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Synthetic and biological living polymers are self-assembling chains whose chain length distributions
(CLDs) are dynamic. We show these dynamics are ultrasensitive: Even a small perturbation (e.g.,
temperature jump) nonlinearly distorts the CLD, eliminating or massively augmenting short chains.
The origin is fast relaxation of mass variables (mean chain length, monomer concentration) which
perturbs CLD shape variables before these can relax via slow chain growth rate fluctuations. Viscosity
relaxation predictions agree with experiments on the best-studied synthetic system, �-methylstyrene.
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the end of this Letter. Aside from its intrinsic importance, ultrasensitivity.
The term ‘‘living polymers’’ labels a remarkable and
diverse family of self-assembling systems in which mole-
cules or other microscopic units spontaneously aggregate
into long chains by continuously adding to chain ends.
Their technological and biological importance and their
unusual properties as examples of soft condensed matter
have driven a large body of experimental and theoretical
research [1–12]. The classic synthetic example is ionic
living polymerization [1–7], where monomers assemble
into flexible polymer chains by adding to charged chain
ends which remain ‘‘alive’’ even after the monomer is
consumed, a property widely exploited commercially to
synthesize high performance block copolymers and other
novel materials [2]. A recent variant on this theme with
immense technological potential is living free radical
polymerization [8], where ingenious capping-decapping
schemes prevent termination and yet permit chain propa-
gation. In the biological world, actin and microtubule
filaments, rapidly assembled from the proteins actin and
tubulin, are essential to the motility and structural integ-
rity of living cells [9].

As polymeric or filamentous materials, the novel and
distinguishing feature of these systems is that unlike inert
polymers the chains are dynamic or ‘‘living’’ objects
whose lengths constantly fluctuate. The polymerization
processes are alive: When external conditions change,
chain length distributions can respond dynamically and
relax to a new equilibrium. This adaptability is the crucial
property exploited in both synthetic and natural applica-
tions. For example, it enables living cells to rapidly ini-
tiate motion or shape changes by altering cellular
conditions in response to extracellular signals.

In this Letter, we study this dynamical responsiveness
theoretically. While a rather clear picture of equilibrium
properties [1,3] has been established, living polymer
dynamics are far less well understood [4–7]. We focus
on the synthetic system which has received most experi-
mental attention [1,5–7], the anionic living polymer
poly-�-methylstyrene (PAMS), and we compare our pre-
dictions to PAMS viscosity relaxation measurements at
0031-9007=03=90(11)=118301(4)$20.00 
PAMS is a model system for more complex cases such as
biological living polymers, and most of our results are
completely general. We use the term living polymers in
the traditional sense [1,2] to denote systems where (i) the
concentration of living chains, �chains, is fixed for all time
by the number of initiators, and (ii) chains grow at their
ends only. Related classes include systems where surfac-
tants aggregate into spherical [11] or elongated (‘‘worm-
like’’) micelles [12] whose number is not fixed, and whose
dynamics [11,12] are very different.

The principal conclusion of this work is that living
polymers are ultrasensitive, i.e., highly dynamically sus-
ceptible to small perturbations. Thus, a small change in
external conditions, inducing a small change in the equi-
librium state well described by a linear susceptibility, has
nonetheless a large dynamical effect: Intermediate states
deviate strongly from equilibrium in that some observ-
ables are perturbed in a highly nonlinear manner. To
quantify this, consider PAMS whose equilibrium chain
length distribution (CLD) is close to the broad exponen-
tial [1,5] predicted by theory, �eq�N� � e�N= �NNeq (see
Fig. 1), with typical mean number of monomer units per
chain �NNeq in the range [7] of a few 100 to several 1000.
A standard experimental procedure is the ‘‘T-jump’’
where temperature is suddenly changed by an amount
�T. Consider a PAMS system with �NNeq � 1000 subjected
to a small decrease �T � �5 �C as measured by the
small parameter 	 � ��T=T0 � 0:1, where T0 � @T=
@ lnmeq � 50 �C for typical PAMS studies and meq is
the equilibrium monomer concentration. The theory pre-
sented here predicts the onset after �3 h of a drastic
depletion of short chains. By 10 h, a hole has appeared
in the CLD in the region 0<N & 400 (see Fig. 1) and
lengths N & 100 have virtually disappeared. This is de-
spite the fact that the change in the equilibrium CLD
�eq�N�, which is recovered after �103 h, is destined to be
small, ��eq�N�=�eq�N� � O�	� for all N. This hole com-
pletely invalidates perturbation theory: there are no small
perturbations (other than those so tiny as to be beyond
typical experimental resolution). This is the essence of
2003 The American Physical Society 118301-1
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FIG. 1. Numerical results for response of CLD to a small
T-jump perturbation of amplitude 	� 0:1 perturbing
T-dependent parameters v� and k	 in Eq. (1). Final equilib-
rium exponential (curve f, �NNeq � 1366, �� 0:37) is close to the
initial equilibrium exponential (curve i). Along its path i! f,
the CLD deviates nonlinearly from both. Times in units of v�

