
ILLINOIS JOURNAL OF MATHEMATICS
Volume 28, Number 4, Winter 1984

CURVATURE AND EULER CHARACTERISTIC FOR
SIX-DIMENSIONAL K.HLER MANIFOLDS

BY

DAVID L. JOHNSON

O. Introduction

Perhaps the most basic problem in Riemannian geometry is the determi-
nation of which Riemannian metrics a given manifold can support, in parti-
cular which curvature properties can be realized on the manifold. A classical
conjecture, due to H. Hopf, is that the Euler characteristic is a basic obstruc-
tion to the existence of a metric of nonnegative (or nonpositive) curvature;
specifically, if M is a compact, 2n-dimensional Riemannian manifold, with
sectional curvature r,

r > 0 implies ;z(M) >_ 0,
(,)

r _< 0 implies (-1)";(M) _> 0.

This conjecture can be verified in dimensions 2 and 4 by the Gauss-Bonnet-
Chern theorem (GBC) [4] (the 4-dimensional result is due to J. Milnor). The
purpose of this article is to prove (,) for 6 real-dimensional Kiihler manifolds.
The approach taken here is similar to that outlined in [4]. By the GBC,

the Euler characteristic ;(M) is given by the integral over M of a homoge-
neous polynomial of degree n in the components Ro of the Riemann curva-
ture tensor R of M, which we denote by (R). We prove (,) in the case at
hand by showing that ;6R) >_ 0 at each point of M.

This theorem is actually a result in what B. O’Neill has dubbed "pointwise
geometry", as only algebraic properties of R at a single point of M are used.
This pointwise result does not hold in greater generality; that is, there are
algebraic curvature tensors R with nonnegative sectional curvature but
;(R) < 0. In [5], R. Geroch has found such an example in dimension six,
which is of course non-Kihlerian. More recently, Bourguignon and Karcher
[3] have found a one-dimensional family of such tensors that are quite
nearly Kiihlerian, the only non-Kiihler component being a multiple of the
identity operator. These results do not provide a counterexample to (,),
however, since to our knowledge no compact manifold has been constructed
realizing one of these operators as its curvature tensor at every point.

It should be pointed out that under the stronger hypothesis that the sec-
tional curvature is strictly positive much stronger results have recently been
shown. Block and Gieseker [2] have shown that any algebraic vector bundle
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over an algebraic manifold has positive Chern classes if it is ample, i.e., has
positive holomorphic bisectional curvature. Furthermore, Mori [13] has veri-
fied a conjecture due to Frankel that a compact K/ihler manifold M can
have strictly positive holomorphic bisectional curvature only if M CP"
(this has also been shown by Siu and Yau). Although these results are cer-
tainly stronger than those of this article, they are valid only in the much
stronger hypothesis of strictly positive curvature.

I would like to thank I. M. Singer for stimulating my interest in this
problem, and L. B. Whitt for many helpful suggestions.

1. Algebraic preliminaries

Let V be an n-dimensional real inner product space with inner product
( ), and let Ak(V) be the kth exterior power of V. There is a natural
induced inner product structure on Ak(V) defined as follows" for {v} an
orthonormal basis of V, {v A... A v}<...< is an orthonormal basis of
A(V).
An algebraic curvature operator R on V is a symmetric linear operator on

A(V). The space of all algebraic curvature operators is denoted (V). (V)
is naturally an inner product space with

(R, S) trace (RS).

R ?(V) is proper if b(R) 0, where b" (V)-+ (V) is defined by

(b(R)x A y, z A w) (Rx A y, z A w) + (Ry A z, x A w) + (Rz A x, y A w).

This is the first Bianchi identity. Let ’.(V) be the linear subspace of proper
operators.
There is a standard embedding of the oriented Grassmann manifold

G(2, V) of 2-planes in V into A2(V), defined by P-+ v A w, where {v, w} is an
oriented orthonormal basis of P. Clearly this embeds G(2, V) into the unit
sphere of A2(V) [14]. Given R (V), the sectional curvature function
ra: G(2, V)--- R of R is defined by ra(P) (RP, P).

Remark. If V T.(M, m), the tangent space at m of a Riemannian mani-
fold M, clearly all of these algebraic notions correspond to their geometric
antecedents.

If R e (V) with dim (V)= 2n, define the Gauss-Bonnet integrand ;(R) of
R to be the polynomial given by, for {vi} an orthonormal basis of V, o
R(viA vj), and ." Ak(V)---* An-k(V) the Hodge star operator 114],

1
x(R)

(2)" Z /(ii’ i2n)’ili2 A." A "i2n- li2n’
il, i2n

where the sum ranges over all shuffle permutations of (1, 2n) and e is the
sign of the permutation. The geometric significance of this polynomial is, of



656 DAVID L. JOHNSON

course, the following theorem, originally due to Allendoerfer and Weil; cf.
E4].

THEOREM (1.1). If V T*(M, m), where M is a compact, oriented, 2n-
dimensional Riemannian manifold with curvature tensor R, then jr(M)=
M jr(R)dV.

