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VOLUME-MINIMIZING FOLIATIONS ON SPHERESFABIANO BRITO AND DAVID L. JOHNSONAbstrat. The volume of a k-dimensional foliation F in a Riemannian manifold Mn is de�ned asthe mass of image of the Gauss map, whih is a map from M to the Grassmann bundle of k-planesin the tangent bundle. Generalizing the onstrution by Gluk and Ziller in [4℄, \singular" foliationsby 3-spheres are onstruted on round spheres S4n+3, as well as a singular foliation by 7-sphereson S15, whih minimize volume within their respetive relative homology lasses. These singularexamples provide lower bounds for volumes of regular 3-dimensional foliations of S4n+3 and regular7-dimensional foliations of S15. 0. IntrodutionIn [4℄, Herman Gluk and Wolfgang Ziller asked whih foliations were \best-organized", in that anenergy funtional they alled the volume was minimized. The volume of a foliation is the mass ofthe image of the Gauss map, whih in the ase of a one-dimensional foliation is the mass of theunit tangent ow �eld in T1(M).They were able to show that the standard one-dimensional foliation (or ow, in their terminology)of S3 by the �bers of the Hopf �bration S3 ! S2 minimized volume among all foliations of theround S3. Their method of proof, involving alibrations, did not generalize, however.It is not the ase that even the most obvious generalization of Gluk and Ziller's example to higherdimensions, the Hopf �bration S5 ! CP2, is volume-minimizing [5℄. Sharon Pedersen showed in herthesis that there was a foliation of S5 with muh less volume than the Hopf �bration, although herexample is singular [8℄. It may well be that the volume-minimizing one-dimensional foliations onS5 is be singular, although it is not lear whether Pedersen's example is that minimizer. Gluk andZiller did desribe a \singular foliation" on S2n+1 that minimizes the volume funtional, but theirsingular minimum is of a di�erent sort than Pedersen's. Pedersen's foliation is a smooth foliationon all but one point in S5, and is a limit of smooth foliations, while Gluk and Ziller's example isnot homologous to a foliation exept on S3.There is, then, something peuliar about the Hopf �bration on S3 whih enables the alibrationargument that Gluk and Ziller used to show the minimization of the volume of that foliation,beyond the evident geometri properties for the Hopf �brations in general.In this artile we expand the method used by Gluk and Ziller to 3-dimensional foliations of S4n+3and 7-dimensional foliations of S15. What we �nd is that the generi situation Gluk and Zillerdesribed for ows on S2n+1 holds; that is, there are singular foliations whih minimize volume inthese ases, but that it does not appear that the Hopf �brations will minimize volume.1991 Mathematis Subjet Classi�ation. 53C12, 53C38.The seond author was supported during this researh by grants from the Universidade de S�ao Paulo, FAPESPPro.1999/02684-5, and Lehigh University, and thanks those institutions for enabling the ollaboration involved inthis work. 1



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 21. Definitions and the minimization questionThe original question onsidered by Gluk and Ziller in [4℄, extended by a number of authors, is to�nd the dimension-k foliation F on a ompat Riemannian manifold M , onsidered as a setion�F :M ! Go(k;M)of the bundle of oriented k-planes tangent to M , whih is \most eÆient" or \best-organized" inthat its volume is minimized, where the volume is de�ned as the Hausdor� n-dimensional measureof the image �F(M) � Go(k;M), where the Grassmann bundle has a natural Sasaki metri induedfrom the original metri on M . Volume-minimization should be onsidered within eah homologylass of foliations, and it is possible for one homology lass to admit a smooth minimizer, but forothers to have no smooth minimizer.Remark 1.1. It may seem more appropriate to onsider homotopy lasses of suh foliations ratherthan homology lasses, but a simple onstrution shows that two homotopy lasses of one-dimensionalfoliations on S3 an be onstruted (within