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ABSTRACT: We present a systematic theory of polymer reaction kinetics at an interface separating two
immiscible melts, A and B, in each of which a fraction of chains carry reactive end groups. We consider
arbitrary values of local group reactivity, Qb, and reactive group densities in either bulk, nA

∞ and nB
∞, with

the convention nA
∞e nB

∞. At short times reaction kinetics are second order in bulk densities. Initially,
kinetics are of simple mean field type, with surface density of reaction product after time t given by R t

≈ Qbha3tnA
∞nB

∞ where h is the interface width and a reactive group size. If Qb exceeds a density-dependent
threshold a transition occurs, at a time less than the longest polymer relaxation time τ, to second order
diffusion-controlled (DC) kinetics with R t ≈ xt

4nA
∞nB

∞. Here xt is the rms monomer displacement.
Logarithmic corrections arise in marginal cases. This leads to R t ∼ t/(ln t) for unentangled chains, while
for entangled melts consecutive regimes R t ∼ t/(ln t), R t ∼ t1/2 and R t ∼ t/(ln t) exist. Which regimes are
realized depends on Qb and nB

∞. At long times, a transition occurs to first-order DC kinetics. The reaction
rate, R t ≈ xtnA

∞, is determined by the more dilute A side, where a density depletion hole of size xt

develops at the interface. For high reactive chain densities on the B side (nB
∞R3 > 1 where R is polymer

coil size), and for Qb sufficiently large, these kinetics onset before τ. Then R t ∼ t1/4 for unentangled melts,
while for entangled cases consecutive regimes R t ∼ t1/4, R t ∼ t1/8, and R t ∼ t1/4 arise, some or all of
which may be realized depending on Qb and nB

∞. The final first-order regime is always governed by center
of gravity diffusion, R t ∼ t1/2. At a certain time scale the interface saturates with AB copolymer product
and reactions are strongly suppressed. This prevents the onset of the long time first-order DC regime if
the reactivity is very small, Qb < Qb

† with Qb
† ∼ 1/N1/2 (unentangled melts) or Qb

† ∼ 1/N3/2 (entangled).

I. Introduction

This paper is a theoretical investigation of the kinetics
of polymer-polymer reactions occurring at an interface
separating two thermodynamically immiscible polymer
melt phases A and B (see Figure 1). A certain fraction
of the A and B chains bear chemically reactive end
groups and can react with chains in the other phase in
the interfacial region only. Reactions produce A-B
copolymers which eventually crowd the interface. The
importance of such systems derives both from funda-
mental issues in polymer interfacial science and from
the many technologically important applications. In the
reactive reinforcement of polymer interfaces,1-4 A-B
copolymer products serve as bridges, enhancing the
interfacial fracture toughness and yield stress after
cooling.5-7 Commercial applications entail the simulta-
neous mechanical mixing of the two melts (“reactive
processing”), reactions occurring at interfaces separating
droplets from the continuous phase. In addition to their
direct reinforcing effect, the interfacial copolymer prod-
ucts also promote the mixing itself, apparently both by
suppression of droplet coalescence rates and through
surface tension reduction.8-11

A number of recent theoretical and numerical
studies12-16 have addressed these interfacial reaction
kinetics. These studies focused on a small fraction of
the available parameter space. They emphasized the

limit of “infinitely” reactive groups, i.e. local chemical
reactivities Qb of order 1/ta where ta is the monomer
relaxation time. (The definition of Qb is the reaction rate
given two reactive groups are in contact.) In fact, such
Qb values are realized only for exotic species such as
radicals (or electronically excited groups as in model
photophysical systems17,18) while chemical reactivities* To whom correspondence should be addressed

Figure 1. Interface of width h separating bulk melts A and
B. Initial reactive chain densities are nA

∞ and nB
∞. We adopt

the convention nA
∞ e nB

∞. For unequal densities, the smaller A
density governs long time reaction rates whereas the higher
B density determines characteristic time scales. A-B reactions
are confined to the interface, each reaction producing an AB
diblock copolymer. For sufficiently high local reactivity Qb, the
reaction probability for a pair which was initially close enough
to have diffused and met within time t reaches unity at a time
scale t2

/. For t > t2
/ reactions are confined to those pairs whose

exploration volumes (indicated here by dashed lines) overlap
at time t at the interface. Thus R t is the number of such pairs
per unit area, R t ≈ nA

∞nB
∞xt

4 (second-order DC kinetics).
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employed in most reactive blending experiments are
extremely small. A typical example is the reaction
between carboxylic acid and epoxide ring groups19 for
which Qbta ≈ 10-11. In addition, with the exception of
ref 15, previous studies have been confined to reactive
chains very dilute in an unreactive melt background
(Figure 2a). Moreover, most of these works did not
consider the reaction kinetics for all times. Generally,
one expects20 different kinetics before and after the
longest polymer relaxation time τ. In ref 15 an attempt
was made to develop kinetics for all times for the
infinitely reactive case (Qbta ) 1). These authors found
that for times sufficiently greater than τ the reaction
rate is determined by center of gravity diffusion of
polymer coils to the interface.

The objective of this paper is a systematic under-
standing of reaction kinetics, through all time regimes,
as a function of local reactivity Qb and bulk reactive
group densities, nA

∞ and nB
∞ (see Figures 1 and 2). The

densities may have any values in the range 0 < nA
∞ e

nB
∞ e 1/(Na3), where a is the size of reactive groups and

the maximum allowed density corresponds to every
chain end in the bulk being reactive. Generally, densi-
ties in either bulk are unequal, and our convention is
always that the B side is the denser: nA

∞ e nB
∞. We will

establish four types of reaction kinetics and three
distinct behaviors in the Qb-nB

∞ plane. Each of these
three regions involves a different sequence of reaction
kinetics regimes in time. We consider both unentangled
and entangled polymer melts. For simplicity, effects
associated with possible segregation of reactive groups
to the interface are neglected here.21

Our analysis will be close to rigorous and adapts the
general framework developed in ref 22 where interfacial

reaction kinetics were studied for reactive species with
a unique dynamical exponent, z, where

is the rms displacement after time t. In order to apply
this framework to reacting polymers, one has to deal
with several consecutive dynamical regimes each with
its own z value. For unentangled melts23 the long time
behavior is simple Fickian diffusion (z ) 2), but at short
times Rouse dynamics give z ) 4. For entangled systems
the successive dynamical regimes correspond to z ) 4,
8, 4, 2.

For the remainder of the introduction let us review
the main results of ref 22 for a single z value, using
simple scaling arguments. Reactions are “switched on”
at t ) 0 and we seek the number of reactions per unit
area, R t, after time t, between molecular species A and
B whose dynamics obey eq 1 for all times. The simplest
imaginable behavior one might anticipate is “mean field”
(MF) kinetics, i.e. that spatial distributions are un-
changed from equilibrium; then the reaction rate, Ṙt ≡
dR t/dt , would be proportional to the equilibrium
number of A-B reactive molecules in contact at the
interface per unit area, ha3nA

∞nB
∞, multiplied by Qb.