Now let V be a 2n-dimensional inner product space with a fixed complex
structure automorphism J: V V, and assume that the inner product is her-
mitian. Define an element of (V), also denoted J, by J(v A w)= Jv A Jw.
R (V) will be called Kfihler if RJ JR R. As the name implies, the
Riemannian curvature tensor of a Kihler manifold satisfies this property.
The space of all Kihler operators is denoted by (V), the proper ones by
g(V). If {v, v,, v,, v,,} (v, Jv) is an oriented, hermitian orthonor-
mal basis of V (such a basis will be called unitary), letRgu, (RvAvj,
v Avt,) etc. R is Kihler if and only if Rg,, Ru, Rg,u R,u, etc. In the
following, Latin indices will run from 1 to n, Greek indices will run over the
set 1, 1,, n, n,.

P G(2, V) is called holomorphic if JP P, nonholomorphic otherwise. The
space of holomorphic planes is naturally identified with two copies (+ and
-) of CP(V); P + CP(V) (resp. -CP(V)) if P vAJv (resp. -vAJv) for v
a unit vector in P. The holomorphic sectional curvature of R v(V) is
defined to be r leery).

It will be useful to note that { Az(V)IJ } = AZ(V) is naturally iden-
tified with u(V)_ o(V), the skew-hermitian operators embedded into the
skew-symmetric operators on V, using the identification of o(V) with AZ(V)
by

vAw--Ao^w., (Av^w x, y) (yAw, xAy).

(There are other identifications also used in the literature, usually differing
only in sign.) Then R (V) is Kihler if and only if R(Az(V))_ u(V), or
R I,,v 0.

2. Outline of the theorem

The proof of (,) for 4-manifolds in [2] was based on a simple argument.
By a clever choice of basis, many of the components Rjk of the curvature
tensor may be assumed to be zero. ;t(R) reduces to a sum of squares and
products of sectional curvatures, (,) then follows. Our approach will actually
be more simpleminded; we show ;t(R)> 0 for rR >0 by locating the
minimum point K of ;t for all R g(V) with ra > 0 (and [R I-- 1), then
showing that ;(K) cannot be negative. Unfortunately, this last contradiction
argument is very complicated; nonetheless, the main result is the following.
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THEOREM (2.1).
f rs _< 0, Z(R) _< 0.

Let V - C3. If R 3gf(V) satisfies rR > O, then z(R) > O.

The proof of this theorem consists of several propositions, which are dealt
with in the succeeding sections. Only the nonnegative case is proven, the
nonpositive case follows from reversing inequalities.

Let a’ {R e ’d(V)lrR > 0 and RI 1}. Consider ;(la. Let K e a’ be
a minimum point of ;( la. Assume that z(K) < 0.
As a subset of the unit sphere in :(V), the interior

Int (a’) {R e c(V) lr > 0 and RI 1}.
Assume first that K e Int (a’). As a function on #:d(V), the gradient of at
K, Vx(K), which can and shall be identified with an element of #’X’(V) in the
usual manner (since it is an inner product space), satisfies V;(K)= 2K by
Lagrange multipliers.

PROPOSITION (2.2). For V - C3, if R #3/d(V), there is an #Yd(V) so
that 3;t(R)= (R,/). Furthermore, considering as a function on all of 3’(V),
VX(R) R, and if rs > O, r > O.

This proposition will be proven in Section 3. Using Proposition (2.2) it is
now easy to show that K 6 Int (a’). If K e Int (a’),/ V(K) 2K, 2 > 0
necessarily since K and/ both have nonnegative curvature. But, by assump-
tion on K, 0 > 3:(K) (/, K) 2. Thus, K must be on the boundary of a’.

Consider the function

r" (v) (2, v)- 1

defined by r(R, P) ra(P). Let W r-" t(O). If Ro has constant positive holo-
morphic sectional curvature [10-1,

d
(r(R + tRo, P))= r(Ro, P) > O,

dt o

thus Vr is never zero, so W is smooth. Let

n. ar(v) x (2, v) #(v)

be the projection onto the first factor. II-*(K) m W {(K, P,)IrK(P)= 0} is
essentially the minimal set of rK. Note that the gradient of r at (K, P,),
Vr(K, Pi),. is in T.(ofr(V), K) since VrP)= 0. Identify Vr(K, P,), and
Vx(K), with their corresponding elements of off(V) as usual.

PROPOSITION (2.3). Vz(K)is in the span of {Vr(K, P)Ir(P)= 0} u {K}.
Furthermore, a finite set P1, Pk of zeroes of rx may be chosen so that

/ Vz(K) a, Vr(K, P,) + 2K,
i=1

where necessarily 2 < O.
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Proof. The second assertion follows from the first by Proposition (2.2)
and the fact that (Vr(K, P), K) 0, which is true since

d
r((1 + t)K, P,) r(K, P,) O.

o

Thus 2 (Vjt(K), K)= (K, K)= 3z(K)< 0. It is clear that, as a subset of
the unit sphere in #A(V), the boundary d is a stratified set, that is, a
disjoint union of smooth submanifolds of Ac’(V), since d is a component
of drl(Wo), where Wo {(R, P) W RI 1), which is a real algebraic
variety. Lagrange multipliers may then be applied to the stratum of d con-
taining K, showing that Vz(K) is orthogonal to that stratum. Let R
and M

_
be the stratum of t containing R, which is a smooth sub-

manifold of :(V). Let Rt be a curve in M with Ro R, so that

d IoRtdS T,(M, R).