(for PAMS [1], v� � 0:1 s). Time scales: t� � 400, �fast � 3640,
�fill � 1:32� 105, �slow � 1:86� 106. Curve a, t� 3640: A
hole has appeared at small N. Curve b, t� 3� 104: hole filling.
Curve c, t� 2:3� 105: final shape relaxation towards equilib-
rium, curve f. Inset: Relaxation of fast and slow variables.
Arrows from left to right indicate t� �fast, �fill, and �slow. Fast
variables �mt=meq ���� �NNt= �NNeq (solid line) decay exponen-
tially after �fast, and are then enslaved to the slow variable
���t�0� (dashed line). Note initial nonlinear increase of
���t�0� after t�. Theory predicts ��t�0�� t�1=2 during �fill <
t<�slow and ��t�0�� e�t=�slow for t > �slow.
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We consider living polymers, such as the PAMS sys-
tems studied by Greer and co-workers [1,5–7], where
monomers spontaneously polymerize below a ceiling
temperature Tp (see Fig. 2). The dynamics of �t;N, the
number of chains of length N, are _��t;N � v	�t;N�1 �
�v	 	 v���t;N 	 v��t;N	1, where v	 � k	m and v�

are monomer addition and dissociation rates from chain
ends [13] (k	 is the addition rate constant). Rearranging
terms and taking the continuous limit immediately gives

@�t=@t � �vt@�t=@N 	Dt@
2�t=@N

2;

0 � vt�t�0� �Dt
@�t=@N�N�0; (1)
v N+1
+

v − 

N +

FIG. 2. A living polymer is an initiator (square) plus N
monomers. Monomers can add (subtract) from its live end
(filled circle) at rates v	 (v�). The initiators of Refs. [5,7]
are bifunctional (one interior initiator plus two live ends).
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where a zero current boundary condition applies at N� 0.
Note a second derivative term naturally emerges, with a
‘‘diffusivity’’ coefficient Dt � �v	 	v��=2, representing
fluctuations about the average growth rate or ‘‘velocity’’
vt � v	 �v�. Both vt and Dt depend on �t [see Eq. (7)
and following remarks]. Setting @�t=@t� 0 gives the
equilibrium exponential CLD with �NNeq ��Deq=veq.
Since �NNeq � 1, it follows that in equilibrium v	 � v�,
the diffusivity is Deq � v�, and the velocity has a small
negative value relative to the characteristic scale v�:

veq ��v�= �NNeq: (2)

This is just sufficient to negate diffusive broadening
which would otherwise smear out the equilibrium CLD
of width �NNeq after time �slow � �NN2

eq=Deq; i.e., veq�slow �
� �NNeq. Note that since the average velocity over all chains
must vanish in equilibrium (there can be no net dissocia-
tion to the monomer pool), the N > 0 chains must have a
small negative velocity to balance the unique N� 0
chains (consisting of an initiator only, Fig. 2) which
cannot depolymerize and so have a positive velocity.

A clue as to the origin of ultrasensitivity is already
apparent in this equilibrium situation. The significance of
Eq. (2) is that equilibrium is an extremely delicate bal-
ance sustained by a tiny negative velocity easily over-
whelmed by even a very small perturbation. Consider an
equilibrium system suddenly subjected to a small nega-
tive T-jump �T, after which the current monomer con-
centration m exceeds its equilibrium value for the new
temperature by �m � ���T=T0�meq � 	meq (�X de-
notes the deviation of any property X from its equilibrium
value, Xeq, which will eventually be attained after re-
laxation). This generates a velocity boost �v � k	�m.
Since k	meq � v� to order 1= �NNeq, we have

�v � 	v�: (3)

Comparing Eqs. (2) and (3), one sees that despite the
smallness of the perturbation, 	  1, the delicate bal-
ance of velocity and diffusion which characterizes equi-
librium is destroyed since the boost �v greatly exceeds
the equilibrium velocity veq. This holds for any 	 above a
tiny threshold 1= �NNeq. Immediately after the perturba-
tion, diffusive broadening ��Deqt�

1=2 is still stronger
than coherent chain growth �	v�t. But for times larger
than t� � Deq=	

2v� chains grow coherently, i.e., �NN will
increase until the excess mass �m held by the monomer
reservoir has been transferred to the polymer system and
the velocity boost has decayed. In the process, the mean
chain length increases by an amount �� �NN determined by
conservation of total concentration of monomers mtotal:

m	 �chains
�NN � mtotal; � �NN= �NNeq � �	��1: (4)

The parameter � � �mtotal �meq�=meq � �Tp � T�=T0

measures distance into the polymerization regime, and
will be taken as order unity here. Thus, the entire CLD
translates uniformly by � 	 �NNeq (Fig. 1) in time
118301-2
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�fast � � �NN=�	v�� � �NNeq=��v
��: (5)

This leaves behind a hole in the CLD: Chains with
lengths less than 	 �NNeq have disappeared.

