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Abstract. — We establish in this paper a lower bound for the volume of a unit
vector field ~v defined on Sn \ {±x}, n = 2, 3. This lower bound is related to the sum
of the absolute values of the indices of ~v at x and −x.

Résumé (Champs unitaires dans les sphères antipodalement trouées: grand indice
enträıne grand volume.)

Nous etablissons une borne inferieure pour le volume d’un champ de vecteurs ~v
defini dans Sn \ {±x}, n = 2, 3. Cette borne inferieure depend de la somme des
valeurs absolus des indices de ~v en x et en −x.

1. Introduction

The volume of a unit vector field ~v on a closed Riemannian manifold M is
defined [8] as the volume of the section ~v : M → T 1M , where the Sasakian
metric is considered in T 1M . The volume of ~v can be computed from the
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Levi-Civita connection ∇ of M . For an orthonormal local frame {ea}n
a=1, we

have:

vol(~v) =
∫

M

(
1 +

n∑
a=1

‖∇ea~v‖2 +
∑

a1<a2

‖∇ea1
~v ∧∇ea2

~v‖2 + . . .

. . . +
∑

a1<···<an−1

‖∇ea1
~v ∧ · · · ∧ ∇ean−1

~v‖2

) 1
2

.

(1)

Note that vol(~v) ≥ vol(M) and also that only parallel fields attain the trivial
minimum.

For odd dimensional spheres, vector fields homologous to the Hopf fibration
have been studied, see [8], [3], [7] and [1]. In [5], a non-trivial lower bound of
the volume of unit vector fields on spaces of constant curvature was obtained.
In S2k+1, only the vector field tangent to the geodesics from a fixed point (with
two singularities) attains the volume of that bound. We notice that unit vector
fields with singularities show up in a natural way, see also [9].

For manifolds of dimension 5, a theorem showing how the topology of a
vector field influences its volume appears in [4]. More precisely, the result in [4]
is an inequality relating the volume of ~v and the Euler form of the orthogonal
distribution to ~v.

The purpose of this paper is to establish a relationship between the volume
of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phe-
nomenon. For this reason, we have chosen a simple model where such a rela-
tionship is found. We hope this could serve as inspiration for more complex
situations to be treated in a near future.

Precisely, we prove here:

Theorem 1.1. — Let W = Sn\{N,S}, n = 2 or 3, be the standard Euclidean
sphere where two antipodal points N and S are removed. Let ~v be a unit smooth
vector field defined on W . Then,

for n = 2, vol(~v) ≥
(
π + |I~v(N)|+ |I~v(S)| − 2

)vol(S2)
2

;

for n = 3, vol(~v) ≥
(
|I~v(N)|+ |I~v(S)|

)
vol(S3),

where I~v(P ) stands the Poincaré index of ~v around P.

We will comment briefly some possible extensions for this result in section
3 of this paper.
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2. Proof of the Theorem

Even though there is a common line of reasoning in the proof of both parts
of the Theorem, each dimension has its special features. For that reason, we
provide separate proofs for dimensions 2 and 3.

2.1. Case n = 2. — Denote by g the usual metric on S2 induced from R3.
Without loss of generality we take N = (0, 0, 1) and S = (0, 0,−1). On W
we consider an oriented orthonormal local frame {e1, e2 = ~v}. Its dual basis is
denoted by {θ1, θ2} and the connection 1-forms of ∇ are ωij(X) = g(∇Xej , ei)
for i, j = 1, 2 where X is a vector in the corresponding tangent space. In
dimension 2, the volume (1) reduces to:

vol(~v) =
∫
S2

√
1 + k2 + τ2,

where k = g(∇~v~v, e1) is the geodesic curvature of the integral curves of ~v and
τ = g(∇e1~v, e1) is the geodesic curvature of the curves orthogonal to ~v. Also,

ω12 = τθ1 + kθ2.