Choose PG(2, V) so that r(R,P)=O; that is, (R,P)Wo. Since

d
or(R,, P)= (Vr(R, P), (tloR,, O))

so that Vr(R, P) _1_ M c (V). Thus {Vr(R, P) I(R, P) Wo} is contained in
the normal space at R e d to its stratum M. Now let S be in the normal
space to the stratum M of d at R, considered as a subspace of A(V).
Since t3zg’ is stratified, S is in the span of {limn-,R. v(d, B)IB is in a maximal
stratum of t}, where v(d’, B) is the normal space at B. The maximal
strata of t are those of codimension one in {R e Ac(V) R I= 1}. If B is
in d, rn > O, but rn O. Since Vr(B, P) rI.(V,(B, P)) is orthogonal to
at B by the above, it along with B, which spans the normal space to
{RII R I--- 1} at B, must span v(t, B) for any one such P Pn (which may
be chosen continuously). Thus,

S span {R, n-.RlimVr(B, Pn) Irn(Pn)

If Pn limn-.s Pn, clearly rs(Pn) 0 by continuity, so that

S span {R, Vr(B, P)Ir(R, P)= 0}.

In particular, the normal space to t3z’ at K is spanned by {K, Vr(K, P)I
rr,(P) 0}. The required finite subset PI, Pk of zeroes may be chosen by
the finite-dimensionality of :(V). I
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PROPOSITION (2.4). Each zero P of rr is necessarily nonholomorphic.

This proposition will be proven in Section 4, along with some technical
relationships among the critical zeroes {P}. Section 5 will use these relation-
ships to provide the various contradiction arguments which will complete the
proof of the main theorem.

3. Behavior of the function Z (Proof of Proposition (2.2))

For the moment consider V -116. Let R (V), and let {v} be an
orthonormal basis of V. As in Section 1, the curvature form t) of R can be
defined by fo R(v A vj). Following [6], define fOk A’(V) by

and f]123456 A6(V) by

Then

f123456 ’12 A ’3456 ’13 A ’)2456 + "t4 A ’2356

1
z(R) *"123456

An easy calculation shows that the coefficient of R1212 in the expression
for ;t(R) is

1

Similarly, define
and extend linearly to a map f: A*(V) (A*(V))*. The coefficient of Rou in
;t(R) is then

1
+ n., (,v ^ v).

The sign is always positive since the Hodge star corrects for the negative
signs in the expression. Denote by Aou the operator with a 1 in the ijkl-entry
(and klij-entry), with zeroes elsewhere, and by

x,(g) {(Aijkl R) R),, ij kl,
ij kl,
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the associated coordinate function. Then

Xijkl

ij kl,

ij kl.

Since these coordinates are orthonormal, it is easily seen that

1

ij,kl

so that

1
(Vz(R))ou fl,, (,v ^ v).

It now follows (noting that is a homogeneous cubic) that

(V;t(R), R) 3;t(R),

so, if /1 V(R), the proof of Proposition (2.2) will be finished once it is
shown that, if R oC(V), so is/]; and r[ > 0 if r > 0. That/1 is Kihler, if
R is, is shown in [6]; in that paper Gray also gives a further identity

(flo, vp.A v A v, A v,) 0,
(ijklp)

where the sum is taken over all cyclic permutations of (ijklp). This identity
easily yields the standard first Bianchi identity for R"

Rijkl + Rjkil + Rkul ((*m^ ), *Ok A

Without loss of generality, i, j, k, may be assumed to be distinct, otherwise
the identity reduces to the fact that/1 e (V). For definiteness, take (i, j, k,
/) (1, 2, 3, 4). Then

R1234. + R2314. + Rs124. ((vs^v,t^vs^ve), 1)1 A02 A1)5 A1)6)

+ (fl(vv,vsve}, VsAv Avs Av6)"
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Gray’s identity implies that

0 ([lCvs^v,^vs^v6) Vl Av2AvsAv6)

" (’(v,t^vs^v6^vl), I)3 A u2 A u5 A v6)

Since the last two terms are zero and since fl: A4(V) A4(V) is symmetric,
the Bianchi identity follows. Now assume that rs 0. Let P be any plane
section; r(P)= fl,e(*P), which is nonnegative by essentially Milnor’s result,
since (up to a positive factor) fl,e(*P) is the Gauss-Bonnetqntegrand of the
restriction of R to A2(px). [

Remark. It is at this point that it becomes, clear that these arguments
cannot be readily extended to higher dimensions, due to Geroch’s counter-
example in the real ease.

4. Relations among critical points of K

The following elementary result appears in [11].

LEMMA (4.1). If V C2 and if R :/[(V) satisfies rR > 0, then

R" A2(V)-- A2(V)
is positive semi-definite.