one homology lass, of ourse), one of whih has a smoothvolume-minimizer, but the other does not, sine there is a sequene within the one homotopy lasswhose volume onverges to the minimum of the other lass. Sine the only foliations ahievingthat minimum are within the �rst homotopy lass (see, for example, [4℄), there an be no smoothminimizer within the �rst.As mentioned in the Introdution, Gluk and Ziller showed that the natural andidate, the �bersof the Hopf �bration from S3 to S2, is volume-minimizing among all (smooth) one-dimensionalfoliations on the (round) 3-sphere.Several authors [5, 8℄ showed that this natural andidate volume-minimizer did not extend evento the next simplest ase of the �bers of the Hopf �bration S5 ! CP2. Pedersen's example, inpartiular, is singular in the sense that there is one point of S5 whih must be removed in order forher example to be a smooth foliation. It is the ase, however, that Pedersen's example is the limitof smooth foliations (it is the limit of the sequene of geodesi ows strething away from one poletowards the other, applied to any smooth one-dimensional foliation).Beause of Pedersen's example, it seems neessary to onsider singular foliations in general.De�nition 1.2. An oriented singular k-dimensional distribution on a manifold M is de�ned asan n-dimensional reti�able urrent D � Go(k;M) of the bundle of k-dimensional subspaes ofT�(M), so that on an open dense subset U �M , Dj��1(U) is a smooth, k-dimensional distributionon U , that is, a smooth ross-setion of G(k; U)! U (resp., Go(k; U)! U). The distribution D isintegrable, or is a singular foliation, if Dj��1(U) is integrable.As an example, any unit vetor �eld on a manifold M with �nitely many singularities, eah with�nite index, is an oriented singular foliation in this sense. Note that these urrents need not beyles, in general; for example in the ase of a unit vetor �eld with some point singularity of odddegree.This notion of a singular foliation is similar to, but more general than, that studied by the seond-named author and Smith in [6℄. In that artile, the singular setions of arbitrary vetor bundles thatare onsidered are those in the weak losure of the spae of smooth setions. Many of the singularfoliations onsidered here are not in the losure of the spae of smooth setions, by topologialonsiderations.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 32. 1-dimensional singular foliations of S2n+12.1. The alibration. The bundle of oriented 1-planes tangent to S2n+1, the unit tangent bundleT1(S2n+1), is isomorphi to the ag manifold of oriented lines in oriented 2-planes in R2n+2, whihis the Stie�el manifold of 2-frames in R2n+2.This gives rise to the following diagram:T1(S2n+1) �! Fo(1; 2;R2n+2)hx??�??y �??yS7 Go(2;R2n+2) :Go(2; 2n + 2) has two universal bundles, the universal 2-plane bundle U(2; 2n + 2) and the dual2n-plane bundle V (2n; 2n+ 2), de�ned byU(2; 2n+ 2) := [x2Go(2;2n+2)xV (2n; 2n+ 2) := [x2Go(2;2n+2)x?:The respetive Euler lasses E(U) and E(V ) satisfy E(U)[E(V ) = 0 in H2n(Go(2; 2n+ 2)), sineU�V is trivial. In partiular, if ! is the universal onnetion on U(2; 2n+2) de�ned by Narasimhanand Ramanan (f. [7℄), and !� is the \dual" onnetion on V (2n; 2n+2), then the assoiated Eulerforms, e(
) and e(
�), satisfy e(
)^ e(
�) = 0. Consider the form� := C Te(!) ^ e(
�);whih is well-de�ned on Fo(1; 2;R2n+2) sine that is the frame bundle FU(2; 2n + 2) of orientedorthonormal frames on U(2; 2n + 2), whih is an SO(2)-prinipal bundle. Here, Te(!) is thetransgressive Chern-Simons form orresponding to the Euler form e(
) of U(2; 2n+2) [3℄. Beaused(Te(!)) = e(
), we have that d� = 0. The onstant C is simply hosen so that the omass of �is one. This is the same alibration de�ned in [4℄.2.2. Calulations. We will onsider Go(2; 2n+2) as SO(2n+2)=SO(2)�SO(2n), and the prinipalbundle FU(2; 2n+ 2) as SO(2n+ 2)=I2 � SO(2n). The universal onnetion ! on FU(2; 2n+ 2)an be de�ned as the trunation of the restrition of the Maurer-Cartan form on o(2n+2), denoted� = [�ij ℄, to the tangents to FU(2; 2n + 2). That is, the omponents of the onnetion !ij arede�ned for i; j 2 f1; 2g by !ij(A) = Aij , for anyA 2 T�(FU(2; 2n+ 2); (U0; fe1; e2g)) = �A 2 o(2n+ 2)jA = � R S�St 0 � ; R 2 o(2)� ;if U0 = R2� 0 � R2n+2, with basis fe1; e2g. By homogeneity, all alulations in FU(2; 2n+ 2) anbe taken to be at this point.The urvature 