The first goal is to relate the integrand of the volume with the connection
form ω12. If S1

ϕ is the parallel of S2 at latitude ϕ ∈ (−π
2 , π

2 ) consider the
unit field ~u on S1

ϕ such that {~u, ~n} is positively oriented where ~n is the field
pointing toward N . Let α ∈ [0, 2π] be the oriented angle from ~u to ~v. Then
~u = sinαe1 + cos α~v. If i : S1

α → S2 is the inclusion map, we have:

(2) i∗ω12(~u) = τθ1(~u) + kθ2(~u) = τ sinα + k cos α.

We split the domain of the integral in northern and southern hemisphere,
H+ and H− respectively. First we consider the northern hemisphere H+. From
the general inequality

√
a2 + b2 ≥ |a cos β + b sinβ| ≥ a cos β + b sinβ, for any

a, b, β ∈ R, we have:√
1 + k2 + τ2 ≥ cos ϕ +

√
k2 + τ2 sinϕ

≥ cos ϕ +
∣∣k cos α + τ sinα

∣∣ sinϕ

≥ cos ϕ +
∣∣i∗ω12

∣∣ sinϕ.

(3)

From (2) and (3) we get:

vol(~v)
∣∣
H+ ≥

∫
H+

(
cos ϕ +

∣∣i∗ω12

∣∣ sinϕ
)

=
∫ π

2

0

∫
S1

ϕ

cos ϕ +
∫ π

2

0

∫
S1

ϕ

∣∣i∗ω12

∣∣ sinϕ

≥
∫ π

2

0

2π cos2 ϕ +
∫ π

2

0

sinϕ

∣∣∣∣ ∫
S1

ϕ

i∗ω12

∣∣∣∣.
(4)
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The connection form ω12 fulfills dω12 = θ1 ∧ θ2. Therefore, the area of the
annulus region A(ϕ, π

2 − ε) = {(x1, x2, x3) ∈ S2| sinϕ ≤ x3 ≤ sin(π
2 − ε)}

provides the equality:∫
A(ϕ, π

2−ε)

dω12 = area of A =
∫ π

2−ε

ϕ

2π cos t

=2π
(
sin(

π

2
− ε)− sinϕ

)
.

(5)

The border of A(ϕ, π
2 − ε) is ∂A = S1

ϕ ∪ S1
π
2−ε (with the appropriate orien-

tation), so by (5) and Stokes’ Theorem:∫
S1

ϕ

i∗ω12 =
∫

A(ϕ, π
2−ε)

dω12 +
∫

S1
π
2 −ε

i∗ω12

=2π
(
sin(

π

2
− ε)− sinϕ

)
+

∫
S1

π
2 −ε

i∗ω12.

(6)

If ω is the Riemannian connection form on the principal frame bundle of
T (S2), which is T 1(S2), then the restriction of ω to the vertical directions is
the volume form of the fiber. Since ω12 = ~v∗(ω), the index of ~v at N is:

lim
ε→0

∫
S1

π
2 −ε

i∗ω12 = lim
ε→0

∫
S1

π
2 −ε

i∗~v∗ω = vol(S1)I~v(N).

Thus, from (6):

(7)
∫

S1
ϕ

i∗ω12 = 2π(1− sinϕ) + 2πI~v(N).

Following from (4) with (7) we have:

vol(~v)
∣∣
H+ ≥π2

2
+

∫ π
2

0

sinϕ
∣∣∣2π(1− sinϕ) + 2πI~v(N)

∣∣∣
=

π2

2
+

∫ π
2

0

∣∣2π sinϕI~v(N)− 2π sinϕ(sinϕ− 1)
∣∣

≥π2

2
+

∫ π
2

0

∣∣∣∣∣2π sinϕI~v(N)
∣∣− ∣∣2π sinϕ(sinϕ− 1)

∣∣∣∣∣
≥π2

2
+

∣∣∣∣ ∫ π
2

0

∣∣2π sinϕI~v(N)
∣∣− ∣∣2π sinϕ(sinϕ− 1)

∣∣∣∣∣∣
=

π2

2
+

∣∣∣∣2π|I~v(N)|
∫ π

2

0

sinϕ− 2π

∫ π
2

0

(sinϕ− sin2 ϕ)
∣∣∣∣

=
π2

2
+

∣∣∣2π|I~v(N)| − 2π +
π2

2

∣∣∣.