Here h is the width of the interface (see Figure 1). This
gives second-order kinetics, with a second-order rate
constant k(2)

When are MF kinetics valid? Certainly, they are valid
at very short times since equilibrium pertains at t ) 0.
However, at longer times the MF law cannot be valid
since equilibrium is destroyed: eventually, in fact, a
reactant density hole of size xt develops close to the
interface on the more dilute A side (see Figure 3).
Consider an A group initially within xt of the interface
(see Figure 4) so that by time t diffusion will have
brought it in contact with the interface. By time t it has
collided with the interface of order (t/ta)(h/xt) times.
During each of these encounters, the probability that a
B group is at the same location is nB

∞a3. Hence the total
reaction probability, Pm(t) ≈ (Qbta) (nB

∞a3)(t/ta)(h/xt) ∼

Figure 2. (a) Schematic of end-functionalized chains dilute
in a background (not indicated) of unreactive but otherwise
identical polymers. As shown, the densities of reactive ends
are below the overlap threshold 1/R3. (b) Concentrated regime,
with reactive group densities exceeding 1/R3.

Figure 3. A reactant density depletion hole of size xt grows
at the interface for long times. (a) The symmetric case, nA

∞ )
nB

∞. The reactant density at the interface, nA
s , tends asymp-

totically to zero. (b) The asymmetric case, nB
∞ > nA

∞, where the
interfacial density nA

s on the dilute side tends to zero, while
nB

s approaches nB
∞ - nA

∞ asymptotically.

xt ) a (t/ta)
1/z (1)

Ṙ t ) k(2)nA
∞nB

∞, k(2) ) Qbha3 (MF kinetics) (2)
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t1-1/z, increases monotonically with t. Thus there exists
a time scale tm

/ such that Pm(tm
/ ) ) 1

where the quantity Q emerges as an effective local
reactivity, coarse-grained over the interface width h. For
t > tm

/ , any A reactant within diffusional range of the
interface will have reacted with the mean “reaction
field” created by all of the B’s. It follows that a depletion
hole of size xt develops on the A side and the reaction
rate is limited by the diffusion of A’s to the interface,
R t ≈ xtnA

∞. These kinetics are first-order diffusion
controlled (labeled DC1) with a time-dependent first-
order rate constant k(1):

Note that a similar reasoning applied to a B reactive
group would yield a longer time scale than tm

/ . Hence
the depletion hole develops on the more dilute A side
first. In fact it was shown in ref 22 that the interfacial
B density approaches the finite value nB

∞ - nA
∞ for long

times (see Figure 3).
These arguments tell us that MF theory is inap-

plicable for t > tm
/ . But is it valid for all times t < tm

/ ? In
fact nonequilibrium distributions may occur at shorter
times in two-body correlation functions. Consider a pair
of A-B groups which happened to be initially within
diffusive range of each other (i.e. within xt) at the
interface. The number of times this pair collides by time
t, N coll, is of order the number of encounters the A makes
with the interface, (t/ta)(h/xt), multiplied by the prob-
ability it meets the B, a3/xt

3, during each of these
encounters. Hence the total reaction probability P2(t) ≈
QtaN coll ∼ t/xt

4 is increasing with time if xt
4 increases

more slowly than t, i.e. z > 4. This is similar to the
situation arising in bulk reaction kinetics in d-dimen-
sions, where different kinetics apply depending on
whether xt

d increases more rapidly (“noncompact” ex-
ploration) or more slowly (“compact” exploration) than
t.24 The interface problem is thus analogous to a
4-dimensional bulk system. Given this analogy, for the
remainder of this paper we will refer to z < 4 and z >
4 interfacial systems as noncompact and compact,
respectively.

In the noncompact case (z < 4) as time increases the
fraction of pairs of the above type which succeed in

reacting is becoming ever smaller. This suggests that
pair correlations are weakly perturbed from equilibrium
and MF kinetics apply for all t < tm

/ . The situation for z
> 4 is very different. In this case there exists a
characteristic two-body time scale, t2

/, such that P2(t2
/)

) 1

Now if it happens that Q and nB
∞ are such that t2

/ >
tm
/ , then this time scale is irrelevant since by t2

/ the
reaction rate is already controlled by the diffusion of
the dilute species to the interface. However if t2

/ < tm
/ ,

then after t2
/ any A-B pair which at t ) 0 happened to

be within diffusive range will have reacted by time t
and a depletion hole will start growing in the two-body
correlation function at the interface. The number of such
pairs per unit area is xt

4nA
∞nB

∞ (see Figure 1), implying
second-order diffusion controlled kinetics (or DC2) for t
> t2

/, with a time-dependent rate constant k(2)

These DC2 kinetics develop for z > 4 only. For how
long do they persist? At first glance one might think
until tm

/ ; however, this is incorrect since the argument
leading to tm

/ of eq 3 assumed equilibrium, whereas we
have just seen that a hole of size xt grows in the two-
body density correlation function after time t2

/. In fact
the DC2 behavior continues until the time tl, when a
hole begins to grow in the density field itself, where

is the diffusion time corresponding to the mean separa-
tion of B groups. After time tl any A group initially closer
than l to the interface, where l ≡ (nB

∞)-1/3, will have had
the chance to encounter a B group. Since reaction is
certain for any pair within diffusive range (by definition
of t > t2

/) such a pair will definitely react. Thus, for t >
tl almost every A reaching the interface will react, a
depletion hole develops on the A side and reaction rates
obey DC1 kinetics as in eq 4.

These arguments have led to three characteristic time
scales which, we note, obey the relation tm

/ ) (t2
/)1-Rtl

R

where R ) 3/(z - 1). This implies that the magnitude of
tm
/ always lies between those of t2

/ and tl. The condition
t2
/ ) tm

/ ) tl defines a critical effective local reactivity,
Q*:

There are two cases. (1) For “strongly” reactive
systems, Q > Q* (or equivalently t2

/ < tm
/ < tl), one has

the following sequence of kinetic regimes: MF, DC2,
DC1. (2) For “weakly” reactive systems, Q < Q* (or tl <
tm
/ < t2

/), the sequence is as follows: MF, DC1. All of
this is for z > 4 and should be contrasted with the z <
4 sequence: MF, DC1 (i.e. the same as the weak z > 4
case).