For times beyond �fast, mass transfer is essentially
complete and m, v, and �NN are very nearly relaxed.
These are the fast variables. The process of CLD shape
relaxation needs much more time. It relies on the far
slower diffusive process of incoherent reshuffling of
monomers between chains. The time �fill needed to fill
the hole is simply the diffusion time corresponding to the
hole width,

�fill � 	2�slow=�
2: (6)

The last process is global CLD shape relaxation on the
scale �NNeq, requiring a diffusion time �slow � �NN2

eq=Deq.
These events are depicted in Fig. 1.

In summary, relaxation to the new equilibrium state
involves three distinct episodes: (i) coherent chain growth
for 0< t < �fast during which fast mass variables relax,
(ii) hole filling, i.e., recovery of short chains, during
�fast < t < �fill, and (iii) global diffusive relaxation for
t > �fill during which slow shape variables relax on a time
scale �slow. It is this conflict of time scales which is the
origin of the nonlinear hole produced by (i): Slow diffu-
sive shape equilibration simply cannot keep pace with the
rapid deformation produced by mass transfer.

It is interesting to compare this with spherical micelle
aggregation which involves two distinct relaxation pro-
cesses [11]. The first entails fast mass exchange be-
tween monomers and nearly monodisperse micelles
whose number remains essentially fixed due to large
aggregate nucleation/dissociation barriers. This is similar
to process (i) above. However, a crucial difference is that
the number of aggregates can ultimately change and the
time scale for this process in consequence depends inver-
sely on total monomer concentration (whereas �fast is
independent of mtotal). During a second, much slower
process, the number of micelles reequilibrates. This pro-
cess has no analogue for the living polymers we study.

Let us now briefly outline formal calculations justi-
fying these arguments, starting from Eq. (1). Its
steady state solution is the equilibrium Flory-Schultz
[1] CLD, �eq�N� � e�N= �NNeq= �NNeq with �NNeq � mtotal�=

�chains�1	 ���. Multiplying Eq. (1) by N and integrating,
one has

_vvt � �vt=�fast �Dt�t�0�=�fast; (7)

after using Eqs. (4) and (5). Given the CLD �t, this
relationship determines the time-dependent velocity vt
and, thence, diffusivity Dt � vt=2	 v�. The technical
difficulty is that both vt and Dt depend nonlocally on �t,
i.e., Eq. (1) is a nonlinear and nonlocal system.

Consider a negative T-jump perturbation inducing, as
discussed, a velocity v0 � 	v� at t � 0. Now, to order 	,
Dt � v� � Deq. Thus, in the velocity kinetics, Eq. (7),
the vt term is initially much greater than the Dt term
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(provided 	 > 1= �NNeq). Hence, vt � 	v�e�t=�fast in the
CLD evolution kinetics Eq. (1) in which, for t > t�, the
coherent term wins and the CLD translates along the N
axis, �t�N� � �0�N �

R
t
0 vt�. Its displacement converges

for t � �fast to 	 �NNeq=�. In other words, the CLD trans-
lates and then halts on a time scale �fast, leaving a hole of
size � 	 �NN in its wake (see Fig. 1). More precisely, the
trailing edge broadens by �Deqt�

1=2 and produces an ex-
ponentially small amplitude at the origin, �t�0� � e�t=t� .

This concludes episode (i). The linearly related fast
variables v, m, and �NN have the same decay kinetics
and for t � �fast have all relaxed. Since the velocity is
exponentially small, the CLD kinetics Eq. (1) now de-
scribe essentially pure diffusion with reflecting boundary
conditions. This is episode (ii): On the time scale �fill,
diffusion fills the hole (see Fig. 1) and replenishes the
amplitude at the origin, �t�0� � �t=�fill�

1=2e�4�fill=t= �NNeq.
This recovery of �t�0� and the decay of vt imply that at
time �qs � ��fast�fill�1=2 the two right-hand side terms
in the velocity dynamics Eq. (7) become equal. Self-
consistently, one finds that thereafter they remain
matched, i.e., _vvt is much smaller than either of these
terms. Thus, from this time on, the fast velocity variable
(intrinsic time scale �fast) evolves quasistatically, en-
slaved to the slow variable �t�0� (intrinsic time scale
�slow) according to

vt � �v��t�0� �t > �qs�: (8)

It follows that the velocity now undergoes a recovery as
the hole fills up. By �fill its magnitude is of the order of the
equilibrium value and can thus compete with diffusion.
This heralds the onset of episode (iii): We return to the
basic dynamics, Eq. (1), with velocity and diffusion terms
now of equal importance. For the first time, relative
perturbations of all quantities are now small, and we
can apply standard perturbation theory. We find the
N � 0 chains recover as ��t�0� � t�1=2 up to �slow and
�e�t=�slow for t > �slow. During these very late stages the
fast variables, which long ago decayed close to equilib-
rium, are fine-tuned to their true equilibrium values,
following �t�0� quasistatically according to Eq. (8).