Proof of Proposition (2.4). Assume that P is a holomorphic zero of the
operator K defined in Section 2, a minimum point of ;1 with (K)< 0.
Choose a unitary basis of V

_
Ca so that P v Ave,. Since rr(P)= O,

K,, 0. For any such choice of basis, the restriction of K to an operator
on A2(vl A vl, A v2 A v2,) is positive semi-definite by Lemma (4.1), whence

20 > K121,22 Kll,ll, K22,22, Kll,22,,

since (K(av A c1, + bv2 A v2,), av A v 1, + bv2 A v2,) >" 0.
also, by changing bases,

Thus Kll,22, 0;

K11,czfl 0 for any , fl { 1, 1,, 2, 2,, 3, 3,}.
Applying the first Bianchi identity and the Kihler identities to the equation
Kll,22, 0, K1212 d- K12,12, 0, so that K1212 K12,12, --0. Again chang-
ing bases, Kxla 0 for all , ft. Thus, whenever any 2 of , fl, ,, 6 are 1 or
1,, K,a 0. This would imply that jr(K)= 0 since each term of ;t(K) has a
factor with two or more indices in {1, 1,}. I
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Define r/: A2(V)--. u(V)c A2(V) by r/()= + J. Up to normalization, r/
is the orthogonal projection onto u(V). Note that R(r/(0)= 2R() for
R e d(V). Also, if r/(P) r/(Q) (there is a circle of planes Po satisfying this for
any nonholomorphic plane P), and if P is a critical point of rR, then so is Q,
and moreover Vr(R, Q)= Vr(R, P). For any choice of unitary basis {v},
define I u(V) by

I vl Avl, + v2Av2, + vaAva,.
I is independent of unitary basis chosen, corresponding to (Id) u(V) as a
skew-hermitian operator on V. It is a simple calculation to show that, for

u(V), (, I) -i trace ().

LEMMA (4.2).
by

r/(G)/[ /(G)[, defined to be {r/(P)/[ r/(P)[ [P G(2, V)}, is given

q(G)/Ir/(G)I- { u(V): I1-- 1, 3 =0, and I(, I>1-< 1}.
(r/(P)/I e(P) I, I) 1/f and only if P is holomorphic.

Proof

thus

Let P e G(2, V). There is a unitary basis of V so that

P avt A vt, + bvt A v2 [10];

r/(P)/I r/(P)
(2av A vl, + b(vi A v2 + vl, A v2,))

(4a2 + b2)/2

Clearly, then (r/(P)/I r/(P) l)a 0, and

2lal(r/(P)/I r/(P) l, I) (4a2 + b2)/2
< 1,

equalling 1 only when al 1, b 0. Conversely, let e u(V). Diagonalizing
the operator , there is a unitary basis so that

art Avt, + by2 A i)2, + c1)3 A 1)3,.

If a 0, abc 0; say c 0 for definiteness. If I1 1 but I(, I) < 1, then
a+bl<landa2+b2=l,sothatab<0.ab=0ifandonlyifitselfisa
holomorphic plane, in which case r/(0/I r/() I. If ab < 0, take a > 0, b < 0.
Then for the plane we have

P (x/vl + x//-v2,)A(xvl, + x/-v2), rl(P)/ll(P)[ . I

Let P be a (necessarily nonholomorphic) zero of rr defined above. Choose
a unitary basis so that P art A vt, + bv A v2, b q: O.
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LIMMA (4.3). With respect to this unitary basis of V,

Vr(K, P) a2A,, + (3b2/16)A22 (b/16)A2,2
-I- (b/2)A11.12 q- (b2/8)A11,22,,

where AI (V) is defined to have a 1 in the otfl6-component (also the
6fl-, a,fl,6-, etc.), zeroes elsewhere.

Remark. It can be seen that Vr(K, P) has 2 positive, 2 negative eigen-
values, thus an l 1-dimensional kernel. From this it will follow that there
necessarily are at least 4 distinct zeroes of rr (where here Pi, Pj arc distinct
only if +__ rl(Pi) rl(Pj)), although this fact will not be needed.

Proof. Choose coordinate functions X,ar on ’,Y(V) as follows:

Xii,ii,(R) =(Aii,ii, R)

XijiXR (Aijij "Jr" Aij,ij, "Jr" 2A/i,jj,, R)/4

Xij,ij,(R (Aijij- Aij,ij,

X,.(R) (A,.j, R)/2, etc.,

extending A,,,,, (Ao + A,o, + 2A,,,)/4, etc., to an orthonormal basis of
(V). One can easily compute that

/X11,1x,(r)(K, P) a2,

O/X1212(r)(K, P) b2/4,
O/OX..(r)(K, P)= b/x/8,
t3/3X ,2(r)(K, P) ab,

and all other derivatives vanish, in particular, all derivatives in the G(2, V)
factor vanish since P is a critical point of rr. The claimed expression for
At(K, P) then follows. I

LEMMA (4.4). Let u(V), V - Ca, satisfy 3 O, and R :;f(V) satisfy
ra > O. Then (R, > O. Furthermore, if L u(V) is a subspace of dimension
>_2 there is a L with O.

Proof. Let u(V) satisfy 3= 0. Then there is a unitary basis so that
avx Ave, + bv2Av2,. Lemma (4.1), applied to the restriction of R to

A2(v Ave, A v2 A v2,), yields the first statement. For the second, let 0, e
u(V) be independent. Either 0, in which ease there is nothing to show,
or the cubic *(0 + t)3 in has a real root to; 0 + to will do. |
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Let {Pi}i=l k be distinct (in the sense that +r/(P) are distinct) zeroes of
rr so that, in the notation of Section 2,

k, , Vr(K, P) + 2K.
i=1

Proposition (2.3) implies that re, > 0 and 2 < 0, for K as defined earlier, a
minimum point of Z I with rr > 0, KI 1, and z(K) < 0 assumed. In [10]
the author proved the following useful result, here stated only in the special
case that rr(P)= 0, i.e., that P is a critical zero of rr (since rr > 0, P is
critical).

LEMMA (4.5).

Moreover,

K(Pi) Bi,rl(Pi)2 2B.P A JP.