Figure 4. Meaning of the time scale tm
/ . Schematic of

trajectory of an A reactive end group after time t, given the
group was initially within diffusive range (xt) of the interface.
The number of encounters with the interface increases with a
certain power of t. Thus even for relatively weakly reactive
species, the A group is certain to have reacted with a B group
in the other bulk after a sufficiently long time. This is the time
scale tm

/ .

tm
/ /ta ) (QtanB

∞a3)-z/(z-1), Q ≡ Qb h/a (3)

Ṙ t ) k(1)nA
∞, k(1) ≈ dxt

dt
(DC1 kinetics) (4)

t2
//ta ) (Qta)

-z/(z-4) (z > 4) (5)

Ṙ t ) k(2)nA
∞nB

∞, k(2) ≈ dxt
4

dt
(DC2 kinetics) (6)

tl/ta ≡ (nB
∞a3)-z/3 (7)

Q*ta ≡ (nB
∞a3)(z-4)/3 (z > 4) (8)
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In the following sections we will see that for polymeric
systems much of the above phenomenology is essentially
unchanged and we will find a similar division of systems
into “strong” and “weak”. However, various new features
appear such as a new type of MF kinetic behavior.
Further, both Rouse and reptation dynamics exhibit
marginal dynamical regimes, z ) 4, for which we will
find logarithmic corrections.

The paper is organized as follows. In Section II we
derive a general expression for the reaction rate per unit
area in Laplace space starting from the formalism of
ref 22. Using the form of R t from Section II, we identify
in Section III four possible types of reaction kinetics
(MF, DC2, DC1, MFR) and three possible sequences of
reaction kinetic types. The realized sequence depends
on the values of Q and nB

∞. In Sections IV and V we
apply the general results of sections III and IV to
unentangled and entangled melts, respectively. For each
case we construct a “phase diagram” in the Q-nB

∞ plane
which completely describes the interfacial reaction
kinetics. We conclude in Section V with a brief discus-
sion.

II. General Expression for Reaction Rate

We consider A and B bulk phases occupying x > 0
and x < 0 respectively, with x being the direction
orthogonal to the interface (see Figure 1). The A and B
polymer species have the same degree of polymerization,
N, and identical diffusive dynamics are assumed. We
assume reaction products to be very dilute at the
interface; in section V we analyze how their accumula-
tion eventually diminishes reaction rates (excluded area
effect).

Now reactions are “switched on” at t ) 0. Then Ṙt is
equal to the number of pairs of A-B reactive end-groups
which are in contact per unit area at the interface, ha3

FAB
s (t), multiplied by the local reactivity Qb. Here, the

two-body correlation function FAB
s (t) is the number of

A-B reactive group pairs in contact at x ) 0 per unit
volume squared. Note translational invariance parallel
to the interface dictates that FAB

s (t) is spatially uni-
form. Thus

where λ is a naturally occurring measure of reactive
strength. In eq 9, we have implicitly taken the limit h
f 0; that is, our model can only be interpreted on scales
large compared to h and th, the diffusion time corre-
sponding to h.

In ref 22, where a general theory of interfacial
reactions was developed, it was demonstrated that
FAB

s (t) satisfies

where

Here S(4)(t) is the return probability for an A-B pair
of chain ends, i.e. the probability density that an A-B
pair is in contact at time t at the interface, given it was
in contact somewhere within the interface at t ) 0. S(1)-
(t) is the corresponding return probability for a single
chain end group (either A or B), namely the probability
that a reactive end group initially within the interface
returns to an interfacial site after time t.

The expression for the number of interfacial pairs of
eq 10 can be understood physically as follows. Without
reactions, this number would equal nA

∞nB
∞. Due to reac-

tions, two terms must be subtracted off, as depicted in
Figure 5. (1) The term involving S(4) subtracts off all
pairs which would have recombined to meet at the
interface at time t, but failed to do so because they
reacted at the interface at a previous time t′. The
weighting for such pairs is thus proportional to the
probability a pair initially at the interface returns to
the interface after a time t - t′, namely S(4)(t - t′) (see
Figure 5a). (2) The term involving S(1) subtracts off those
pairs, at the interface at time t, only one member of
which reacted at an earlier time t′, say A. Consider the
symmetric case nA

∞ ) nB
∞. Then the number of such

pairs is proportional to the fraction of A members which
return (the S(1) factor) multiplied by, roughly speaking,
the density of B groups nB

∞. In reality, the origin of this
term is more complex; it involves three-body correlation
functions as depicted in Figure 5b. In ref 22 this term
was effectively closed in terms of FAB

s after assuming
certain simple physically motivated bounds on correla-
tion functions.25

We remark that although the analysis in ref 22 was
for a single dynamical regime, eq 10 is quite generally
valid even for a sequence of different z values as in the
present situation. In deriving eq 10, it has implicitly
been assumed that polymer chain configurations are
distributed as in equilibrium despite the occurrence of
reactions.20,26,27 This has allowed a closed relationship
to be obtained in terms of those degrees of freedom
describing the reactive end-groups only, whereas a
proper treatment must first average out the locations
of the other N - 1 monomers. There is considerable
evidence from near-rigorous renormalization group
analyses28,29 that this approximation, which is standard
in the field, correctly captures all scaling dependencies,
though prefactors are unreliable.

The relation of eq 10 is a closed one for FAB
s (t). After

Laplace transformation, t f E, one can immediately
solve for FAB

s and obtain the reaction rate using eq 9.

Ṙ t ) λFAB
s (t), λ ≡ Qbha3 ) Qa4 (9)

FAB
s (t) ) nA

∞nB
∞ - λ∫0

t
dt′ S(4)(t - t′)FAB

s (t′) -

λnB
∞∫0

t
dt′ S(1)(t - t′)FAB

s (t′) (10)

S(1) (t) ≈ 1/xt, S(4)(t) ≈ 1/xt
4 (11)

Figure 5. Schematic of the two sink terms on the left hand
side of eq 10. The two-body term subtracts those A-B pairs
which failed to reach the origin because both members reacted
at an earlier time t ′ at point rA

T′. The many-body term
subtracts those A-B pairs at the origin which failed to meet
because one member of the pair reacted at an earlier time.
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This gives the following expression for the Laplace
transform of the reaction rate per unit area, Ṙt(E):

III. Four Types of Reaction Kinetics; Three
Distinct Kinetic Sequences

The expression for the reaction rate, eq 12, involves
the two return probabilities S(1) and S(4). Their forms
depends on the detailed polymer dynamics. In Ap-
pendices A and B we present their explicit expressions
for Rouse (unentangled melts) and reptation dynamics
(entangled melts), respectively. We have then used these
expressions to sketch the form of the three terms in the
denominator of eq 12 in Figure 6, where parts a-d
correspond to different values of chemical reactivity and
nB

∞, as we discuss below.
Now for a given E value, one of the 3 terms (namely

1, λS(4), and λnB
∞S(1)) is dominant. This gives rise to

different types of reaction kinetics as a function of time.
In the region where the two terms involving S(1) and
S(4) are much smaller than unity one recovers simple
second-order MF kinetics, Ṙt(E) ≈ λnA

∞nB
∞/E, implying

When the term involving S(4) is the dominant one,
Ṙt(E) ≈ nA

∞nB
∞/ES(4)(E), leading to the second-order

diffusion-controlled kinetics discussed in the introduc-
tion:

In inverting the Laplace expression for the reaction
rate we used the fact that the two-body interfacial
return probability S(4), for values of the Laplace variable
much smaller than the inverse coil relaxation time,
tends to a constant value, S(4)(E , 1/τ) ≈ ∫0

∞ dt S(4)(t).
This follows from eq 11 because the rms displacement
xt ∼ t1/2 for t > τ. On the other hand, for E much greater
than the inverse coil relaxation time, S(4)(E) ∼ E4/z-1

since for times small compared to τ, S(4)(t) ≈ 1/xt
4 ∼ t-4/z

with z g 4. In fact logarithmic corrections arise when z
) 4 as occurs in both Rouse and reptation dynamics.
These logarithmic corrections are evaluated in Appendix
C.