Note we implicitly assumed sufficient time for the hole
to develop before mass transfer is complete, i.e., �fast > t�.
This is true provided 	 > 	c � 1= �NN1=2

eq . For very small
perturbations 	<	c, the relative depth of the hole though
much greater than 	 is less than unity. Finally, we have
studied �T < 0. The response to a positive T-jump is
similar, but instead of a hole a large peak � �NNeq	2 devel-
ops for small N, decaying after �fill.

We tested our theory by numerical integration of
coupled differential equations describing the monomer-
polymer dynamics. Figure 1 shows the predicted deep
hole developing after a small negative T-jump. Long
time enslavement of fast variables to slow ones is clearly
demonstrated (inset).

We conclude by discussing our results and comparing
to experiment. We found that, following a perturbation,
118301-3
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FIG. 3. Viscosity relaxation measurements by Ruiz-Garcia
and Greer [7] following small T-jumps (j�Tj � 1� K) on
PAMS in tetrahydrofuran initiated by sodium naphthalide.
Reproduced from Fig. 1 of Ref. [7]. Circles (triangles) refer
to positive (negative) �T. mtotal � 0:29 gm=cm3, �chains �
2:7� 10�4 gm=cm3 (semidilute conditions).
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living polymers relax by adjusting (a) their total mass,
proportional to first moment �NN and (b) the shape of their
CLD. Mass variables are fast (relaxation time �fast � �NN)
because monomer-polymer mass transfer is a coherent
process. Coherent chain growth, however, cannot affect
CLD shape whose relaxation therefore relies on slow
diffusionlike fluctuations in chain growth rates (relaxa-
tion time �slow � �NN2). These time scales are typically
separated by 2 or 3 orders of magnitude. In Fig. 3, we
reproduce viscosity relaxation measurements by Ruiz-
Garcia and Greer [7] after small positive and negative
temperature jump perturbations of the living polymer
PAMS at six different temperatures. Now generally we
expect viscosity �� c� �NN�, where � is a characteristic
exponent [7] and c� depends on the entire CLD, ��N�,
including shape properties. Our theory thus predicts a fast
initial relaxation of � in a time �fast followed by a very
slow relaxation in �slow. Now [7] �chains � 2:7�
10�4 gm=cm3 while [6] k	 � 0:2M�1 sec�1 was mea-
sured to vary by � 10% over this temperature range.
Thus, rewriting �fast � 1=�chainsk

	, we predict a constant
relaxation time (� 10%) for all 12 measurements, �fast �
2000 sec. This agrees very closely with experiment (see
Fig. 3) despite the fact that the observed viscosities varied
by an order of magnitude and the mean chain lengths are
estimated to vary from almost zero up to several thousand
units at the lowest temperature. Note �slow � �2fastv

�� �
1 week–1 month, after estimating [1] � � 0:5 and using
v� � 0:1 sec�1. The second shape-derived relaxation of
� is therefore unobservably long for this experiment.
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Very large temperature quenches were studied in
Ref. [5]. �NN relaxed faster than the second moment, though
it was unclear if m and �NN were coupled as required by
mass conservation, possibly due to ionic aggregation [10].
The authors of Ref. [4] studied large perturbations theo-
retically, identifying the time scales �fast and �slow. Their
analytical results were valid for short times and very
small �.

In this Letter, we showed that even a small perturbation
leads to a nonlinear dynamical response. This ultrasensi-
tivity is due to the inability of slow CLD shape variables
to keep pace with the fast relaxation of �NN which entails
simple translation of the CLD leaving a hole or peak at
small N. Of all slow variables, the most sensitive is �t�0�,
the number of N � 0 chains, which becomes exponen-
tially small or massively enhanced. These free initiators
also govern the very late fine-tuning of the fast variables
�NN and m, the free monomer concentration. Physically, this
is because monomers add to chain ends only. But all ends
are identical except for the N � 0 chains which cannot
shed monomers. Thus, �t�0� is the only dynamic polymer
property featuring in the kinetics of m. Given its central
role, we propose measurement of the number of free
initiators by spectroscopic or other methods as a reveal-
ing probe of ultrasensitivity.
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