Bi -(KPi, I)/I r/(P)2 I.
The following proposition is the key technical result in this section, and

will be used extensively.

PROPOSITION (4.6). For some i, j <_ k, assume that (KP, P) O. Then,
there is a P with l(P)= rl(Pi) so that there are orthonormal bases {xl, X2} of
P’, {Zl, z2} of Pj so that"

(a)
(b)
(c)

Z d- Jz2 --(x d- Jx2);
X iS orthogonal to Jzl and z2;

x2 is ortholonal to Jz2 and z.

Note. As remarked earlier, the change from P to P; does not alter
Vr(K, P), g(e), etc.

Proof. By Lemma (4.5), since (KP, Pj) :/: 0, P A JP AP :/: O. Thus

P JP P - V,

so there are xx, x2 P, yt, Y2 JP, and zt, z2 P so that

JP (xl + yt + z)A(x2 + Y2 + z2)

with {(x + y + z), (X2 + Y2 + Z2)} orthonormal. From either [10] or [14]
it is easy to show"

LEMMA (4.7). If Z P or JP, then (K(JPj), v A z) Ofor any v.

Proof In 1-10] and [14] it is shown that, if v is orthogonal to JP, z
JP, then (K(JP), vAz)= 0 since JP is critical. This extends to v not
orthogonal to JPj since the critical value is zero, and to z Pj by the Kihler
identities. I
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By this lemma, 0 K(JPj), (xn + yn + z.)A v, where
and n 1, 2, and also 0 K(JPj), (x. + y.)A since z. P. In particular,

o K(P),
if

{X A Yl, XI A X2 "- Yl A X2, X A X2 + X A Y2,

Since

x2AY2, x1AY2 + Yx Ay2, x2AY + y2 Aye}.

0 (K(JPj), (x ]x2 -- x1Ay2)- (x1Ay2 + Yl Ay2))

(K(JPI), xx A x2 + yl A Y2),

and

:Xt Ax2 2xPi, yt A Y2 2yJPi,

necessarily 2,, 2 because (K(JP), P) :p 0. First assume that 2,, 2 0.
Then x2 xx, Y2 flY1" Let {v, w} be an orthonormal basis of P. Then

P(O) (cos Ov + sin OLv) A (cos Ow + sin OJw)

satisfies rl(P(O))= rl(Pi) (P(O) parametrizes r/-t(t/(P)) [10]), P(0)= P, and
P(7/2) JP. By varying 0 from 0 to 7/2, the roles of P and JP are
reversed. However, 0 =p P(O)A JP(O)AP still, so the above construction may
be repeated, continuously in 0 for P(O), JP(O). Passing from 0 0 to 0 7/2
then reverses the roles of u and fl; thus, for some 0, 0(0) fl(O). Dropping the
O’s, it may be assumed that fl, so

JPj (xl + Yl + Zl) ]((x(x1 + Yl)+ z2).

Rotating the orthonormal basis {(Xl + Yl + zt), ((Xl + yt)+ z2)} in JP,
this basis can be replaced by {(x + y[ + z), (’(x + y) + z[)}, where

x + y[ + z cos t(xt + yt + zl) + sin t((xt + Yl) + z2)

(cos + sin t)(xt + yt) + ((cos t)zt + (sin t)z2)

and

ot’(x[ + y) + z[ -sin t(xl + yi + zz) + cos t((x + y) + z2)

(-sin + ot cos t)(xl + yt) + (-sin t)zt + (cos t)z2.

oz is then given by = (-sin + cos t)/(cos + sin t), so that for an
appropriate choice of t, = 0. But this then implies JPy A Py 0, contradict-
ing the fact that P is necessarily nonholomorphic.
Hence 2,, 2y =p 0, implying that {Xl, x2} is a basis of P, and { Yt, Y2} is a

basis of JP. Thus, there are numbers a, b, c, and d so that

Yl aJx + bJx2, Y2 cJxl + dJx2.
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J(x A x2) y A Y2 implies that ad- bc 1. Returning to the equations 0
(K(JP), ) above, and substituting for y, Y2 in terms of x and x2,

K(JP) K(P) is orthogonal to

{ax A Jx + bx A Jx2, x A x2 + aJx A x2 + bJx2 A x2, x A x2

+ cx A Jx + dxt A Jx2, CX2/ JX "+" dx2 A Jx2}.
Using the Kiihler identities, K(JP) would be orthogonal to all of A2(pA
JP3, implying in particular that (K(P), P)= 0 in contradiction to the
hypotheses of this proposition, unless

a 0 b 0
0 -1 a b
c 1 d 0
0 0 c d

-(a + d)(ad- bc).

Thus d -a. A rotation of the basis {(xx + yt zx), (x2 + Y2 + 2’2)} corre-
sponds to the adjoint action of SO(2) on

cd
Sl(2, R),

so by an appropriate rotation it may be assumed that a--d 0, and bc

Thus far,

JP (x + bJx + )A(x + cJx + ).

Since P A JP A P O, P A JP A JP 0 by hypothesis, {, } are linearly
independent. Then there are numbers e, , 7, and so that

Jzx + Jz2 Xl + bJx2 + zt, Jzx + 6Jg2 x2 + cJxx + g2

Applying bJ to the second equation, and subtracting that from the first,
yields 6 0, -b, -c. However, the right-hand sides are chosen
to be orthonormal, thus {czt, bz2} are orthonormal; that is,

(zt, z2) 0, (z2, z2) 1/b2, (ZI, zt) 1/c2.