(8)
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For the southern hemisphere, similarly to (5) and (6) with −π
2 < −π

2 + ε <
ϕ ≤ 0: ∫

S1
ϕ

i∗ω12 =
∫

S1
−π

2 +ε

i∗ω12 −
∫

A(−π
2 +ε,ϕ)

dω12

=
∫

S1
−π

2 +ε

i∗ω12 − 2π
(
sinϕ− sin(−π

2
+ ε)

)
.

Now the index of ~v at S is obtained by lim
ε→0

∫
S1
−π

2 +ε

i∗ω12 = vol(S1)I~v(S).

Therefore:

(9)
∫

S1
ϕ

i∗ω12 = 2πI~v(S)− 2π(sinϕ + 1).

In order to obtain a similar equation to (3) we take β = −ϕ, and together
with (2) we have:

vol(~v)
∣∣
H−

≥
∫

H−

(
cos ϕ−

∣∣i∗(ω12)
∣∣ sinϕ

)
≥

∫ 0

−π
2

2π cos2 ϕ−
∫ 0

−π
2

∣∣∣∣ ∫
S1

ϕ

i∗ω12

∣∣∣∣ sinϕ.

(10)

From (9) and (10):

vol(~v)
∣∣
H−

≥π2

2
−

∫ 0

−π
2

∣∣∣2πI~v(S)− 2π(sinϕ + 1)
∣∣∣ sinϕ

=
π2

2
+

∫ 0

−π
2

∣∣∣2πI~v(S) sinϕ− 2π(sinϕ + 1) sinϕ
∣∣∣

≥π2

2
+

∫ 0

−π
2

∣∣∣|2πI~v(S) sinϕ| − |2π(sinϕ + 1) sinϕ|
∣∣∣

≥π2

2
+

∣∣∣∣2π|I~v(S)|
∫ 0

−π
2

| sinϕ| − 2π

∫ 0

−π
2

| sin2 ϕ + sinϕ|
∣∣∣∣

=
π2

2
+

∣∣∣2π|I~v(S)| − 2π +
π2

2

∣∣∣.

(11)

Finally, recall that the sum of the indices of a field in S2 must be 2, therefore
the sum of the absolute values of the indices must be greater or equal than 2.
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So, from (8) and (11), the volume of ~v is bounded by:

vol(~v) ≥π2 +
∣∣∣2π|I~v(N)| − 2π +

π2

2

∣∣∣ +
∣∣∣2π|I~v(S)| − 2π +

π2

2

∣∣∣
≥π2 +

∣∣2π|I~v(N)|+ 2π|I~v(S)| − 4π + π2
∣∣

=π2 +
∣∣2π(|I~v(N)|+ |I~v(S)| − 2) + π2

∣∣
=2π2 + 2π(|I~v(N)|+ |I~v(S)| − 2)

=
(
π + |I~v(N)|+ |I~v(S)| − 2

)vol(S2)
2

.

2.2. Case n = 3. — As before, denote by g the metric in S3 and consider
a general situation where N = (0, 0, 0, 1), S = (0, 0, 0,−1) and I~v(N) ≥ 0 (and
therefore I~v(S) ≤ 0).

If ~v is a unit vector field on W , consider on W an oriented orthonormal local
frame such that {e1, e2, e3 = ~v}. The dual basis will be denoted by {θ1, θ2, θ3}.
The coefficients of the second fundamental form of the orthogonal distribution
to ~v, possibly non-integrable, are hij = ωi3(ej) = g(∇ej

~v, ei). The coefficients
of the acceleration of ~v are given by ∇~v~v = a1e1 +a2e2. Finishing the notation,
we will use J for the integrand of the volume (1) and:

σ2 =
∣∣∣∣h11 h12

h21 h22

∣∣∣∣ , σ2,1 =
∣∣∣∣h11 a1

h21 a2

∣∣∣∣ , σ2,2 =
∣∣∣∣a1 h12

a2 h22

∣∣∣∣ .