Physically, the transition in eq 14 from a time-
dependent rate constant at short times to a time-
independent form at long times is similar to what occurs
in diffusion-controlled polymer reaction kinetics in
thebulk, reflecting the transition from compact explora-
tion at short times to noncompact at long times.24,30

Finally, in regions where the S(1) term dominates,
one recovers first-order diffusion-controlled kinetics,
Ṙt(E) ≈ nA

∞/ES(1)(E), reflecting depletion of reactive

Figure 6. Schematic graphs of the three functions appearing in the denominator of the reaction rate Ṙt(E), eq 12, namely 1,
λS(4)(E), and λS(1)(E). Using eqs A2, A4, B2, and B4 one can show that their most important features are the following: (1) S(4),
S(1) tend to zero for E-1 f 0. (2) As a function of E-1, S(1) is monotonically increasing, while S(4) is initially increasing and saturates
to its asymptotic value, ∫0

∞ dt S(4)(t) at E-1 ) τ. (3) S(4) and S(1) intersect once. Reaction kinetics are determined by the dominant
of these three functions for each E value. Each intersection point defines a time scale. Diagrams a-d show the four possible
sequences of dominant terms, as a function of E-1, depending on the ordering of time scales determined by the values of λ (or Q)
and nB

∞. In case c, t2
/ is not defined since λS(4)(E ) 0) is less than unity.

Ṙ t(E) )
λnA

∞nB
∞

E [1+ λS(4)(E) + λnB
∞S(1)(E)]

(12)

Ṙ t ) k(2)nA
∞nB

∞, k(2) ≈ λ ≡ Qbha3 (MF kinetics) (13)

Ṙ t ) k(2)nA
∞nB

∞,

k(2) ≈ {dxt
4/dt (t < τ) (DC2 kinetics)

1/∫0

∞
dt′S(4)(t′) (t > τ) (MFR kinetics)

(14)
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groups at the interface in the more dilute bulk:

We used S(1) ∼ E1/z-1, which follows from eq 11 and xt ∼
t1/z.

Now at different times, so different terms will domi-
nate the reaction rate of eq 12 and thus the reaction
kinetics will be different. What is the realized sequence
of kinetics in time? As one sees from Figure 6, this
depends on the magnitude of chemical reactivity and
the density of the more dense bulk. All possible cases
are illustrated in parts a-d of Figures 6. These four
cases correspond to different orderings of the time scales
t2
/, tl, tm

/ , and tm,R
/ of Figure 6. The time scales t2

/ and tm
/

are defined, respectively, by the intersection of the S(4)

and the S(1) line with 1. Similarly, tl and tm,R
/ are

defined by the intersection point of the S(4) and S(1) lines,
depending on whether this intersection occurs at E
greater or smaller than 1/τ. The explicit expressions for
these time scales are summarized in Tables 1-4,
constructed using the expressions for the return prob-
abilities of appendices A and B.

In addition, we notice that the ordering of time scales
t2
/, tm

/ , and tl in Figure 6a is the inverse of that in
Figure 6d. These two diagrams thus become degenerate
at t2

/ ) tm
/ ) tl in which case all three lines intersect at

the same point. This condition defines a critical reactiv-
ity Q*. Referring to Figure 6, one easily derives

Let us now use Figure 6 and eqs 13-15 to derive all
possible sequences of reaction kinetics. This defines
three distinct regions in the Q-nB

∞ plane.
a. “Strong Concentrated.” If a given experimental

system belongs to the “strong concentrated” region (see
Figures 7a(ii) and 8a(ii)), this corresponds to the situ-
ation shown in Figure 6a. Scanning from small E-1 to
large E-1 (corresponding to scanning from small to large
times) the reader can read off which of the three plotted
curves is dominant for each time value. This

Table 1. Unentangled Chains: Characteristic Time Scales
and Q* a

t1/4 regime
th < t < τ

t1/2 regime
t > τ

tm
/ ta (Q taφB)-4/3 τ[Q τ(a/R)φB]-2

t2
/ (th/e)e1/Qta

tl taφB
-4/3[ln(eφB

-4/3ta/th)]4/3

tm,R
/ τ[ln(eτ/th)/φB(R/a)3]2

tsat
Q < Q† 1/(QφAφBR/a)
Q > Q† τ/(NφA)2

Q* 1/taln[eφB
-4/3ta/th]

a A given time scale has a different formula depending on
whether it happens to be less than or greater than the Rouse time
τ, or it may not exist (blank). φA ≡ nA

∞a3 denotes volume fraction
of A reactive end groups (and similarly for φB). Expressions for
tsat are shown for Q > Q† and Q < Q†, respectively (eq 23). Factors
of e have been introduced for convenience, ensuring continuity of
reaction rates.

Table 2. Unentangled Chains: Characteristic Time Scales
and Q* a

t1/4 regime
th < t < τ

t1/2 regime
t > τ

tm
/ /ta (εφB)-4/3 N-1(εφB)-2

t2
//ta (h/a)4e1/ε

tl/ta φB
-4/3[ln(φB

-4/3a/h)]4/3

tm,R
/ /ta N -1φB

-2[ln(N2h/a)]2

tsat/ta
Q < Q† 1/(εφAφBN1/2)
Q > Q† 1/φA

2

Q*ta 1/ln(φB
-4/3a/h)

a Identical with Table 1, but now with all quantities expressed
in terms of ε ≡ Qta and molecular weight, N.

Table 3. Entangled Chains: Characteristic Time Scales and Q* a

unentangled Rouse
t1/4

th < t < te

breathing
t1/8

te< t < tb

tube
t1/4

tb< t < τ

Fickian
t1/2

t > τ

tm
/ ta (QtaφB)-4/3 te[Qte(a/re)φB]-8/7 tb[Qtb(a/rb)φB]-4/3 τ[Qτ(a/R)φB]-2

t2
/ (th/e)e1/Qta te(Q ta)-2 (tb/e)e1/[Q(a/rb)4tb]

tl taφB
-4/3[ln(eφB

-4/3ta/th)]4/3 te[φB(re/a)3]-8/3 tb[φB(rb/a)3]-4/3{ln[e(φBrb
3/a3)-4/3]}4/3

tm,R
/ τ[ln(eτ/tb)/{φB(R/a)3}]2

tsat
Q < Q† 1/(QφAφBR/a)
Q > Q† τ/(NφA)2

Q* 1/taln[eφB
-4/3ta/th] (1/ta)[φB(re/a)3]4/3 (rb/a)4/{tbln[e(φBrb

3/a3)-4/3]}
a Similar to Tables 1 and 2 for the unentangled case, but now each time scale may arise in any of four dynamical regimes (apart from

blank entries) with different definitions in each case.