 of this onnetion is given by 
ij(X; Y ) = �!ij([X; Y ℄) for left-invariant vetor�elds that are horizontal at U0, that is, of the form � 0 S�St 0 �. In terms of the Maurer-Cartanform, 
ij = +P2n+2k=2 �ik ^ �jk , for i; j 2 f1; 2g.Similarly, the onnetion !� on the dual prinipal bundle FV (2n; 2n+2) = SO(2n+2)=SO(2)� Iat U0 = R2�0 � R2n+2 is the restrition of the same Maurer-Cartan form � to the other blok, andthe urvature 
�kl =P2i=1 �ik ^ �il, for k; l 2 f3; : : : ; 2n+ 2g. Either of the tangent spaes to theseprinipal bundles an be anonially embedded into the tangent spae o(2n+ 2) of SO(2n+ 2) atthe identity.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 4The Euler form e(
) of FU(2; 2n+ 2) is the forme(
) := 12� (
12)= 12�2 (�1k ^ �2k) ;where the sum is taken over all k 2 f3; : : : ; 2n+ 2g. Dually, the Euler form e(
�) of FV (2n; 2n+2)is the forme(
�) := C0� X�2S2n(�1)�
�(3)�(4) ^ � � � ^ 
�(2n+1)�(2n+2)1A= C0� X�2S2n;i1;:::;in(�1)���(3)i1 ^ ��(4)i1 ^ � � � ^ ��(2n+1)in ^ ��(2n+2)in1A ;where the sum is taken over all � 2 S2nas permutations of f3; : : : ; 2n+ 2g, i1; : : : ; in 2 f1; 2g, andthe onstant depends just on the dimension.Proposition 2.1. e(
)^ e(
�) � 0.Proof. Eah monomial in this produt is of the form�1k ^ �2k ^ �3i1 ^ �4i1 ^ � � � ^ �(2n+1)in ^ �(2n+2)inor a permutation thereof. k an be in 3; : : : ; 2n+ 2. No matter what k is, sine i1; : : :in are either1 or 2, then this form must be 0. �Thus, the form � := C Te(!) ^ e(
�) is indeed losed.It remains to �nd the maximum of �(W ) for 2n+1-planesW in the total spae of �F (1; 2;R2n+2)!G(2; 2n+ 2).Certainly the vertial diretion will be a maximum for Te(!); whih is (up to sale) exatly thevolume form of the �bers. Thus the maximum is ahieved only when one diretion of the (2n+1)-plane is vertial.It is interesting to note that, sine the maximum of � must neessarily have a vertial diretion ateah point, any urrent alibrated by � must be a ontained in a union of �bers of the projetion� : F (1; 2;R2n+2) ! G(2; 2n + 2), so must be of the form ��1(M) \ U for some urrent M �G(2; 2n+ 2). Sine, for W 2 G(2; 2n+ 2), the preimage��1(W ) = fx jx 2 W; jxj = 1g = ffe1; e2g jfe1; e2g is a basis ofW gis, as a subset of T1(S2n+1), the unit veloity �eld of the great irle S2n+1 \W with orientationdetermined by W . In terms of the foliations determined by these alibrated urrents, they mustthen onsist of ars of great irles, and must be great irle foliations if they are regular.To see what urrents � alibrates, we now need only �nd those 2n-plane diretions maximizinge(
�).Sine e(
�) := C0� X�2S2n(�1)�
�(3)�(4) ^ � � � ^ 
�(2n+1)�(2n+2)1A= C0� X�2S2n;i1;:::in(�1)���(3)i1 ^ ��(4)i1 ^ � � � ^ ��(2n+1)in ^ ��(2n+2)in1A ;



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 5if Eij is the basis of tangent vetors dual to �ij , for any �xed permutation � 2 S2n,e(
�)(E1�(3); E1�(4); : : : ; E1�(2n+2)) = (�1)�(2n)!C = e(
�)(E2�(3); : : : ; E2�(2n+2)):It is straightforward to see that, if ij1 6= ij2 , then some permutations in the sum will evaluate to 0,so that ��e(
�)(Ei1�(3); Ei2�(4); : : : ; Ei2n�(2n+2))�� < (2n)!C:Finally, if fi1; : : : ; i2ng does not have at least n pairs of values, or if fk1; : : : ; k2ng does not onsistof some permutation of f3; : : : ; 2n+ 2g; then e(
�)(Ei1k1 ; : : : ; Ei2nk2n) = 0.For any deomposable, unit � 2 �2n(G(2; 2n+ 2);W0) whih is tangent to the variety G(2; 2n+ 2)at W0, � = Xi1;:::;i2n;k1�����k2n �i1;:::;i2n;k1;:::;k2nEi1k1 ^ � � � ^Ei2nk2n :Sine � is deomposable, � satis�es the Pl�uker ondition � ^ � = 0, implying that, in partiular(restriting to the ase where fk1; : : : ; k2ng = f3; : : : ; 2n + 2g sine otherwise e(