The situation is now completely symmetric with respect to P and P; so,
repeating the above with the roles of P and P reversed,

(xx, x2)=0, (x,xx)=l/c2, (x2,x)=l/b2.

However, P xx A x2 may be replaced with any P’
P’ {P(0) (cos Oxt + sin Odx)A (cos Ox2 + sin OJx2)}

as before. If

x] x cos 0 + dxt sin 0, x Xx cos 0 + dx2 sin 0,
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then

also satisfies

cos Ox’t + b sin Ox’2, x2 cos Ox’2 + c sin Ox’x

bJz2 x’ + bJx’ + z.
The symmetry between P and Pg also holds between P(O) and P, so (x,
x) 0. Since this holds for all 0, an easy calculation shows 1/c + lib O,
thus b +_ 1, c :]: 1. Choose signs (switch to -P if need be) so that b 1,
c -1. This now yields equation (a) of the proposition, along with the fact
that {xx, x2} and {zx, z2} are orthonormal.
For equation (b), 0 (-(z + Jz2) Jz) (x, Jz) + (x2, z).

However, this again holds for P(O)"

(X, JZl) (cos2 19 sin20)(xl, JZl)

+ cos 0 sin O((xx, z) + (x2, Jzx)).

By an appropriate choice of 0, (x, Jzl) may be assumed to be zero. Drop-
ping the primes, we may choose Pi so that (xx, Jz) 0 (x2, z). Equa-
tion (c) follows after a short calculation. |

COROLLARY (4.8). In addition to the conditions of the proposition, if
(KP,, Pj) 0 the orthonormal bases {x, x2} of P; and {zl, Z2} of Pj chosen
also satisfy

(X1, Z1) (X2, Z2), (X2, Jz1) (z2, Jx1),

and

(22, Jgl) (X2’ Jx).

Remark. The last equation is independent of the choice of P(O) above.
Note that, by [10], (x2, Jx)2= (Pi, JP)= (P, I2, which in a sense
measures the degree to which P is nonholomorphic. The corollary implies in
particular that this degree is the same for each critical plane Pj such that
(KP,, Pj) O.

Proof.

so

However,

1 (Jgl, Jz) (xx + Jx2 + Jz2, Xl + Jx2 + Jg2)

3 + 2(xl, Jx2) + 2(xx, Jz2) + 2(x2, Z2)

1 (X2, JXI) (X2, Z2) + (Z2, Jx1).

1 (Jx, Jxx) (Jx, X2 Jz + z2) (JXl, x2) (Xl, zl) + (JXl, z2)
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thus, (xl, zl) (x2, Z2).

(X2, JZl) (x2, x2 Jx -[- z2)

1 (x, x) + (x, z)

1 -(1 (z2, Jx))= (z2, Jx).

Finally, (x2, Jx) 1 + (x2, z2) (z2, Jx), and

(z, Jz) (z, z Jx + x)
1 (z2, Jx) + (z2, x2)

COROLLARY (4.9). If (KP, Pi) 0, then

where AZ(ee) iS the orthogonal projection onto A2(P A JP), and

IA(e, ze) u(P A JP)

is given by

IA(eZe) V A v. + v2 A v2.

for any unitary basis of PAJP. Furthermore, there are only two possible
choices of /fl, which depend only on P.

Proof Within the proof of Proposition (4.6) (set a d 0, b 1, c
-1) it has been shown that K(P)= K(JP), since not orthogonal to all of
A2(p A JP), is orthogonal to

{x AJx2, x Ax2 x2AJx2, x Ax2 x AJx}.
Since K(P) u(V), and, recalling that p x A x2, K(P) is orthogonal to

{x A Jx2 + x2 A Jx, P + JP- 2x2 A Jx2, P + JP- 2x A Jx}.

However, it is clear that u(P A JP) u(V) A2(p A JP) is spanned by these
three vectors and IA(ee). Thus, consider the orthonormal basis

Jx2)/2,A A A A

(P, + P,)/2- (,,,

Ihtz>- 2 2(P, JP)

K(P) is orthogonal to the first two vectors, so

K(P) (P + JP) + fllAteze
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Also, up to scale, K(Pj) is a holomorphic plane by Lemma (4.5); thus
g(p)2 0. If P, I a, then 0 (2a +//)//- (1 a2)2, so

1 -1
x///- or------. I

1-a l+a

PROPOSITION (4.10). If K(P3 4 0, and <KP,, Pj> 0, then

P 6 A2(p A JP).