Table 4. Entangled Chains: Characteristic Time Scales and Q* a

unentangled Rouse
t1/4

th < t < te

breathing
t1/8

te < t < tb

tube
t1/4

te < t < τ

Fickian
t1/2

t > τ

tm
/ /ta (εφB)-4/3 Ne

2/7(εφB)-8/7 N-1/3Ne
1/3(εφB)-4/3 Ne(NεφB)-2

t2
//ta (h/a)4e1/ε Ne

2/ε2 Ne
2eNe/(εN)

tl/ta φB
-4/3[ln(φB

-4/3a/h)]4/3 φB
-8/3Ne

-2
φB

-4/3(NNe)-1[ln(N/Ne
3)]4/3

tm,R
/ /ta Ne

-1[ln(N/Ne)/φB]
tsat/ta

Q < Q† 1/(εφAφBN1/2)
Q > Q† N/(NeφA

2)
Q*ta 1/ln(φB

-4/3a/h) φB
4/3Ne

2 Ne/[N ln(φB
-4/3(NNe)-1)]

a As in Table 3, but now with all quantities expressed in terms of ε ≡ Qta, the entanglement threshold Ne, and molecular weight, N.

Ṙ t ) k(1)nA
∞, k(1) ≈ dxt

dt
(DC1 kinetics) (15)

tl < tm
/ < t2

/ (Q < Q*), t2
/ < tm

/ < tl (Q > Q*) (16)
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leads to the following sequence of kinetics:

Similarly, Figure 6b and Figure 6c/Figure 6d define
two further regions.

b. “Strong Dilute.”

c and d. “Weak.”

Note that both parts c and d of Figure 6, having the
same sequence of dominating terms, correspond to the
same “weak” region.

IV. Unentangled Melts

A. Phase Diagram in Q-nB
∞ Plane. In this section

we apply the results of section III to melts of chains
short enough to be unentangled: N < Ne, where Ne is
the entanglement threshold.31 Polymer dynamics in
such systems are well-described by Rouse dynamics (see
Appendix A, eq A1), which are characterized by a
dynamical exponent z ) 4 for times less than τ ≈ N2ta,
followed by z ) 2 (Fickian diffusion) at long times. Thus
interfacial kinetics are marginal and noncompact for t
< τ and t > τ, respectively (see discussion in Introduc-
tion).

First, by substitution of the Rouse expression for xt
in eqs 13-15, we derive explicit expressions for the
reaction rate in each of the 4 possible kinetic regimes.
The only complication is that the z ) 4 regime is
marginal, leading to logarithmic corrections during the
DC2 regime. These corrections are evaluated in Ap-
pendix C. In addition, the time integral of S(4) in eq 14
has been evaluated in Appendix A (see eq A4). One thus
has

Here D ≈ R2/τ denotes the long time self-diffusivity
of a polymer chain and R ) N1/2a is the unperturbed
coil size.

Now depending on the values of the chemical reactiv-
ity and nB

∞, the realized sequence in time of the kinetic
regimes of eq 20 will be given by one of eqs 17-19. In
Figure 7a(i) we have plotted the reactivity-density
plane, where the lines t2

/) τ, tm
/ ) τ, tl ) τ, and Q ) Q*

have been drawn using their expression in Tables 1 and
2. Certain sections of these lines are omitted, in those
regions where they are irrelevant (see below). These

MF 98
t2
/

DC2 98
tl

DC1 (Q > Q*, tl < τ) (17)

MF 98
t2
/

DC2 98
τ

MFR 98
tm,R
/

DC1 (t2
/ < τ, tm,R

/ > τ) (18)

MF 98
tm
/

DC1
(tm

/ < τ, Q < Q*, or tm
/ > τ, t2

/ undefined) (19)

MF: R t ≈ λnA
∞nB

∞ t

DC2: R t ≈ nA
∞nB

∞{a4/[ta ln(et/th)]} t

MFR: R t ≈ nA
∞nB

∞{R4/[τ ln(eτ/th)]} t

DC1: R t ≈ {nA
∞ a(t/ta)

1/4 (t < τ)
nA

∞ (Dt)1/2 (t > τ)
(20)

Figure 7. Interfacial reactions, unentangled melts, one
reactive group per reactive polymer. “Phase diagram” of
reaction kinetics as a function of renormalized reactivity Q ≡
Qbh/a and density of the denser phase nB

∞. Axes are logarith-
mic and units are chosen such that ta ) a ) 1. Maximum
possible density is nB

∞a3 ) 1/N (all chains functionalized). τ )
N2ta is the Rouse polymer relaxation time; all other time scales
defined in tables 1 and 2. (a) (i) There are four regions in the
phase diagram. The line tsat ) tm

/ is shown for the special case
of constant nA

∞/nB
∞ (note the convention, nA

∞ e nB
∞). (ii) Three

types of kinetic behavior occur, in the three regions labeled
Sconc, Sdil, and W. These symbols denote, respectively, “strong
concentrated,” “strong dilute” and “weak.” In each region the
sequence of kinetics is indicated. Below the tsat ) tm

/ line
interface saturation occurs before onset of the DC1 regime:
kinetics are then always MF until saturation. (b) As in part
a(i), but with reactivities and densities expressed in terms of
molecular weight N.
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lines define four distinct regions, indicated I-IV. Re-
gions I and II are the “strong concentrated” and “strong
dilute” regions, respectively, while region III plus region
IV constitute the “weak” region. According to eqs 17-

19, the kinetics in each region are as follows:

In the above, the notation DC1 98
τ

DC1 indicates that
both the t1/4 and t1/2 DC1 kinetics of eq 20 are realized.
Whenever DC1 appears just once, only the t1/2 kinetics
apply. Notice also that the weak region has two subre-
gions, III and IV, depending on whether tm

/ happens to
be smaller or greater than τ, respectively. Thus in region
IV the t1/4 DC1 regime is absent.

B. Saturation of the Interface. So far the entire
analysis has assumed the interface is unaltered by
reaction products. This is valid at sufficiently short
times. However, for end-functionalized chains, reactions
generate an increasingly dense layer of A-B diblock
copolymer product which beyond a certain time scale
must inhibit further reactions (see Figure 9). Roughly
speaking, at sufficiently high surface density, the
diblock brush formed at the A-B interface becomes
extended relative to the coil size R; when this happens
the density of mobile bulk chains near the interface will
drop significantly below the bulk values nA

∞ and nB
∞

with consequent13 reduction in the reaction rate (see
Figure 9).