�) = 0), anddenoting �i1;:::;i2n ;3;:::;(2n+2) by �i1;:::;i2n ,�1;:::;1�2;:::;2 � �2;1;:::;1�1;2;:::;2 � �1;2;1;:::;1�2;1;2;:::;2 + � � � = 0;and similarly for all other suh ombinations. Thus,(�1;:::;1 + �2;:::;2)2 = �21;:::;1 + �22;:::;2 + 2�1;:::;1�2;:::;2= �21;:::;1 + �22;:::;2 + 2�2;1;:::;1�1;2;:::;2 + 2�1;2;1;:::;1�2;1;2;:::;2 � � � �� �21;1;1;1+ �22;2;2;2+ �22;1;:::;1 + �21;2;:::;2 + �21;2;1;:::;1 + �22;1;2;:::;2 + � � �� 1;sine � is a unit. Thus, on any suh �, e(
�)(�) � (2n)!C;the maximum being ahieved on those � so that (�1;:::;1;3;:::;(2n+2)+ �2;:::;2;3;:::;(2n+2)) = 1 whih havethe proper orientation. Those 2n-planes are, exept where n = 1, not those whih are omplex2n-planes in T�(G(2n; 2n+ 2);W0) under some omplex struture on that spae indued from oneof R2n+2 for whih W0 is omplex.Theorem 2.2. The standard foliation H of S3 by the �bers of the Hopf �bration S3 ! S2 forsome omplex struture on R4 � S3 minimizes the volume of one-dimensional foliations of S3. Thesingular foliation NS of S2n+1, n > 1 onsisting of all great irles through a pair of antipodal pointswith indies �1 minimizes volume of all singular foliations on S2n+1 with those singular points andindies, and provides a lower bound for the volume of all one-dimensional oriented foliations ofS2n+1.Remark 2.3. The minimization of the Hopf �bration in the ase n = 1 is due to Gluk and Ziller in[4℄. They also showed a bound on the minimum-volume ow in higher dimensions by onstrutinga spei� yle in twie the homology of a ow. The �rst-named author, along with P. Cha�on andA. M. Naveira, in [1℄, showed that this bound is attained by the spei� singular foliation NS, andis a strit lower bound for volumes of smooth foliations. The notation NS (\north-south") refersto the fat that this foliation is by longitude lines from one pole to the other.Proof.Case 1. n = 1



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 6In the ase n = 1 any omplex 2-plane will maximize e(
�), sine T�(G(2; 4);W0) is C 2 and a real2-plane � in C 2 is omplex (for a given omplex struture) if and only if < �; � > + < �; � >= 1for any orthogonal pair �; � of omplex lines, where the inner produt is the standard induedinner produt on �2(C 2) indued from the inner produt on C 2 itself. Using oordinate planesand the standard omplex struture on G(2; 4) (whih is as the projetive variety in CP3 de�nedby z20 + z21 + z22 + z23 = 0), this ondition is equivalent to (�1;1;3;4 + �2;2;3;4) = 1: So any omplexsubmanifold M � G(2; 4) will be alibrated by e(
�).Not every suh omplex submanifold orresponds to a foliation of S3, however, not even a singularone. For any W 2 M , the preimage ��1(W ) � F (1; 2; 4) = T1(S3) orresponds to the image inT1(S3) of the intersetion of S3 with the 2-plane W via the tangent map, a great irle on S3. So,if M (omplex or not) orresponds to a smooth or singular foliation of S3, it is a foliation by greatirles. If all suh W are omplex lines in R4 = C 2 for some omplex struture on the R4 in whihS3 is embedded, then all of these great irles are disjoint, M is the standard embedding of CP1 inG0(2; 4), and the foliation is a Hopf �bration, and the orresponding urve M in G0(2; 4) � CP3 isde�ned by z0 = iz1 in addition to z20 + z21 + z22 + z23 = 0. Other omplex submanifolds of G0(2; 4)do not orrespond to even a singular foliation of S3. For example, the urve z0 = 0, whih is also ahyperplane setion of G0(2; 4) and whih is G0(2; 3) �= CP1, lifts to F0(1; 2; 3) = T1(S2) � T1(S3),so does not orrespond to a setion over a dense subset of S3.The manifold M = fW 2 G0(2; 4)je1 2 Wg, whih is dual to the previous submanifold, will alsobe alibrated by �, sine atW0 2M , with basis hosen so that W0 = e1^ e2 2 �2(R4), the tangentplane satis�es �2;2;3;4 = 1. The urrent NS orresponding to a singular foliation will not be all of��1(M), sine that will be a double of the singular foliation by all great irles passing through �e1.Instead, the urrent NS is formed from semiirular �bers of this bundle, from the �ber of T1(S3)over �e1 to that over +e1. This urrent would minimize volume over all singular foliations of S3with two point singularities at �e1, �e1 having index �1 and e1 having index 1. The minimumvolume of suh singular foliations is the same as that of the Hopf �brations.Case 2. n > 1For n > 1 if M is the manifoldM := fW 2 G0(2; 2n+ 2)j e1 2 Wg := fe1 ^ xjx ? fe1g; kxk = 1g ;then M �= S2n is not the spae of omplex 2n-planes in R2n+2 for any omplex struture, and theorresponding \foliation" on S2n+1 will be singular. The tangent planes toM at eah point learlymaximize the value of e(