Proof First assume that KP 4= 0 as well. Then necessarily

P A JP A Pj 0 Pj A JPj A P
by Lemma (4.5). Thus, for any a, b, 0 (aq(P3 + br/(P))3. Moreover,

0 (K(aq(P,) + bq(Pj)), aq(P,) + bq(Pj))

so that, since there are no holomorphic zeroes of rc, each ar/(P3 + br/(Pj) is,
up to scale, r/(Q) for a non-holomorphic zero of rc. Pick a, b so that

(K(aq(P3 + bq(Pj)), I O,

which is clearly possible by linearity (with not both a and b zero). Since
K(P) O, K(Pj) 4= O, ab p O. But, Lemma (4.5) then implies that (since arl(P)
+ brt(P) rt(Q) for Q a zero of rx)

K(al(P,) + bq(Pj)) 0;

thus ,P, A JP =/aK(P,) 2K(P) x,PA JP., with none of the scale factors
zero. Thus Pj A(P A JP)) Az(P, A JP), completing the proposition in
this ease.
Now assume that K(P) 0. If P A JPj A P O, using the proof of Propo-

sition (4.6), which depends only on the condition PAJPAP 4 0 to a
certain point, it can be shown that K(P,) K(JP) is orthogonal to

{x AJx2, xl Axz bx2 A Jx2, x Ax2 + cx AJx}
with x A xz P, (x, xz) 0 and bc 1. Beyond that point (where it is
determined that b + 1) symmetry between P and P is assumed; thus it
cannot be concluded here that b 1 and c 1 as was the case when
(K(P3, P > 4 0. Nontheless, similarly to Corollary (4.9),

K(P) o(P + JP) + fllnz(p^sp),

as can be seen by precisely the same argument, with g, fl both necessarily
nonzero (since K(P) is, up to scale, a holomorphic plane). In fact,

1 1
ora//- 1 a 1 + a
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where a (Pj, I), as in Corollary (4.9). On the other hand,

0 (K(P,), Pj)

+ sP; + PP
(1 + a2) +/a,

since (Pj, JPs) (Ps, 1)2" Thus

( 1 (l+a)+a)=(l+a),0=/ l-a
or

(l+a2)+a) /( 1),O=B l+a

which is contradicted by the facts that fl :p 0 and Pj is nonholomorphic.
Therefore, Pj A JPj A Pi 0 necessarily. Again, for any a, b,

and

(aq(Pi) + bq(Pj))a O,

(K(arl(P,) + brl(Pj)), al(P,) + brl(Pj)) O.

Arguing as above, up to a scale factor, at(P)+ brt(Pj)= r/(Q) for a non-
holomorphic zero Q of r. Lemma (4.5) implies that

K(aq(P,) + bl(Pj))= #,a*(al(P,) + brl(Pj))2.

The current assumptions imply that K(ar/(P,) + br/(Pj)) aot,q(P,)2; thus

aa,r/(P32 #(a2,r/(g,)2 + 2ab,r/(P3 A rl(Pj) + b2,r/(P)2).
Hold a fixed (cz is constant, but/ depends on a and b); then,

(aa )a2 ,r/(Pi)2 2ab,rl(P,) A rl(Pj) + b2,r/(P92.

Since ,r/(P32 0 and ,/(pj)2 :p 0, as b---, , a/#ab- a2 is asymptotic to b2,
and ,r/(P32 ,r/(Pj)2, completing the proof of the Proposition. |

5. Final arguments

We are now prepared to complete the proof of the main theorem of this
paper. The method will be to analyze the various possibilities for (KP, Pj),
using the results of the previous section to derive a contradiction in each
case. Recall that K is a minimum of X, the Gauss-Bonnet integrand, on
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{R :r(V)I rR > 0, RI-- 1}, with V
_
Ca. {Pi)=x k is a chosen set of

distinct zeroes of rr, so that
k,

oti Vr(K, PI) + 2K with 2 < O.
i=1

The assumption to be contradicted at each point is that ;(K) < O. Note that,
without loss of generality, it may be assumed that

+(Pi + JPi) =P (Pj + JPj) for # j,

since if that condition is not satisfied one of the points could be eliminated
from the expression for K.

LEMMA (5.1). If Q is a holomorphic plane orthoaonal to Pi, then

(Vr(K, P,)Q, Q) O.

Proof Choose a unitary basis so that

Pi av A v. + bv A v2, b 4= O,

Q= q,v, Av, JQ Q.

By hypothesis, aqlx, + bqx2 O. Using the expression for Vr(K, P) given in
Lemma (4.3), an easy calculation shows

3b2 b2 b2
(Vr(K, P,)Q, Q) t12q121. -!- T q2x2 -- q122. -I- 2abqx.qx2 + -- q11.q22..

Since Q A Q 0, qx.q22. qx22 + qx22.; thus

(Vr(K, P,)Q, Q) a2q2x. + 2abqx.qx2 + b2q2x2 O. I
PROPOSITION (5.2) (KP, Pg) cannot be zero for all i, j.

Proof Assume (KP, P) 0 for all i, j. By re-ordering the indices, let
be so that K(P) 0 for < l, K(P) 4= 0 for > I.

Case 1. 14= k. Then K(PR) BR PR A JPR where BR 4=0. (KPk, P) O
implies that (*PkA JPk, P) 0 for all i. Let Q *PkA JPk/I Pk A JPR[.
Using the expression for K given in Proposition (2.3), rtt(Q)= Art(Q)< 0
since 2 < 0, contradicting the nonnegativity of re.

Case 2. k. Assume there are i, j with Pi A Pg A JP O. Let

o arl(P) + brl(P), ab O.

Then oa =/= 0 for almost all such a, b, and o ker (K). By an umpublished
result of B. Kostant (cf. [12]), since z(K) < 0 there must be a negative eigen-
value of K" A2(V) ---, A2(V). Let x u(V) with K() #x where/z < 0.
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By Lemma (4.4), (1)3 4: 0. Let to be a zero of the cubic *(o + tl)3, and
let o + to 1. 3 0 and (K, ) < 0, which is contradicted by Lemma
(4.4). Thus PAPAJPj 0 for all i, j. But then (*P1AJP1, P) 0 for all i,
and the argument of case 1 may be applied again to derive the final contra-
diction needed for this proposition. |

PROPOSITION (5.3). For any i, (KPi, Pj) cannot be nonzero for all j.