It is easy to see that:

J =

1 +
2∑

i,j=1

h2
ij + a2

1 + a2
2 + σ2

2 + (σ2,1)2 + (σ2,2)2

 1
2

.

Note that (1 + |σ2|)2 = 1 + 2|σ2|+ σ2
2 ≤ 1 +

2∑
i,j=1

h2
ij + σ2

2 . Therefore:

(12) J ≥
√

(1 + |σ2|)2 + |σ2,1|2,

where equality holds if and only if a1 = a2 = 0 and we have either h11 = h22

and h12 = −h21, or h11 = −h22 and h12 = h21.
Now we want to identify the last term in (12) with the evaluation of certain

forms.
In the frame {e1, e2, ~v} we can demand that e1 will be tangent to S2

ϕ, the
parallel of S3 with latitude ϕ ∈ (−π

2 , π
2 ). We complete a frame in S2

ϕ with ~u in
such a way {e1, ~u} is an oriented local frame compatible with the normal field ~n
that points toward the North Pole. That is, in such a a way that {e1, ~u, ~n} is a
positively oriented local frame of S3. Let α ∈ [0, 2π] be the oriented angle from
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TS2
ϕ to ~v and i : S2

ϕ → S3 the inclusion map. In this way, ~u = cos α~v + sinαe2

and:

i∗(θ1 ∧ θ2)(e1, ~u) = sin α,

i∗(θ1 ∧ θ3)(e1, ~u) = cos α,

i∗(θ2 ∧ θ3)(e1, ~u) = 0.

In order to evaluate i∗(ω13 ∧ ω23), first we notice that:

ω13 ∧ ω23 = σ2θ1 ∧ θ2 + σ2,1θ1 ∧ θ3 + σ2,2θ2 ∧ θ3.

So, i∗(ω13 ∧ ω23)(e1, ~u) = sin ασ2 + cos ασ2,1.
As in (3) with β ∈ [0, π

2 ] such that sinβ = | sinα| and cos β = | cos α|, from
(12) we get:

J ≥ sinβ(1 + |σ2|) + cos β|σ2,1|
=| sinα|+ | sinα||σ2|+ | cos α||σ2,1|
≥| sinα|+ | sinασ2 + cos ασ2,1|
=|i∗(θ1 ∧ θ2)|+ |i∗(ω13 ∧ ω23)| ≥ |i∗(θ1 ∧ θ2) + i∗(ω13 ∧ ω23)|.

(13)

We split W in northern and southern hemisphere, H+ and H− respectively.
Then, from (13):

vol(~v)|H+ ≥
∫

H+
|i∗(θ1 ∧ θ2) + i∗(ω13 ∧ ω23)|

≥
∫ π

2

0

∣∣∣∣ ∫
S2

ϕ

i∗(θ1 ∧ θ2) + i∗(ω13 ∧ ω23)
∣∣∣∣.(14)

We know that dω12 = ω13∧ω23 +θ1∧θ2. If A(ϕ, π
2 −ε) is the annulus region

between the parallels S2
ϕ and S2

π
2−ε, 0 ≤ ϕ < π

2 − ε < π
2 , we have by Stokes’

Theorem:

(15)
∫

S2
ϕ

i∗(ω13 ∧ω23) + i∗(θ1 ∧ θ2) =
∫

S2
π
2 −ε

i∗(ω13 ∧ω23) +
∫

S2
π
2 −ε

i∗(θ1 ∧ θ2).

We bound i∗(θ1 ∧ θ2) = sin α ≥ −1 on S2
π
2−ε and consequently:∫

S2
ϕ

i∗(ω13 ∧ ω23) + i∗(θ1 ∧ θ2) ≥
∫

S2
π
2 −ε

i∗(ω13 ∧ ω23)− 4π cos2(
π

2
− ε).