�). Note also that, in this ase omplex submanifolds of G(2; 2n+ 2) arenot alibrated by e(
�).In general, this singular distribution will indeed be alibrated by this form, so minimizes volumeamong all singular foliations with the same singular set; in this ase, an antipodal pair of singularpoints, with indies �1 that are in eah leaf of the singular foliation. Sine the urrent in T1(S2n+1)atually de�ned byM onsists of the unit tangent �eld to oriented semi-irles, longitudes, from�e1to +e1 in S2n+1, whih has as a 2-fold over the submanifold S2n�S1 = ��1(M) � F0(1; 2;R2n+2) =T1(S2n+1), the mass-minimization property of the alibration ompares the mass of this urrent,NS, to all other urrents S with the same boundary (the two tangent �bers over �e1, suitablyoriented), whih are homologous in that NS � S is a boundary. This an be easily extended to allother urrents with the same singular points and the same indies at those singular points, sineany suh urrent an be modi�ed within the singular �bers to math the boundary of NS. �



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 73. 3-dimensional foliations of S73.1. The alibration. Note that the Grassmann bundle G(3; S7) of oriented 3-planes tangent toS7 is isomorphi to the ag manifold of oriented lines within oriented 4-planes in R8, similarly to([4℄). This gives rise to the following diagram:Go(3; S7) �! Fo(1; 4;R8)hx??�??y �??yS7 G(4;R8) :Go(4; 8) has two universal 4-plane bundles, U(4; 8) and V (4; 8), de�ned byU(4; 8) := [x2Go(4;8)xV (4; 8) := [x2Go(4;8)x?:The respetive Euler lasses E(U) and E(V ) satisfy E(U)[E(V ) = 0 inH8(Go(4; 8)). Similarly, therespetive �rst Pontryagin lasses P1(U)and P1(V ) satisfy the same relationship, P1(U)[P1(V ) = 0.In partiular, if ! is the universal onnetion on U(4; 8) de�ned by Narasimhan and Ramanan (f.[7℄), and !� is the \dual" onnetion on V (4; 8), then the assoiated Euler forms, e(
) and e(
�),satisfy e(
)^ e(
�) = 0 (respetively, the �rst Pontryagin forms). Then, onsider the form� := C Te(!) ^ e(
�);whih is well-de�ned on Fo(1; 4;R8) as well as on the frame bundle FU(4; 8) of oriented orthonor-mal frames on U(4; 8), whih is an SO(3)-prinipal bundle over Fo(1; 4;R8). Here, Te(!) is thetransgressive Chern-Simons form orresponding to the Euler form e(
) of U(4; 8) [3℄. Beaused(Te(!)) = e(
) (again, either as a form on the frame bundle, or on the assoiated bundleFo(1; 4;R8)), we have that d� = 0. The onstant C is simply hosen so that the omass of �is one.That � is well-de�ned on Fo(1; 4;R8) is perhaps not obvious. However, the original version of thetransgressive form Te(!) was de�ned by Chern on the sphere bundle, not the frame bundle [2℄.That same onstrution applies here. When restrited to vertial diretions, those tangent to the3-sphere �ber of Fo(1; 4;R8)! Go(4; 8), Te(!) is the volume form of the �bers.3.2. Calulations. We will onsider Go(4; 8) as SO(8)=SO(4)� SO(4), and the prinipal bundleFU(4; 8) as SO(8)=I � SO(4). The universal onnetion ! on FU(4; 8) an be de�ned as thetrunation of the restrition of the Maurer-Cartan form on o(8), denoted � = [�ij ℄, to the tangentsto FU(4; 8). That is, the omponents of the onnetion !ij are de�ned for i; j 2 f1; : : : ; 4g and!ij(A) = Aij for anyA 2 T�(U(4; 8); (U0; fe1; : : : ; e4g)) = �A 2 o(8)jA = � R S�St 0 � ; R 2 o(4)� ;if U0 = R4� 0 � R8, with basis fe1; : : : ; e4g. By homogeneity, all alulations in FU(4; 8) an betaken to be at this point.The urvature 
 of this onnetion is given by 
ij(X; Y ) = �!ij([X; Y ℄) for left-invariant vetor�elds that are horizontal at U0, that is, of the form � 0 S�St 0 �. In terms of the Maurer-Cartanform, 