It can been shown32-35 that the surface density at
which such diblocks start to feel one another laterally,
and therefore become stretched, is one diblock per
interface area N1/2a2. This is simple to understand if one
notes that an imaginary plane slicing through an
unperturbed bulk polymer melt is intersected by one
chain per area N1/2a2, since there are R/Na3 chains per
unit area of such a surface which are close enough, i.e.
within distance R ) N1/2a, to intersect it (the volume of
one chain is Na3). Hence any attempt to load a surface
beyond this areal density must perturb the chains
relative to their Gaussian dimensions in a free melt: the
chains cannot fit into space unless they stretch. Accord-
ing to a detailed analysis in ref 13, the rate constant is

Figure 8. Phase diagram, as in Figure 7 but now for
entangled melts. The longest relaxation time is now the
reptation time τ ) (N3/Ne)ta; all other time scales defined in
Tables 3 and 4. (a) (i) There are many more regions than in
Figure 7a(i) for Rouse chains, since relevant time scales can
now occur within any of four reptation regimes (see Tables 3
and 4). The Q ) Q* line (defined by t2

/ ) tm
/ ) tl) has three

segments. Each segment has different dependencies on nB
∞ as

shown in Table 3. The line tsat ) tm
/ is shown for constant nA

∞/
nB

∞. (ii) The same three types of kinetic behavior occur as for
unentangled systems, Figure 7a(ii). Below the tsat ) tm

/ line
there is again no DC1 regime. (b) As in part a(i), but with
reactivities and densities expressed in terms of N and Ne.

Figure 9. Reaction rates exponentially suppressed when the
interface becomes crowded with diblock product at values of
surface density above 1/N1/2a2. This corresponds to the diblock
brush being stretched, i.e., its size L being much bigger than
the unperturbed chain dimension R.

region I (strong concentrated):

MF 98
t2
/

DC2 98
t
l

DC1 98
τ

DC1

region II (strong dilute):

MF 98
t2
/

DC2 98
τ

MFR 98
tm,R
/

DC1

region III (weak): MF 98
tm
/

DC1 98
τ

DC1

region IV (weak): MF 98
tm
/

DC1 (21)
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exponentially suppressed for diblock surface densities
Fsurf above this critical level

It follows that for very large N . 1, reactions essentially
cease at a time tsat where R tsat ) 1/N1/2a2. In Appendix
D we show that tsat is always greater than τ and given
by

Recall that tm
/ is a decreasing function of Q at fixed nB

∞

(see Table 1). At the boundary between the two cases
in eq 23, Q has the value Q† given below:

The line Q ) Q† is indicated in the phase diagrams
of Figure 7. Below this line, saturation of the interface
at time tsat truncates the t > τ MF regime before the
final DC1 kinetics can be realized. Above it, saturation
occurs after the onset of DC1 kinetics and the full
“weak” sequence is realized.

V. Entangled Melts
When both bulks contain very long chains, N > Ne,

dynamics are strongly influenced by entanglements.31

Our framework is the reptation model,23,36 briefly stated
in Appendix B. Three dynamical regimes occur for times
less than the longest polymer relaxation time, the
reptation time τ ) (N3/Ne)ta. In chronological order, xt
varies as t1/4, t1/8, and t1/4. These are respectively
marginal, compact and marginal regimes. The long
times behavior is again simple center of gravity diffu-
sion, xt ∼ t1/2, as for Rouse dynamics.

Repeating the procedure of the previous section, but
now using the reptation dynamics of eq B1, one obtains
the time scales listed in Tables 3 and 4 and the phase
diagram shown in Figure 8a(ii) and Figure 8b. Com-
pared to unentangled kinetics, there are now many more
sub-regions, corresponding to the increased number of
dynamical regimes. Once again, however, there are only
three distinct regions in terms of the sequence of
kinetics. The discussion of saturation effects at the
interface is identical to that for unentangled systems;
tsat is again given by eq 23, with τ understood as the
reptation time. Similar remarks apply to Q† of eq 24.

Examples. Consider, for example, the three points
X, Y, and Z marked in the Q-nB

∞ plane in parts a(i) and
b of Figure 8. Point X belongs to the strong dilute region,
where the relevant time scales are t2

/ and tm,R
/ . More-

over, its location tells us that te < t2
/ < tb. Thus R t is

given by

Now consider point Y, belonging to the strong con-
centrated class. Its Q value is the same as that of point
X, and hence t2

/ is the same, te < t2
/ < tb. However since

nB
∞ is greater, the crossover time to DC1 kinetics is

smaller; in the strong concentrated region this occurs
at tl. The location of Y implies te < tl < tb. Thus

In this case there are three phases to the DC1 regime,
each with a different power law in time. The breathing
modes phase introduces a t1/8 law which has no parallel
in the unentangled case.

Finally, the point Z has the same nB
∞ value as Y, but

the reactivity is so much lower that Q < Q* and the
DC2 regime vanishes: Z now belongs to the weak region
where the relevant time scale is tm

/ , and its specific
location tells us that tb < tm

/ < τ. Thus

VI. Summary
Since the results of this work are rather involved, we

present below a brief summary of our main findings.
1. Short Times, Second-Order Kinetics: R4t )

k(2)nA
∞nB

∞. Initially, reaction kinetics are always second
order. At the shortest times, simple mean field (MF)
kinetics apply since spatial distributions of reactive
groups are undisturbed from equilibrium. The second-
order rate constant k(2) is then independent of time, and
the number of reactions per unit area grows linearly in
time, R t ≈ Qa4 nA

∞nB
∞ t.

After this MF phase, there are two possibilities. A
direct transition to first-order kinetics may occur.
However, if the functional groups are very reactive then
a second-order diffusion-controlled (DC) regime will
onset. During this regime, any A-B reactive pair will
definitely react if close enough to meet through diffu-
sion; i.e., if the pair separation was initially less than
xt, the rms distance diffused after time t. The time
dependence of these kinetics, which we called DC2, is
rather peculiar: R t ≈ xt

4nA
∞nB

∞.
These DC2 kinetics can only occur if space is explored

by the reactive groups in a sufficiently “compact”
manner: the requirement is that xt

4 must grow less
rapidly than t, or else as t (marginal case). This means
that the long time t1/2 Fickian diffusion regime can never
involve DC2 kinetics. On the other hand, given the t1/4

and t1/8 short time laws of polymer melt dynamics, DC2
regimes will occur for times less than τ, the longest
polymer relaxation time, provided Q is large enough.
These are the upper regions denoted Sconc and Sdil in
the phase diagrams of Figures 7 and 8, in the Q-nB

∞

plane.
Thus, time dependencies during these short time DC2

regimes are as follows. For unentangled chains (xt ∼ t1/4)

k ∼ exp(-9Na4Fsurf
2), Fsurf > 1/N1/2a2 (22)

tsat ) {1/[Qa5RnA
∞nB

∞] (tsat < tm
/ , Q < Q†)

τ/(NnA
∞a3)2 (tsat > tm

/ , Q > Q†)
(23)

tsat ) tm
/ , Qta ) Q†ta ≡ nA

∞

nB
∞ NR

a
ta

τ
(24)

