in \Gamma(H)$, $\nabla(\mathcal{P})_X Y - \nabla(\mathcal{P})_Y X = 0$ if and only if H is integrable.

Proof. A calculation verifies that

$$\nabla(\mathcal{P})_E F = - 2 \mathcal{F} \nabla_{\mathcal{F}E} \mathcal{H} F + 2 \mathcal{H} \nabla_{\mathcal{F}E} \mathcal{F} F - 2 \mathcal{F} \nabla_{\mathcal{H}E} \mathcal{H} F + 2 \mathcal{H} \nabla_{\mathcal{H}E} \mathcal{F} F.$$

By taking the various cases of E and F either vertical or horizontal it is clear that \mathcal{P} is parallel if and only if both A and T vanish. In that case [5] shows that M is locally isometric to a Riemannian product, verifying part (a). The remaining portions of the Proposition follow from this formula for $\nabla(\mathcal{P})$ and [5].

$X \in \Gamma(H)$ is basic if, for some local submersion $f_U : U \to \mathbb{R}^k$ defining $\mathcal{F}_U | U$, X is f_U-related to a vector field \tilde{X} on \mathbb{R}^k; that is, $f_U(X) = \tilde{X}$.

Proposition (1.2)

(a) If X is basic, and if V is vertical, then $[X, V]$ is vertical.

(b) If the metric is fiberlike, it is possible to choose X and Y basic (with arbitrary horizontal values at a given point) so that $\nabla_X Y$ is also vertical.

Proof. The first statement is trivial; since X is f_U-related to \tilde{X}, and V is f_U-related to zero, $[X, V]$ is f_U-related to $[\tilde{X}, 0] = 0$. For the second, the definition of a fiberlike metric [5] implies the existence on \mathbb{R}^k of a metric for which $f_U : U \to \mathbb{R}^k$ is a Riemannian submersion. In this case, if X and Y are basic, f_U-related to \tilde{X} and \tilde{Y}, respectively, then, for \mathcal{V} the Riemannian covariant derivative on \mathbb{R}^k, $\mathcal{H} \nabla_{X} Y$ is f_U-related to $\mathcal{V}_{\tilde{X}} \tilde{Y}$ [6]. Choosing vector fields \tilde{X}, \tilde{Y} so that $\mathcal{V}_{\tilde{X}} \tilde{Y} = 0$ completes the proof. Note that, in the general case X and Y may be chosen with $[X, Y]$ vertical by a similar argument.

2. Theorems of Bott and Pasternack

On \mathcal{H}, define a connection $\tilde{\nabla}$ by $\tilde{\nabla}_E X = \mathcal{H} \nabla_{E} X - A_X \mathcal{F} E$, for $E \in \mathcal{H}(M)$ and $X \in \Gamma(H)$. It is evident that $\tilde{\nabla}$ is a connection; $\tilde{\nabla}$ is a geometrically natural
choice of Bott’s connection on $T^*(M)/\mathcal{F} \simeq \mathcal{H}$. Unfortunately $\tilde{\nabla}$ is not, in general, symmetric.

Theorem (2.1). If $\tilde{\Omega}$ is the curvature of $\tilde{\nabla}$, $\tilde{\Omega}(V, W) = 0$ if both V and W are vertical.

Proof. For X basic,

$$\tilde{\nabla}_V X = \mathcal{H}(\nabla_V X - \nabla_X V) = \mathcal{H}[V, X] = 0,$$

by Proposition (1.2). Then,

$$\tilde{\Omega}(V, W) X = \tilde{\nabla}_V \tilde{\nabla}_W X - \tilde{\nabla}_W \tilde{\nabla}_V X - \tilde{\nabla}_{[V, W]} X = 0$$

due to the integrability of \mathcal{F}.

Corollary (2.2) [Bott]. $\text{Char}^p(\mathcal{H}) = 0$ for $p > 2k$, where $\text{Char}^p(\mathcal{H})$ is that part of the real characteristic algebra (Pontryagin or Chern) of \mathcal{H} in degree p.

Remark. In general, this is the Pontryagin algebra of \mathcal{H}, and specifically does not include terms involving the Euler class, since the connection is not symmetric. In the case where \mathcal{H} is complex, all appropriate Chern classes must vanish.