ij = +P8k=5 �ik ^ �jk , for i; j 2 f1; : : : ; 4g.Similarly, the onnetion !� on the dual prinipal bundle FV (4; 8) = SO(8)=SO(4)� I at U0 =R4� 0 � R8 is the restrition of the same Maurer-Cartan form � to the other 4� 4 blok, and theurvature 
�kl =P4i=1 �ik ^ �il, for k; l 2 f5; : : : ; 8g. Either of the tangent spaes to these prinipalbundles an be anonially embedded into the tangent spae o(8) of SO(8) at the identity.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 8The Euler form e(
) of FU(4; 8) is the forme(
) := 12�2 (
12 ^ 
34 � 
13 ^ 
24 + 
14 ^ 
23)= 12�2 (�1k ^ �2k ^ �3l ^ �4l � �1k ^ �3k ^ �2l ^ �4l + �1k ^ �4k ^ �2l ^ �3l) ;where the sum is taken over all k; l 2 f5; : : : ; 8g. Dually, the Euler form e(
�) of FV (4; 8) is theform e(
�) := 12�2 (
56 ^ 
78 � 
57 ^ 
68 + 
58 ^ 
67)= 12�2 (�5i ^ �6i ^ �7j ^ �8j � �5i ^ �7i ^ �6j ^ �8j + �5i ^ �8i ^ �6j ^ �7j) ;where the sum is taken over all i; j 2 f1; : : : ; 4g.Proposition 3.1. e(
)^ e(
�) � 0.Proof. Eah monomial in this produt is of the form�1k ^ �2k ^ �3l ^ �4l ^ �5i ^ �6i ^ �7j ^ �8jor a permutation thereof. k an be either 5; 6; 7 or 8. If k is, say, 5; then i annot be 1 or 2;thus must be i = 3 or 4. Thus l 6= 5; 6, so l = 7 or8, and �nally, j = 1 or 2. No matter whihhoies are made, two of the indies between 1 and 4 will our one, and the other two will ourthree times, and similarly for the indies from 5 to 8. Thus, eah monomial is determined by themulti-indies that our with one index singly. For example, 2; 4; 6; and 8 our singly, paired as25; 47; 36; and 18 in exatly two terms,+�15 ^ �25 ^ �37 ^ �47 ^ �53 ^ �63 ^ �71 ^ �81; and+�17 ^ �47 ^ �25 ^ �35 ^ �51 ^ �81 ^ �63 ^ �73:However, using the fat that �ik = ��ki and the exterior produt, these terms anel. Sine allterms are permutations of these, all terms anel in pairs. �Thus, the form � := C Te(!) ^ e(
�) is indeed losed. That it is well-de�ned an be traed bakto early versions of the Chern-Simons theory, suh as [2℄. Alternately, it an be diretly veri�edfrom the loal expression for Te(!) in terms of the Maurer-Cartan form �. That is, as a form onFo(1; 4;R8), at the point x0 := (e1;W ), e1 2 W = R4 � f0g � R8, sine all the !ij tangent toFo(1; 4;R8) have one of i = 1 or j = 1,Te(!) := 12�2 (!12
34 � !13
24 + !14
23�16 (!12 ([!; !℄)34 � !13 ([!; !℄)24 + !14 ([!; !℄)23)�= 12�2 (�12 ^ �3k ^ �4k � �13 ^ �2k ^ �4k + �14 ^ �2k ^ �3k+13 (�12 ^ �13 ^ �14 � �13 ^ �12 ^ �14 + �14 ^ �12 ^ �13)�= 12�2 (�12 ^ �13 ^ �14 + �12 ^ �3k ^ �4k � �13 ^ �2k ^ �4k + �14 ^ �2k ^ �3k) ;where the sum is over k from 5 to 8. As a left-invariant form on SO(8), it is straightforward to seethat it is invariant under the adjoint ation of the isotropy subgroup 1 � SO(3)� I4 � SO(8), sodesends to a form on F (1; 4;R8).It remains to �nd the maximum of �(W ) for 7-planesW in the total spae of �F (1; 4;R8)! G(4; 8).



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 9Not all vertial diretions (those in the 3-sphere �ber of �) and ombinations within �3(T�(F (1; 4;R8)))are deteted by the form � above. That is, let W � T�(F (1; 4;R8)) be a 7-dimensional subspae.Then, for some basis of T�(F (1; 4;R8)), with vertial diretions v1; v2; v3 and horizontal basisfe1; : : : ; e16g, W = (a1v1 + h1) ^ (a2v2 + h2) ^ (a3v3 + h3) ^ (e1 ^ � � � ^ e4) as a unit element of�7 �T�(F (1; 4;R8))�. khik = bi = q1� a2i . This simply states that no more than 3 diretions anhave independent vertial omponents. At the point x0, if we denote ai = os(�i) and bi = sin(�i),�(W ) � C ja1a2a3 + a1b2b3 � b1a2b3 + b1b2a3j je(
�)(e1 ^ � � � ^ e4)j� C jos(�1) (os(�2) os(�3) + sin(�2) sin(�3))� sin(�1) (os(�2) sin(�3)� sin(�2) os(�3))j �� je(
�)(e1 ^ � � � ^ e4)j= C jos(�1 + (�2 � �3))j je(
�)(e1 ^ � � � ^ e4)j� C je(
�)(e1 ^ � � � ^ e4)j ;Thus the maximum is ahieved when (among other values) all three �i are 0, as long as the remainingvetors form a 4-plane maximizing e(
�). It is not lear whether other values of �i will ahievethis maximum, sine the mixed parts of Te(