R t ≈

{λnA
∞nB

∞ t (t < t2
/, MF)

nA
∞nB

∞ re
4 (t/te)

1/2 (t2
/ < t < tb, DC2)

nA
∞nB

∞ rb
4 (t/tb)/ln(et/tb) (tb < t < τ, DC2) (point X)

nA
∞nB

∞ R4 (t/τ)/ln(eτ/tb) (τ < t < tm,R
/ , MFR)

nA
∞ (Dt)1/2 (tm,R

/ < t < tsat, DC1)
(25)

R t ≈ {λnA
∞nB

∞ t (t < t2
/, MF)

nA
∞nB

∞ re
4 (t/te)

1/2 (t2
/ < t < tl, DC2)

nA
∞ re (t/te)

1/8 (tl < t < tb, DC1) (point Y)
nA

∞rb (t/tb)
1/4 (tb < t < τ, DC1)

nA
∞ (Dt)1/2 (τ < t < tsat, DC1)

(26)

R t ≈ {λnA
∞nB

∞ t (t < tm
/ , MF)

nA
∞ rb (t/tb)

1/4 (tm
/ < t < τ, DC1) (point Z)

nA
∞ (Dt)1/2 (τ < t < tsat, DC1)

(27)
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we obtained R t ∼ t/(ln t), logarithmic corrections arising
in this marginal case. For entangled chains R t ∼ t/(ln
t) again during the two t1/4 regimes, while R t ∼ t1/2 for
the t1/8 regime (the breathing modes).

There is a complication to this picture for dilute but
highly reactive systems: in such cases, before the first-
order regime onsets a reentrant second-order MF regime
is realized after the DC2 regime. This behavior, occur-
ring in region Sdil in Figures 7 and 8, was the subject of
earlier theoretical studies.12-14 However, these works
did not consider the final first-order regime.

2. Long Times, First-Order Kinetics: R t ≈ xtnA
∞).

At a certain time scale, kinetics become first order.
These kinetics are always diffusion-controlled (DC) and
always have the same structure, R t ≈ xtnA

∞. We called
them DC1. They onset when the reaction rate becomes
controlled by the diffusion of the more dilute A reactive
species to the interface.

An important issue is whether or not DC1 kinetics
onset before τ. This requires sufficiently large Q and
that the reactive groups be on average closer to the
interface than their coil size R; that is, nB

∞ must exceed
the coil overlap threshold, nB

∞ > 1/R3. These conditions
are satisfied in the sum of the region Sconc and that part
of region W for which tm

/ < τ. In this portion of the
phase plane, a series of short time regimes occur: R t
∼ t1/4 for unentangled chains, while for entangled
systems, in chronological order R t ∼ t1/4, R t ∼ t1/8, and
R t ∼ t1/4 may occur, depending on Q, nB

∞. In all cases,
whether DC1 behavior onsets before or after τ, the long
time behavior corresponds to the Fickian center of
gravity diffusion, R t ∼ t1/2.

3. Saturation. The accumulating copolymer product
ultimately saturates the interface after time tsat. (We
do not discuss here interesting effects such as interface
destabilization due to surface tension reduction by
copolymer product; in some cases this appears to
perpetuate reactions by generating new surface area.)
If Q < Q†, then saturation occurs before the final first
order DC kinetics regime has begun. For such cases,
kinetics are always MF.

A dimensionless measure of reactive strength is Qbta,
where ta is the monomer relaxation time. For “ordinary”
chemical species,37-39 one has Qbta j 10-6. Then for
unentangled chains of maximum possible length,31 N
≈ 300, eq 24 implies Q†ta ≈ 0.06, which is many orders
of magnitude higher than typical values of Qta. Thus
kinetics are always MF until saturation at tsat. Consid-
ering maximum reactant densities, we obtain tsat J 6
× 104 τ ≈ 0.5 s for N ) 300. In the case of entangled
melts with, e.g., N ) 104, Q†ta ≈ 10-4. Thus even here
MF kinetics are likely to apply up to tsat. For N ) 104,
Ne ≈ 300, and maximum densities, the saturation time
tsat > 104τ ≈ 3 × 103 s.

For radicals,37-40 on the other hand, Qbta ≈ 1. Such
systems are located in the Sconc or Sdil regions and the
full sequence of regimes is realized well before satura-
tion. The value of tsat then depends only on nA

∞ and
ranges from τ at maximum density to arbitrarily large
values as density decreases.

4. Experimental Outlook. At present there is very
little experiment, either numerical16 or real, to compare
theory with. Some indirect qualitative information is
available from reactive blending studies where data
suggest MF kinetics. For example, in ref 8, varying

amounts of coupling agent were added, corresponding
in effect to different values of Q. The higher Q, the more
copolymers were formed at a given time, as inferred
from smaller droplet sizes of the minority phase. MF
kinetics are suggested, since reaction rates in all DC
regimes are independent of Q.

Also potentially relevant are studies where fracture
toughness is measured after conducting interface-
reinforcing polymer reactions for different periods of
time.1-3,41,42 This allows inference of time dependence
of the copolymer product surface coverage if one knows
how the latter is related to fracture toughness. Unfor-
tunately, the latter is itself a complex issue, and
frequently the polymers involved are multifunctional-
ized and one phase is sometimes cross-linked or glassy.
If one makes the assumption that for low copolymer
surface coverage the increase in fracture toughness is
proportional to the surface density of copolymer grafts,
then the measurements of ref 2 imply a linear increase
in the number of reactions with time, again consistent
with simple MF kinetics.

Basic experiments measuring reaction kinetics in the
Qb-nB

∞ plane are badly needed. Since diffusion-con-
trolled behavior requires highly reactive chemical groups,
the most interesting parts of our predicted phase
diagrams can be probed only by radical species or else
by photophysical methods. Radicals have also been used
in some recent reactive blending systems.43 As experi-
mental probes, radicals have many advantages. For
example, their lifetimes can be made extremely long by
suitable choice of medium, such that only radical-
radical recombinations contribute significantly to their
decay. Novel experiments generating chains with radical
end groups near interfaces hold the promise of experi-
mentally testing many of the predictions contained in
this work.
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Appendix A. Rouse Model: Dynamics and
Return Probabilities

The dynamics of polymers in an unentangled melt are
well known to obey Rouse dynamics.23,36,31 The Rouse
model leads to the following results:

Here τ is the longest polymer relaxation time. Thus
Rouse dynamics are characterized by two dynamical
exponents: z ) 4 for t < τ and z ) 2 for t > τ. In the
context of interfacial reaction kinetics, an early mar-
ginal regime (z ) 4) is followed by a noncompact one (z
) 2). This last regime is simple Fickian diffusion.