Proof. If $\mathcal{F}^{p/2}$ is the space of all $\Omega(k, \mathbb{R})$-invariant polynomials of degree $p/2$ (resp., $\Omega(k/2, \mathbb{C})$-invariant polynomials), it is well-known [2] that $\text{Char}^p(\mathcal{H})$ is generated by all $P(\tilde{\Omega})$, for $P \in \mathcal{F}^{p/2}$. As $P(\tilde{\Omega})$ is tensorial, it suffices to compute $P(\tilde{\Omega})(A_1, \ldots, A_p)$ where each A_j is chosen to be either vertical or horizontal. However, if $p > 2k$ each monomial must possess a component of $\tilde{\Omega}(A_i, A_j)$ with both A_i and A_j vertical. \[\square \]

In the case where the metric is fiberlike the connection $\tilde{\nabla}$ will be symmetric; an exactly analogous argument yields Pasternack’s theorem.

Proposition (2.3). If the metric is fiberlike, $\tilde{\nabla}$ is symmetric.

Proof. The condition that

$$\langle \tilde{\nabla}_E X, Y \rangle + \langle X, \tilde{\nabla}_E Y \rangle = E\langle X, Y \rangle$$

is clearly tensorial, thus it suffices to consider only the case where X and Y are basic. If E is vertical, Proposition (1.2) implies that the left-hand side vanishes. That the right-hand side is also zero may be found in [5]. If E is horizontal, taking E to be basic yields

$$\langle \tilde{\nabla}_E X, Y \rangle + \langle X, \tilde{\nabla}_E Y \rangle = \langle \tilde{\nabla}_E X, \tilde{\nabla}_E Y \rangle + \langle \tilde{\nabla}_E X, \tilde{\nabla}_E Y \rangle$$

by [6]. As $\tilde{\nabla}$ is symmetric the proposition is verified, since $E\langle X, Y \rangle = E\langle \tilde{\nabla}_E X, \tilde{\nabla}_E Y \rangle$ at corresponding points.

Theorem (2.4). If the metric is fiberlike, $\tilde{\Omega}(X, V) = 0$ for X horizontal, V vertical.

Proof. Let Y be chosen to be basic and so that $\nabla_X Y \in \Gamma(\mathcal{F})$ by Proposition (1.2). X, as usual, will be assumed to be basic. Then, $\tilde{\nabla}_X Y = \mathcal{H} \nabla_X Y = 0$ as well as $\tilde{\nabla}_V Y = 0$. As $[X, V]$ is vertical, evidently $\tilde{\Omega}(X, V) Y = 0$. \[\square \]
COROLLARY (2.5) [Pasternack]. If the metric on M is fiberlike, $\text{Char}^p(\mathcal{H}) = 0$ for $p > k$.

Remark. Here the appropriate terms involving the Euler class may be included; that is, if \mathcal{H} is orientable, consider all $so(k)$-invariant polynomials of degree $p/2$.

Proof. In this case it is necessary that each monomial in $P(\bar{Q})(A_1, \ldots, A_p)$ has a component of $\bar{Q}(A_i, A_j)$ where at least one of A_i and A_j is vertical. □

3. Totally Geodesic Foliations

A foliation \mathcal{F} is totally geodesic if each leaf is a totally geodesic submanifold of M. In [5] the first author and L. Whitt found a strong obstruction to the existence of a totally geodesic foliation \mathcal{F} of codimension one under the assumption that \mathcal{F} has at least one closed leaf; in that case M must fiber over a circle. In contrast, H. Gluck has shown that there is no obstruction to the existence of a totally geodesic foliation of dimension one on a simply-connected manifold of odd dimension. It thus seems reasonable to suspect that the topological obstructions to geodesibility of a foliation \mathcal{F}, above the integrability obstructions, should lie in the bundle \mathcal{F} rather than the normal bundle.

Define a connection $\hat{\nabla}$ on \mathcal{F} by $\hat{\nabla}_E V = \mathcal{F}\nabla_E V$. $\hat{\nabla}$ is clearly a symmetric connection. Note that, since \mathcal{F} is totally geodesic, $T = 0$. More generally it would be desirable, analogously to Bott's connection, to consider $\mathcal{F}\nabla_E V - T_v \mathcal{H}E$; however, the nonintegrability of \mathcal{H} prevents any transparent consequences in general.

PROPOSITION (3.1). If $X_m \in T_m(M, m)$ is horizontal, and $Y_m \in T_m(M, m)$ is vertical, there are extensions $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(\mathcal{F})$ so that $\hat{\nabla}_X V = 0$.

Proof. Choose X to be basic. Let $\bar{\gamma}$ be any integral curve of \bar{X} on \mathbb{R}^k, where $f^\circ : U \mapsto \mathbb{R}^k$ is a chosen local submersion with $f^\circ(X) = \bar{X}$. Let $\Sigma = f^{-1}(\bar{\gamma})$.

LEMMA (3.2). If Σ is given the induced metric, the restriction \mathcal{F}^Σ of \mathcal{F} to Σ is totally geodesic. Also, note that the orthogonal distribution \mathcal{H}^Σ is integrable. The metric on Σ is fiberlike with respect to the foliation \mathcal{F}^Σ.

