UNIT VECTOR FIELDS ON ANTIPODALY
PUNCTURED SPHERES: BIG INDEX, BIG VOLUME

BY FABIANO G.B. BRiTO, PABLO M. CHACON & DAVID L.
JOHNSON

ABSTRACT. — We establish in this paper a lower bound for the volume of a unit
vector field ¥ defined on 8™ \ {£z}, n = 2,3. This lower bound is related to the sum
of the absolute values of the indices of ¢ at z and —=.

RESUME (Champs unitaires dans les sphéres antipodalement trouées: grand indice
entraine grand volume.)

Nous etablissons une borne inferieure pour le volume d’un champ de vecteurs ¥
defini dans S™ \ {£z}, n = 2,3. Cette borne inferieure depend de la somme des
valeurs absolus des indices de ¢ en z et en —zx.

1. Introduction

The volume of a unit vector field ¥ on a closed Riemannian manifold M is
defined [8] as the volume of the section @ : M — T'M, where the Sasakian
metric is considered in T'M. The volume of # can be computed from the
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Levi-Civita connection V of M. For an orthonormal local frame {e,}7_,, we
have:

n
vol(7) :/M (1 Y Ve, TP+ D Ve, A Ve, 0]% + ...
a=1

a1 <az

Y Ve, TAA Vean,ﬁIIQ)

a1<---<an-1

(1)

2

Note that vol(¥) > vol(M) and also that only parallel fields attain the trivial
minimum.

For odd dimensional spheres, vector fields homologous to the Hopf fibration
have been studied, see [8], [3], [7] and [1]. In [5], a non-trivial lower bound of
the volume of unit vector fields on spaces of constant curvature was obtained.
In S%**1 only the vector field tangent to the geodesics from a fixed point (with
two singularities) attains the volume of that bound. We notice that unit vector
fields with singularities show up in a natural way, see also [9].

For manifolds of dimension 5, a theorem showing how the topology of a
vector field influences its volume appears in [4]. More precisely, the result in [4]
is an inequality relating the volume of ¢ and the Euler form of the orthogonal
distribution to v.

The purpose of this paper is to establish a relationship between the volume
of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phe-
nomenon. For this reason, we have chosen a simple model where such a rela-
tionship is found. We hope this could serve as inspiration for more complex
situations to be treated in a near future.

Precisely, we prove here:

THEOREM 1.1. — Let W = S"\{N, S}, n = 2 or 3, be the standard Fuclidean
sphere where two antipodal points N and S are removed. Let ¥ be a unit smooth

vector field defined on W. Then,

VOI(S2)_
2 )

forn=2,  vol(@)> (7? F | T5(N)| + |T3(8)] — 2)

forn=3,  vol(@) > <|Ly(N)| + |Ig(S)\)V01(S3),

where I3(P) stands the Poincaré index of U around P.

We will comment briefly some possible extensions for this result in section
3 of this paper.
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2. Proof of the Theorem

Even though there is a common line of reasoning in the proof of both parts
of the Theorem, each dimension has its special features. For that reason, we
provide separate proofs for dimensions 2 and 3.

2.1. Case n = 2. — Denote by ¢ the usual metric on S? induced from R3.
Without loss of generality we take N = (0,0,1) and S = (0,0,—1). On W
we consider an oriented orthonormal local frame {e1, es = ¢}. Its dual basis is
denoted by {6,602} and the connection 1-forms of V are w;;(X) = g(Vxe;,e;)
for 4,7 = 1,2 where X is a vector in the corresponding tangent space. In
dimension 2, the volume (1) reduces to:

vol(7) = / V1+ k2472,
S2

where k = g(V30, e1) is the geodesic curvature of the integral curves of ¢ and
T =g(V,,U,e1) is the geodesic curvature of the curves orthogonal to #. Also,

w12 = 7'91 + k‘gg
The first goal is to relate the integrand of the volume with the connection

form wip. If S; is the parallel of S? at latitude ¢ € (=%, %) consider the

unit field @ on S}, such that {i,7} is positively oriented where 7 is the field
pointing toward N. Let a € [0,27] be the oriented angle from @ to ¥. Then
@ = sinae; +cosad. If i : S — S? is the inclusion map, we have:

(2) i*w12 (@) = 701 (€) + kB2 (1) = Tsina + k cos a.