From eq 11 and using xt as defined in eq A1, one
obtains

xt ≈ {a (t/ta)
1/4 (t < τ)

R (t/τ)1/2 (t > τ)
τ
ta

) N2, R
a

) N1/2 (A1)

S(1)(E) ≈ {(ta/a) (Eta)
-3/4 (E-1 < τ)

(τ/R) (Eτ)-1/2 (E-1 > τ)
(A2)
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while eqs 11 and eq A1 lead to the following ap-
proximate expression for S(4):

We have introduced a cut-off at th. (At shorter times
kinetics are as for a standard bulk reaction problem,
with S(4) ≈ 1/(hxt

3); one can show that the t < th
contribution22 is of the same order as that from the
lower limit t ) th in eq A3.) For Eτ > 1 the first integral
dominates and one can set its upper limit to infinity
with small error. Thus

Appendix B. Reptation Model: Dynamics and
Return Probabilities

In this appendix we briefly review the reptation
model,23,36 describing the entanglement-dominated mo-
tion of long chains, N > Ne, where Ne is the entangle-
ment threshold. This model treats entanglements as
inhibiting lateral chain motion on a certain scale re
corresponding to a portion of chain comprising Ne
units: in effect, each chain is confined to a “tube” of
diameter re ) Ne

1/2a. We assume the tube diameter
exceeds the interface width h. For times shorter than
the diffusion time te ) Ne

2ta corresponding to re,
monomers do not feel the tube and obey Rouse-like
dynamics (z ) 4) as in unentangled melts. For t > te,
the chain diffuses curvilinearly up and down the tube
in one-dimensional t1/4 Rouse motion. These are the
“breathing modes.” The monomer rms displacement in
space increases as t1/8, since the tube is itself a random
walk. This regime continues until tb ) N2ta, correspond-
ing to a monomer diffusion distance rb ) re(N/Ne)1/4, by
which time the chain has relaxed its configuration
relative to the tube. For longer times the chain diffuses
coherently along the tube and monomer rms displace-
ment is t1/4. This “tube diffusion” regime persists until
the longest polymer relaxation or “reptation” time, τ )
(R/rb)4tb ) (N3/Ne)ta, by which time the chain has
completely diffused out of its initial tube into a new and
uncorrelated one. Here R ) N1/2a is the rms coil size.
The process then repeats itself indefinitely, correspond-
ing to long time Fickian center of gravity motion, xt )
R(t/τ)1/2. In summary

Thus, there are four regimes with the following se-
quence of dynamical exponents: z ) 4, 8, 4, 2. Two of
these regimes are marginal (occurring at small times t
< τ), and one is noncompact (long times, t > τ).

The Laplace transform of S(1)(t) ≈ 1/xt in eq 11 is then
evaluated using eq B1, which gives

Similarly S(4)(t) ≈ 1/xt
4 (eq 11) is calculated using eq

B1. Its Laplace transform is approximately given by

We have introduced a cutoff in the Laplace transform
integral at th ) ta(h/a)4 using the same reasoning as in
Rouse dynamics (see eq A3). This leads to

Appendix C. Marginal Regimes (z ) 4):
Logarithmic Corrections to DC2 Kinetics

In this appendix we derive the form of DC2 kinetics
in marginal regimes, starting from the general expres-
sion for DC2 kinetics in Laplace space, Ṙt(E) ) nA

∞

nB
∞/ES(4)(E) (see discussion following eq 14). Consider

first the short time marginal t1/4 regime of Rouse
dynamics. Inserting S(4)(E) for E-1 < τ from eq A4 in
Ṙt(E) and Laplace inverting, one has

(for details on the inverse Laplace transform of 1/[E ln
(1/Eth)] the reader is referred to ref 22). Similarly, for
reptation dynamics, inserting S(4)(E) from eq B2 in
Ṙt(E) gives for the two short time marginal regimes

In the above expressions, it has been convenient to
introduce factors of e in the logarithms to ensure
continuity of reaction rates.

Appendix D. Evaluation of tsat

Note first that tsat must exceed τ; even at the maxi-
mum density, nA

∞ ) 1/Na3, and even if reactions were
diffusion-controlled, a time τ would be required to react
all those chains with ends within R of the interface and
thereby saturate it. Note also that under MFR kinetics,
to within a logarithmic prefactor, Rt ≈ (nA

∞/nB
∞)/R2 at t )

tm,R
/ (see eq 20). Since this surface density is less than

S(4)(E) ≈ ∫th

τ
dt′ e-Et′ 1

a4

ta

t′ + ∫τ

∞
dt′ e-Et′ 1

R4 (τ
t′)

2
(A3)

S(4)(E) ≈ {(ta/a
4) ln(1/Eth) (E-1 < τ)

∫0

∞
dt S(4)(t) ≈ (ta/a

4) ln(τ/th) (E-1 > τ)
(A4)

xt ≈

{a (t/ta)
1/4 (t < te ≡ Ne

2ta, “Rouse”)
re (t/te)

1/8 (te < t < tb ≡ N2ta, “breathing”)
rb (t/tb)

1/4 (tb < t < τ ≡ (R/rb)
4 ) N3ta/Ne, “tube”)

R (t/τ)1/2 (t > τ, “Fickian”)
(B1)

S(1)(E) ≈ {(ta/a) (Eta)
-3/4 (ta < E-1 < te)

(te/re) (Ete)
-7/8 (te < E-1 < tb)

(tb/rb) (Etb)
-3/4 (tb < E-1 < τ)

(τ/R) (Eτ)-1/2 (τ < E-1)

(B2)

S(4)(E) ≈ ∫th

te dt′ e-Et′ 1
a4

ta

t′ + ∫te

tb dt′ e-Et′ 1
re

4 (te

t′)
1/2

+

∫tb

τ
dt′ e-Et′ 1

rb
4

tb

t′ + ∫τ

∞
dt′ e-Et′ 1

R4 (τ
t′)

2

(B3)

S(4)(E) ≈

{(ta/a
4) ln(1/Eth) (th < E-1 < te)

(te/re
4) (Ete)

-1/2 (te < E-1 < tb)
(tb/rb

4) ln(1/Etb) (tb < E-1 < τ)

∫0

∞
dt S(4)(t) ≈ (τ/R4) ln(τ/tb) (τ < E-1)

(B4)

Ṙ t ) k(2)nA
∞nB

∞, k(2) ≈ a4/[ta ln(et/th)] (th < t < τ)
(DC2 kinetics, Rouse) (C1)

Ṙ t ) k(2)nA
∞nB

∞, k(2) ≈ {a4/[ta ln(et/th)] (th < t < te)

rb
4/[tb ln(et/tb)] (tb < t < τ)

(DC2 kinetics, reptation) (C2)
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1/N1/2a2, hence tsat > tm,R
/ . It follows that at the time

tsat, reaction kinetics are either MF or DC1 (see eqs 17-
19). Using the t > τ expressions for Rt implied by eqs
20 and 21 and equating these to Rtsat, one obtains eq
23.

References and Notes

(1) Boucher, E.; Folkers, J. P.; Hervert, H.; Léger, L.; Creton, C.
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