) are only bounded by those values. However, themaximum is learly ahieved when all �i = 0.Let �U : Fo(1; 4;R8) ! Go(4; 8) be the �bration assoiated with the unit sphere bundle of theuniversal bundle U , so that (x;W ), where x 2 W is a unit vetor in the 4-plane W , is mapped to�u(x;W ) := W 2 Go(4; 8). The other �bration �V : Fo(1; 4;R8) ! Go(4; 8), assoiated with thedual bundle V , maps the same (x;W ) onto �V (x;W ) := W?. e(
�), as a form on Fo(1; 4;R8), isthe �V -horizontal lift of the form e(
�) on Go(4; 8). That is learly maximized on some olletionof �V -horizontal 4-planes tangent to Go(4; 8) at W . Te(!) is maximized on the 3-sphere �bers ofW , that is f(x;W )jx 2Wg, as desribed above. Sine these two spaes are orthogonal, then� := C Te(!) ^ e(
�)will be maximized on any 7-plane whih is the sum of a �V -horizontal lift of a 4-plane maximizinge(
�) (perpendiular to W ) and the 3-plane tangent to the unit sphere in W at x. However, notall 4-planes orthogonal to W will maximize �.Sine e(
�) := 12�2 (
56 ^ 
78 � 
57 ^ 
68 + 
58 ^ 
67)= 12�2 (�5i ^ �6i ^ �7j ^ �8j � �5i ^ �7i ^ �6j ^ �8j + �5i ^ �8i ^ �6j ^ �7j) ;if Eij is the basis of tangent vetors dual to �ij , e(
�)(E15; E16; E17; E18) = 3=2�2. It is straightfor-ward to see that e(
�)(Ei5; Ei6; Ei7; Ei8) = 3=2�2 for any i = 1 : : :4, and e(
�)(Ei5; Ei6; Ej7; Ej8) =1=2�2 for i 6= j, or, more generally, if k1; : : : ; k4 are a permutation of 5; : : : ; 9, then when i 6= j,e(
�)(Eik1 ; Eik2 ; Ejk3; Ejk4) = �1=2�2, where the sign is the sign of the permutation. Finally,if fi1; i2; i3; i4g onsist of more than two distint values (and not two pairs of values), or iffk1; k2; k3; k4g does not onsist of some permutation of f5; 6; 7; 8g; thene(
�)(Ei1k1 ; Ei2k2 ; Ei3k3 ; Ei4k4) = 0:Theorem 3.2. The singular foliation NS of S7 onsisting of all great 3-spheres ontaining aommon great 2-sphere minimizes volume of all three-dimensional singular foliations on S7 withthat singular lous and limiting behavior, and provides a lower bound for the volume of all regularthree-dimensional oriented foliations of S7.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 10Proof. For any deomposable, unit � 2 �4(G(4; 8);W0) whih is tangent to the variety G(4; 8) atW0, � = Xi1 ;��� ;i4;k1�����k4 �i1;:::;i4;k1 ;:::;k4Ei1k1 ^ � � � ^Ei4k4 :Sine � is deomposable, � satis�es the Pl�uker ondition � ^ � = 0, implying that, in partiular(restriting to the ase where fk1; : : : ; k4g = f5; 6; 7; 8g sine otherwise e(
�) = 0), and denoting�i;j;k;l;5;6;7;8 by �i;j;k;l,�1;1;1;1�2;2;2;2� �2;1;1;1�1;2;2;2� �1;2;1;1�2;1;2;2� �1;1;2;1�2;2;1;2��1;1;1;2�2;2;2;1+ �1;1;2;2�2;2;1;1+ �1;2;1;2�2;1;2;1+ �1;2;2;1�2;1;1;2 = 0:and similarly for all other suh ombinations. Thus,(�1;1;1;1+ �2;2;2;2+ �3;3;3;3+ �4;4;4;4)2= �21;1;1;1+ �22;2;2;2+ 2�1;1;1;1�2;2;2;2+ � � �= �21;1;1;1+ �22;2;2;2+ 2�2;1;1;1�1;2;2;2+ 2�1;2;1;1�2;1;2;2+ 2�1;1;2;1�2;2;1;2+2�1;1;1;2�2;2;2;1� 2�1;1;2;2�2;2;1;1� 2�1;2;1;2�2;1;2;1� 2�1;2;2;1�2;1;1;2+ � � �� �21;1;1;1+ �22;2;2;2+ �22;1;1;1+ �21;2;2;2+ �21;2;1;1+ �22;1;2;2+ �21;1;2;1+ �22;2;1;2+�21;1;1;2+ �22;2;2;1+ �21;1;2;2+ �22;2;1;1+ �21;2;1;2+ �22;1;2;1+�21;2;2;1+ �22;1;1;2+ � � �� 1;sine � is a unit. Thus, on any suh �, e(
�)(�) � 3=2�2;the maximum being ahieved on those � so that (�1;1;1;1;5;6;7;8 + �2;2;2;2;5;6;7;8 + �3;3;3;3;5;6;7;8 +�4;4;4;4;5;6;7;8) = 1: Those 4-planes, in ontrast to the omplex ase studied by Gluk and Ziller,are not those whih are tangent 4-planes in T�(G(4; 8);W0) to the quaternioni projetive spaeHP1 under any quaternioni struture on R8 for whih W0 is quaternioni. Those 4-planes an beeasily shown to evaluate to half the maximum possible value.In fat, if M is the manifoldM := fx ^ e2 ^ e3 ^ e4jx ? fe2; e3; e4g; kxk = 1g ;then M �= S4, and the orresponding \foliation" on S7 will be singular. The tangent planes toM at eah point learly maximize the value of e(