We split the domain of the integral in northern and southern hemisphere,
H* and H™ respectively. First we consider the northern hemisphere H*. From
the general inequality va? + b > |acos 8 + bsin 3| > acos 8 + bsin 3, for any
a,b, 0 € R, we have:

V1+kZ4+72>cosp+ VE2+ m2sing
(3) >cos ¢ + |kcosa + Tsinalsing
> cos ¢ + |i*wiz| sin .

From (2) and (3) we get:

vol(17)|HJr 2/ (cosp + |i*wiz | sin p)
H+

2 2
(4) :/ / coscp+/ / |i*w12|sincp
o Jsy o Jst
Z Z
Z/ 27r0052<p+/ sincp‘/ 1wzl
0 0 5L
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The connection form wys fulfills dwis = 01 A 03. Therefore, the area of the
annulus region A(p, 5 —¢€) = {(z1,22,23) € S?|singp < z3 < sin(§ — €)}
provides the equality:

I —€
/ dwip = area of A = / 2w cost
(5) A(p, 5 —¢€) ®

=27 ( sm(§ —€) —sinp).

The border of A(p, 5 —¢€) is 0A = S; U 5'1%76 (with the appropriate orien-
tation), so by (5) and Stokes’ Theorem:

/ w2 —/ dwio +/ 1*wia
Sy A(p,5—¢) Sk _
T .

:271'(sin(z —€) —sinp) +/ i*wia.
2 Slﬂ-
3

(6)

If w is the Riemannian connection form on the principal frame bundle of
T(S?), which is T"'(S?), then the restriction of w to the vertical directions is
the volume form of the fiber. Since wi2 = ¥*(w), the index of ¥ at N is:

lim i*wis = lim i T*w = vol(S*) I(N).
e—0 1 e—0 1
Sk . Sk
2 2

Thus, from (6):
(7) / i*wig = 21(1 —sinp) + 27 l5(N).

Following from (4) with (7) we have:

B

2
vol(¢/ |HJr 2% / smtp‘Zw 1 —sinp) + 271y (N)‘
w2 %
=5 / |27 sin pI5(N) — 27 sinp(sin ¢ — 1)
7r 3
7 / ‘27rsm<p[~ )|—’27Tsin<,0(singp—1)”
0 :
Z% + / |27 sin I5(N)| — |27 sin p(sin ¢ — 1)“
0
72 B B )
?-l- 27r|L;(N)|/ singp—27r/ (sin g — sin® )
0 0
2 2
=5+ 27r|I17(N)|—27r+%‘.
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For the southern hemisphere, similarly to (5) and (6) with —5 < =5 4+ € <

p <0:
/ i*wlg :/
s St

T+

i*wlg — / dwlg
. A(=F+e,p)

:/ i*wlg—27r(sin<p—sin(—z—|—e)).
o 2

™
— Tt

1
@

Now the index of ¥ at S is obtained by lirr(l) fo  dwip = vol(SH)Ix(S).
€E— —%4—5

Therefore:

9) /S i*wia = 2m13(S) — 2n(sing + 1).

1
@

In order to obtain a similar equation to (3) we take 3 = —¢, and together
with (2) we have:

vol(¥)| ;- Z/Hi (cos o — |i* (w12)| sin )

0 0

> 21 cos? ¢ — 1*wig
_ . Sl
2 ®

2

(10)
sin ¢.