As for the 2-dimensional case, ω13∧ω23 is the pull-back under ~v∗ of a 2-form
ω on T 1(S3) which restricts to the volume form on the fibers. In this case,
however, the form on the unit tangent bundle is not exactly the connection
form, but a wedge of components of the connection form which restricts to the
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volume form on the fibers of the unit tangent bundle. As before, though, the
index of ~v at the singularity N is:

lim
ε→0

∫
S2

π
2 −ε

i∗(ω13 ∧ ω23) = lim
ε→0

∫
S2

π
2 −ε

i∗~v∗(ω) = vol(S2)I~v(N).

So,

(16)
∫

S2
ϕ

i∗(ω13 ∧ ω23) + i∗(θ1 ∧ θ2) ≥ 4πI~v(N) ≥ 0.

From (14) and (16) we get:

(17) vol(~v)|H+ ≥
∫ π

2

0

4π|I~v(N)| = 2π2|I~v(N)|.

In a similar way for the southern hemisphere, the integral of dω12 over the
annulus region A(−π

2 + ε, ϕ), −π
2 < −π

2 + ε < ϕ ≤ 0 provides exactly (15) but
now we bound sinα ≤ 1 to obtain:∫

S2
ϕ

i∗(ω13 ∧ ω23) + i∗(θ1 ∧ θ2) ≤
∫

S2
−π

2 +ε

i∗(ω13 ∧ ω23) + 4π cos2(−π

2
+ ε).

The index of ~v at S can be calculated as lim
ε→0

∫
S2
−π

2 +ε

i∗(ω13 ∧ ω23) =

vol(S2)I~v(S). So,∫
S2

ϕ

i∗(ω13 ∧ ω23) + i∗(θ1 ∧ θ2) ≤ 4πI~v(S) ≤ 0.

Therefore,

vol(~v)|H− ≥
∫ 0

−π
2

∣∣∣∣ ∫
S2

ϕ

i∗(θ1 ∧ θ2) + i∗(ω13 ∧ ω23)
∣∣∣∣

≥
∫ 0

−π
2

4π|I~v(S)| = 2π2|I~v(S)|.
(18)

Thus, from (17) and (18) we have:

vol(~v) ≥ 2π2
(
|I~v(N)|+ |I~v(S)|

)
=

(
|I~v(N)|+ |I~v(S)|

)
vol(S3).

3. Concluding Remarks

It is easy to verify that the north-south field ~n achieves the equalities in the
main Theorem. In fact, the volume of ~n in S2 is equal to π

2 vol(S2), and in
S3 is 2vol(S3). The lower bound in S3 when the singularities are trivial (i.e.
I~v(N) = I~v(S) = 0) has no special meaning.

These results should extend to higher dimensions if one makes use of some
rather complicated inequalities involving the volume integrand in (1) of a unit
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vector field and some symmetric functions coming from the second fundamental
form of the orthogonal distribution (which is generally non integrable). Some
of these inequalities can be found in [6] or [5].

Index results should exist also for the case when the spheres are punctured
differently. In other words, if we have two singularities which are not antipodal
points of S2 or S3 or if we have more than two singularities, what could be said?
We believe that some results relating indices and positions of the singularities
to the volume of a unit vector field may be found.

For singular vector fields on S2 another natural situation is the one of unit
vector fields defined on S2 \ {x}. In a recent paper [2], see also [9], a unit
vector field ~p is defined on S2 \ {x} by parallel translation of a given tangent
vector at −x along the minimizing geodesics to x. It has been proved in [2]
that ~p minimizes the volume of unit vector fields defined on S2 \ {x}. By a
direct calculation, we obtain the inequality vol(~p) > vol(~n), where ~n is the
north-south vector field tangent to the longitudes of W .

Now, new questions arise about minimality on specific topological-geometri-
cal configurations on the punctured spheres.
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