Proof. Since the Riemannian covariant derivative ∇^Σ on Σ is given by the orthogonal projection $\Pi_{T_\Sigma \mathcal{V}} \nabla$, the first statement is trivial. That the metric on Σ is fiberlike with respect to \mathcal{F} follows from the duality between fiberlike metrics and totally geodesic foliations described in [5]. □

Now let $g_\Sigma : \Sigma \to \mathbb{R}$ be a local submersion defining \mathcal{H}. As the induced metric on Σ is fiberlike, there is a metric on \mathcal{R} so that g_Σ is a Riemannian submersion. Choose V to be basic with respect to g_Σ. Proposition (1.2) then implies that $[V, X] \in \Gamma(\mathcal{F}^\Sigma)$. However, as V is vertical and \mathcal{F} is totally geodesic, $\nabla_V X \in \Gamma(\mathcal{H}^\Sigma)$ as well, so that $\nabla_X V \in \Gamma(\mathcal{H}^\Sigma) \subseteq \Gamma(\mathcal{H})$ (V may be
extended to a vector field on U using a smooth family of g_λ’s for the various integral curves of \tilde{X}). Thus, $\tilde{\nabla}_V X = 0$.

\textbf{THEOREM (3.3).} If \mathcal{F} is totally geodesic, and if $\tilde{\Omega}$ is the curvature of $\tilde{\nabla}$, then $\tilde{\Omega}(V, X) = 0$ if V is vertical and X is horizontal.

\textit{Proof.} Extend X to be basic, and, as in Proposition (3.1), choose V to be \mathcal{H}^2-basic and so that $\tilde{\nabla}_X V = 0$. Let W be another \mathcal{H}^2-basic vector field, for which, using Proposition (1.2), $\tilde{\nabla}_V W$ is in $\mathcal{T}(\mathcal{H})$. As \mathcal{F} is totally geodesic, $\tilde{\nabla}_V W = 0$, thus $\tilde{\nabla}_V W = 0$. The proof of Proposition (3.1) implies that $\tilde{\nabla}_X W = 0$ as well, since W is \mathcal{H}^2-basic. Also, $[X, V] = 0$ as $[X, V]$ must be both horizontal and vertical, applying Proposition (1.2) twice. Thus $\tilde{\Omega}(X, V)W = 0$.

\textbf{COROLLARY (3.4).} If \mathcal{F} is totally geodesic and if $\dim(\mathcal{F})$ is odd, $\text{Char}^n(\mathcal{F}) = 0$, where $n = \dim(M)$.

\textit{Proof.} If P is any $o(n-k)$-invariant polynomial of degree $n/2$, consider $P(\tilde{\Omega})(A_1, \ldots, A_n)$ where A_i is either vertical or horizontal. Each monomial must possess a component of $\tilde{\Omega}(A_i, A_j)$ where one is vertical and the other is horizontal, as $\dim(\mathcal{F})$ is odd, thus each monomial must vanish.

\section{4. An example}

Let M be a compact 8-dimensional orientable manifold with $\chi(M) = 0$ but Hirzebruch signature nonzero. Thurston [8] has shown that there is a foliation \mathcal{F} on M of codimension one. However,

\textbf{PROPOSITION (4.1).} No codimension-one foliation \mathcal{F} on M is geodesible.

\textit{Proof.} Let $\mathcal{H} = \mathcal{F}^\perp$. As $T_*(M) \cong \mathcal{H} \oplus \mathcal{F}$, the total Pontryagin class $p_*(M)$ is given by $p_*(M) = p_*(\mathcal{H})p_*(\mathcal{F})$. But \mathcal{H} is one-dimensional, so that $p_1(\mathcal{H}) = 1$, hence $p_4(M) = 0$ and $p_1(M) = p_1(\mathcal{F})$. By the Hirzebruch signature theorem, the signature $\sigma(M)$ of M satisfies $\sigma(M) = -\frac{1}{48}(7p_2(M) - p_1(M)^2) = -\frac{1}{48}p_1(\mathcal{F})^2$, which is nonzero by assumption. Corollary (3.4) then implies that \mathcal{F} cannot be totally geodesic.

\textbf{REFERENCES}

Authors' addresses

David L. Johnson,
Department of Mathematics,
Texas A & M University,
College Station
Texas 77843,
U.S.A.

A. M. Naveira,
Departamento de Geometria
y Topologia,
Facultad de Ciencias Matemáticas,
Universidad de Valencia,
Valencia,
Spain

(Received January 21, 1980)