0
VOl(’U)’ > / 2n1I5(S) — 2w (sing + 1)‘ sin ¢

2 0
_T + / 2715(S) sinp — 2w (sinp + 1) sin @‘

2 0
(11) Zﬂ- +/ |27 T5(S) sin | — |2 (sinp + 1) sin<p|‘

0 0
27r|L;(S)|/ |sincp|—27r/ |Sin2<p+sincp|’

i
2

2 2
:% + ’27T|I{;(S)| — 27+ L’

Finally, recall that the sum of the indices of a field in S? must be 2, therefore
the sum of the absolute values of the indices must be greater or equal than 2.
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So, from (8) and (11), the volume of ¢ is bounded by:

2

2
vol(#) 2 + |2l I(N)| — 2 + T-| + [2n| ()] — 27+ -

—~
~—_  ~—

>72 + | 27| I5(N)| 4 27 |15(S)| — 4 + 72|
=n? + [27(|I3(N)| + |I3(S)| - 2) + 7|
=21% 4 2n(|I3(N)| + [15(S)] - 2)

vol(S?
— (4 1)+ [13(9)] — 2) A,
2.2. Case n = 3. — As before, denote by ¢ the metric in S* and consider

a general situation where N = (0,0,0,1), S = (0,0,0,—1) and I3(N) > 0 (and
therefore I3(S) < 0).

If ¥ is a unit vector field on W, consider on W an oriented orthonormal local
frame such that {ej, e, e3 = U'}. The dual basis will be denoted by {61, 62,03}
The coeflicients of the second fundamental form of the orthogonal distribution
to ¥, possibly non-integrable, are h;; = wiz(ej) = g(Ve, v, ;). The coefficients
of the acceleration of ¥ are given by VzU' = aie; +ases. Finishing the notation,
we will use J for the integrand of the volume (1) and:

hi1 hio
ha1 hao

hi1 a;
ho1 ao

ay hiz
as hao

09 —

, 021 =

, 022 =

It is easy to see that:

2

2
J= 14> b+ + a3+ 03 + (021) + (02.2)
ij=1

2
Note that (1 + [02])? =1+ 2|og| + 05 <1+ Z hZ; + o3. Therefore:

4,J=1

(12) T2 \/(L+[0])? + o2 ]2,
where equality holds if and only if a1 = ay = 0 and we have either hi; = hoo
and h12 = —h21, or h11 = —h22 and h12 = h21.

Now we want to identify the last term in (12) with the evaluation of certain
forms.

In the frame {ej, es, ¥} we can demand that e; will be tangent to Si, the

parallel of S* with latitude ¢ € (=%, %). We complete a frame in Sg with 4 in
such a way {ej, @} is an oriented local frame compatible with the normal field 7
that points toward the North Pole. That is, in such a a way that {eq, 4,7} is a
positively oriented local frame of S3. Let o € [0, 27] be the oriented angle from
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TSZ to vand i:S7 — S? the inclusion map. In this way, @ = cos a¥ + sin cves
and:

i*(01 A O2)(e1, W) =sina,
i*(61 A O3)(e1, @) = cos a,
7/*(92 A 93)(61, 7:[) = 0.

In order to evaluate i* (w13 A wag), first we notice that:
w13 A\ wag = 0901 A O3 + 0'2’191 A O3 + 0'2’292 A Os.

SO7 i*(wlg AN wgg)(el,ﬁ) = sin Qo9 + COoS Qo2 1.
As in (3) with 8 € [0, 5] such that sin 3 = |sin a| and cos § = | cos a|, from
(12) we get:
J >sin f(1 + |o2|) + cos Bloa,1|
(13) =|sina| + |sin a||oz| + | cos a||o2 1]
>|sina + | sin oy + cos aog 1|

:|Z*(91 A 02)| + ‘i*(wlg /\OJ23)| > |Z*(91 A 92) —|—i*(w13 /\UJ23)|.