Proof Assume that <KP, P> # 0 for all j. Using Proposition (4.6) and
Corollary (4.8), let x, n 1, 2, j 1, k, be so that {x{, x} is an ortho-
normal basis of P, and +_(x] + Jx)= x{ + Jx. The 4-dimensional sub-
spaces P A JP all intersect in the holomorphic plane

Q (x + JxJ2)A (Jx x1/2)/(2 + 2(x, JxJz>)
with the scale factor independent of j by Corollary (4.8). Choose a unitary
basis so that x vl, x avl. + by2, as usual. Then

Q [(1 a)2vl Avl, b(1 a)(vl Av2 + vl, A v2,) + b2v2Av2,]/(2 2a).

By Lemma (4.3),

(Vr(K, P)Q,. Q) (1 a)2/4,
which may be readily computed. Thus 0 < (Vr(K, P)Q, Q)= (Vr(K, Pj)Q,
Q) for all j, since a is independent ofj. By Proposition (2.3),

k

0 <_ re(Q)= Art(Q) + (Vr(K, P)Q, Q)
j=l

=x 4

Since 2 < 0 by hypothesis, r(Q) > 0 by Proposition (2.4), and 1 az > 0
since P is nonholomorphic,= > 0.

Restrict Vr(K, P) to an operator on the tangent space

T,(G(2, V), Q) {P G(2, V) P A Q O, <P, Q> 0};
denote this restriction by Vr(K,

LEMMA (5.4).

Trace (Vr(K, Pj)Ir*t,o))
a2- 1

Proof Recall that a (Pj, I), and is independent ofj. Let

x=v, and x1/2=av,+bvz
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as before. T,(G, Q) is spanned by

x + x)^ v, x + x)^ v,,

(x + Jx) ^ (x + Jx), (xx + Jx9 (-x + Jx),
and their images under J; so an orthonormal basis of T,(G, Q) consists of

Vl Av2,, v2Avl,, [b(vx Art.- v2Av2,)--a(vl Av2 + vl, Av2,)]/2,

and 4 more vectors involving v3 or v3., which will not enter into the calcu-
lation. The lemma follows by computing the trace using this orthonormal
basis and Lemma (4.3). 1

For all T T.(G, Q), (T + jT)S= 0 and (T, I 0, since Q is a holo-
morphic plane. Lemma (4.2) then implies that, up to scale, T +. JT l(P) for
some nonholomorphic plane P. Lemma (4.4) then implies that

K Ir.t.2) and K

must be positive semi-definite. However, then

0 < trace (K
k

2(trace K It.to,o)) + i trace (VK, PI)

(trace K l.,,) + (=)(’a’4
by Lemma (5.4). The first term is nonpositive since 2 < 0 and K lr.to, is
positive semidefinite. Also, (a2- 1)/4 < 0; thus = 0 in contradiction
to the above, completing the proof of the Proposition. I

PROPOSITION (5.5). Assume that for some i, there is a j so that (KP,
Pi) O, and an so that (KP, Pt) O. This also contradicts the hypotheses
on K.

Remark. Since this exhausts all possible cases, the proof of this proposi-
tion will complete the proof of Theorem (2.1).

Proof Since (KP, P) 4: 0, in particular KP :p O. Proposition (4.10) then
implies that P A2(p A JP), for any P so that (KP, P) 0. If in addition
(KP, P)= 0, then P A2(PAJP). But, since PAJP is a complex 2-
dimensional subspace of V as is P A JP,

JPt A2(p A JP) and JP A2(pi A JP).
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Thus P A JPt oP A JP and P A JP flPj A JPj which contradicts the
fact that (KP, Pj) O. Thus, for all h = j, (KPj, Ph) 4 O. However, Propo-
sition (5.3) precludes this possibility, completing the proof of the Proposition
and, finally, finishing the proof of Theorem (2.1). I

Judging from the extremely complicated arguments needed to establish this
result, and the strong dependence on the algebra of A2(V) for V - C, it is
highly unlikely that this proof can be modified to higher dimensions. The
work of Geroeh [5] also contraindicates this possibility, even though his
example is non-Kihlerian. The separate examples due to Bourguignon and
Kareher [3] suggest even more strongly that these pointwise methods will
make little more progress into this problem, since their examples are almost
K/ihler (in the technical as well as heuristic sense).
On the other hand, the work of Bloeh and Gieseker [2], Mori [13], and

Siu and Yau described earlier suggests that, at least for K/ihler manifolds,
nonnegative curvature is a rather strong restriction, since positive curvature
is completely rigid. Thus it is still quite possible that (.) will be true, and
provable, for K/ihler manifolds, although much stronger analytic methods
will certainly be needed. The full conjecture for all compact, .even-
dimensional manifolds will probably be considerably more difficult, if it is
possible at all to resolve.

Remark. Recent work of A. Gray [8] seems to indicate that, using this
result, it should be possible to show that similar inequalities will hold for
other Chern numbers involving ca for higher-dimensional K/ihler manifolds.
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