�). The orresponding singular foliation on S7is the set of all great 3-spheres that are intersetions of S7 with a plane W = spanfx; e2; e3; e4gfor some unit x ? fe2; e3; e4g, whih is singular on the S2 ommon to all leaves. However, thissingular distribution will indeed be alibrated by this form, so minimizes volume among, at least,all singular foliations with the same singular set; in this ase, a totally-geodesi S2 whih is theintersetion of any two leaves of the foliation.As with the ase for one-dimensional leaves, this singular foliation atually orresponds to half of theurrent ��1(M) � F0(1; 4; 8)�= G(3; S7), sine the leaf orresponding to the 4-plane x^ e2 ^ e3 ^ e4is the same set as that leaf orresponding to (�x)^e2^e3^e4 with the opposite orientation. The 3-plane ommon to all 4-planes separates eah into two half-spaes. Choose the half-spae onsistentwith a hosen orientation on the ommon 3-plane, whih then restrits the �bers to hemisphereswhih still provides a singular foliation of S7. Sine this (non-yle) urrent NS � Go(3; S7) hasboundary S2 � S4 � Go(3; S7)��S2 �= S2 � Go(3; 7); whih is not itself a boundary, NS does notextend to a yle. Thus, the fat that � alibrated NS only implies that NS represents a singularfoliation on S7 whih is volume minimizing among foliations with the same singular lous.



VOLUME-MINIMIZING FOLIATIONS ON SPHERES 11However, similarly to [4℄, it follows that the full preimage S := ��1(M), whih is also alibratedby � and is a yle, minimizes mass among urrents homologous to twie the homology lass ofa foliation (all foliations by 3-manifolds are homologous as maps into Go(3; S7)). If there were a(singular or regular) volume-minimizing foliation represented by a yle C, then the mass of 2Could not be less than the mass of S, so that the mass of NS does represent a lower bound ofvolumes of foliations of dimension 3 on S7. �It remains an open question whether the Hopf �bration minimizes volume among 3-dimensionalregular foliations of S7. However, the Hopf �bration (a regular foliation) does have twie the volumeof the singular foliation NS. 4. GeneralizationsIt is a straightforward generalization of these omputations to show that the orresponding sphereM maximizes the orresponding form e(
�) in Go(4; 4n+4), showing that similar singular foliationsby 3-manifolds minimize volume among all (singular) foliations of S4n+3 with the given singularset.Theorem 4.1. The singular foliation of S4n+3 onsisting of all great 3-spheres ontaining a om-mon great 2-sphere minimizes volume of all three-dimensional singular foliations on S4n+3 withthat singular lous and limiting behavior, and provides a lower bound for the volume of all regularthree-dimensional oriented foliations of S4n+3.Similarly, the same methods will show that the Hopf �bration of S15 by great 7-spheres, the �bersof the Cayley projetive plane, the �bers of the �brationS7 ! S15#S8 ;will not minimize volume among all singular foliations of that spae as well, but rather the \lon-gitudes", great 7-spheres foliating S15 exept for a great 6-sphere ommon to all leaves, will be avolume-minimizing singular foliation.Theorem 4.2. The singular foliation NS of S15 onsisting of all great 7-spheres ontaining aommon great 6-sphere minimizes volume of all 7-dimensional singular foliations on S15 with thatsingular lous and limiting behavior, and provides a lower bound for the volume of all regular three-dimensional oriented foliations of S15. Referenes[1℄ Brito, F., Cha�on, P., Naveira, A. M., On the volume of unit vetor �elds on spaes of onstant setional urvature,Comm. Math. Helv., to appear.[2℄ Chern, S.-S., On the urvatura integra in a Riemannian manifold, Ann. of Math., 46 (1945), 674-684.[3℄ Chern, S.-S. and Simons, J., Charateristi forms and geometri invariants, Ann. of Math (1974).[4℄ Herman Gluk and Wolfgang Ziller, On the volume of a unit vetor �eld on the three-sphere, Commentarii Math-ematii Helvitii 61 (1986), 177 { 192.[5℄ D. L. Johnson, K�ahler submersions and holomorphi onnetions, Jour. Di�. Geo. 15 (1980), 71{79.[6℄ D. L. Johnson and P. Smith, Regularity of volume-minimizing graphs, Indiana University Mathematis Journal,44 (1995), 45{85.[7℄ M. S. Narasimhan and S. Ramanan, Existene of universal onnetions, Am. J. Math 83 (1961) 563-572.[8℄ Sharon Pedersen, Volumes of vetor �elds on spheres, Trans. Amer. Math. So. 336 (1993), 69{78.
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