We split W in northern and southern hemisphere, H™ and H ™~ respectively.
Then, from (13):

VOI(U)‘H+ > / . \z*(@l A 92) + i*(wlg /\wgg)‘
H

>/
0

We know that dwiz = wig Awaz +601 Aby. If A(p, § —¢€) is the annulus region

between the parallels 5’3, and S%_e, 0 <y < F—e< %, wehave by Stokes’

(14)

/ z*(01 A 02) + i* (w13 A L«J23)
S

2
7}

Theorem:

(15) /S

We bound i*(6; A f2) =sina > —1 on 52%76 and consequently:

J

As for the 2-dimensional case, w13 Awsg is the pull-back under v* of a 2-form
w on T'(S?) which restricts to the volume form on the fibers. In this case,
however, the form on the unit tangent bundle is not exactly the connection
form, but a wedge of components of the connection form which restricts to the

’i*(w13 /\w23) —|—Z*(91 A (92) = /

2
5% .

i*(wlg/\wgg)—l-/ z*(@l /\92).

2 52
™ _
» 5 —€

i* (w13 Awaz) +i" (01 A ba) > / i* (w13 A wag) — 47rcos2(g — ).

2 52
™ _
P 9 —€
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volume form on the fibers of the unit tangent bundle. As before, though, the
index of ¥’ at the singularity N is:

lim i* (w13 A waez) = lim i (w) = vol(SH) Iz(N).
e—0 52 e—0 52
27¢ 27°¢
So,
(16) / ’i*(wlg A WQ3) + z*(01 A 02) Z 47TI,7(N) > 0.
H

From (14) and (16) we get:

(17) vol(#)| g+ > /O * dx|I5(N)] = 272 I5(N)].

In a similar way for the southern hemisphere, the integral of dwis over the
annulus region A(—% +¢€,¢), =5 < =5 + € < ¢ <0 provides exactly (15) but
now we bound sin«a < 1 to obtain:

J

The index of ¥ at S can be calculated as liH(l) S *(wis A weg) =
e— -Z+

vol(S?)I5(S). So,

i*(w13 A (UQg) + z*(91 A\ 92) < / i*(w13 A\ w23) + 4r COSZ(—g + 6).

2 2
@ ng+e

/ i*(wlg, A w23) + z*(91 A\ 92) < 47‘(‘[{;(5) <0.
5%
Therefore,

0
vl @) = |

i
2

/ ’L*(el A 02) + i* (w13 A CL)23)
S

2
®

0
Z/J Ar|I5(8)| = 272 |I5(S)].

2

(18)

Thus, from (17) and (18) we have:
vol(®) 2 27 (1(N)] + [1s(S)]) = (I1(N)] + [Is(S)])vol(S?).

3. Concluding Remarks

It is easy to verify that the north-south field 77 achieves the equalities in the
main Theorem. In fact, the volume of 7 in S? is equal to gvol(SQ), and in
S? is 2vol(S?). The lower bound in S* when the singularities are trivial (i.e.
I3(N) = I3(S) = 0) has no special meaning.

These results should extend to higher dimensions if one makes use of some
rather complicated inequalities involving the volume integrand in (1) of a unit
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vector field and some symmetric functions coming from the second fundamental
form of the orthogonal distribution (which is generally non integrable). Some
of these inequalities can be found in [6] or [5].

Index results should exist also for the case when the spheres are punctured
differently. In other words, if we have two singularities which are not antipodal
points of 8% or 8? or if we have more than two singularities, what could be said?
We believe that some results relating indices and positions of the singularities
to the volume of a unit vector field may be found.

For singular vector fields on S? another natural situation is the one of unit
vector fields defined on S? \ {z}. In a recent paper [2], see also [9], a unit
vector field 7 is defined on 8% \ {x} by parallel translation of a given tangent
vector at —z along the minimizing geodesics to . It has been proved in [2]
that # minimizes the volume of unit vector fields defined on S?\ {z}. By a
direct calculation, we obtain the inequality vol(p) > vol(i), where 7 is the
north-south vector field tangent to the longitudes of W.

Now, new questions arise about minimality on specific topological-geometri-
cal configurations on the punctured spheres.
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