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Interfacial Reactions: Mixed Order Kinetics and Segregation Effects
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We study A-B reaction kinetics at a fixed interface separating A and B bulks. Initially, the number of
reactions Rt � tn`

An`
B is second order in the far-field densities n`

A , n`
B . First order kinetics, governed

by diffusion from the dilute bulk, onset at long times: Rt � xtn
`
A , where xt � t1�z is the rms molecu-

lar displacement. Below a critical dimension, d , dc � z 2 1, mean-field theory is invalid: a new
regime appears, Rt � xd11

t n`
An`

B , and long time A-B segregation (similar to bulk A 1 B ! 0) leads to
anomalous decay of interfacial densities. Numerical simulations for z � 2 support the theory.

PACS numbers: 82.35.+ t, 05.40.–a, 68.45.Da
A considerable analytical and numerical research effort
has addressed the kinetics of bimolecular reactions in a
bulk phase [1–4]. These are complex many-body sys-
tems; correlation functions of different order are coupled in
an infinite hierarchy of dynamical equations [5]. Analyti-
cal treatments have employed decoupling approximations
which allow truncation of the hierarchy [1] and, more re-
cently, renormalization group techniques [6]. From these
studies it is known that the classical mean-field (MF) the-
ory is valid only above a critical spatial dimension dc.
According to MF kinetics, the net reaction rate is simply
proportional to a product of spatially and thermally aver-
aged densities. For the single-species case �A 1 A ! 0�
dc � 2, while dc � 4 in the two-species case �A 1 B !
0�. In lower dimensions, the behavior is very different.
For example, in the two-species case, Ovchinnikov and
Zeldovich, and Toussaint and Wilczek [2], established a re-
markable segregation at long times into A-rich and B-rich
domains; MF kinetics break down and the asymptotic de-
cay of density fields no longer follows the 1�t MF pre-
diction. All of these findings concern noninteracting small
molecules, for which the rms diffusive displacement af-
ter time t follows Fick’s law, xt � t1�2, independently of
spatial dimension d. For systems with arbitrary (dimen-
sion-independent) dynamical exponent z, xt � t1�z , the
generalizations are dc � z and dc � 2z for A 1 A ! 0
and A 1 B ! 0, respectively [4].

In contrast to the bulk, little is understood theoreti-
cally about interfacial reaction kinetics. Unlike the bulk
A 1 B ! 0 situation, the species A and B may now only
react at a permanent interface separating the bulk A and
B phases (see Fig. 1). Applications involving reactions of
this type include a large class where small molecules �z �
2� react at liquid-liquid, liquid-solid, or solid-solid inter-
faces [7]. In another important class, functional groups
attached to long polymer chains �z � 4, 8� react at an in-
terface separating immiscible polymer melts. The A-B
copolymers formed by reactions stabilize and reinforce the
interface [8]. In these systems, which are the subject of
this Letter, the two bulk phases are forever separated by a
permanent interface of fixed width. A very different but
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conceptually related class of systems, which has been ad-
dressed by many works [9], is that of nonstationary reac-
tive chemical fronts, where the A and B bulk phases mix
and the interface broadens as reactions proceed. Other
more distantly related models include catalytic reactions
on surfaces such as the “monomer-monomer” model, A 1

B ! 0 with spontaneous generation of particles, and reac-
tion fronts near semipermeable walls Ref. [10].

In this Letter we present a theoretical study of inter-
facial reaction kinetics [8,11]. Our principal findings are
as follows: (i) MF kinetics break down below a criti-
cal dimension dc � z 2 1. (ii) For spatial dimensions
d , dc, a short time diffusion controlled (DC) regime oc-
curs with the number of reactions per unit area growing
as Rt � xd11

t n`
An`

B , where n`
A , n`

B are the far-field den-
sities. (iii) For d , dc, at long times reactants segregate
into A-rich and B-rich domains at the interface. Corre-
spondingly, interfacial densities decay with non-mean-field
power laws. (iv) Reaction kinetics are of mixed order. In
all cases, short time second order kinetics cross over at
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FIG. 1. A and B molecules (size a) reacting at an interface
of fixed width h separating immiscible bulks. Reactions are
confined to those molecules whose exploration volumes of size
xt overlap at the interface.
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long times to kinetics which are first order in the density
on the more dilute A side: Rt � xtn

`
A .

These results are derived without resorting to ad hoc de-
coupling approximations. Instead, we postulate physically
motivated bounds on the correlation functions. It is pos-
sible that these bounds might be proved rigorously, but we
do not attempt this here. Having made these assumptions,
the subsequent analysis is exact.

Our principal aim is the reaction rate per unit area,
�Rt � dRt�dt, proportional to the number of A-B pairs

in contact at the interface:

�Rt � lrs
AB�t�, l � Qha3. (1)

Here, Q is the local reactivity, h is the interface width, and
a is the reactive group size. r

s
AB is the two-body corre-

lation function evaluated at the interface. In addition, we
seek the mean density profiles on the A and B sides, nA�r�,
nB�r�, whose characteristic features are the following: the
far-field values, n`

A , n`
B; the values at the interface �r � 0�,

namely, ns
A and ns

B; and the size of the depletion region (if
any) near the interface. Using Doi’s [5] second quantiza-
tion formalism for classical many-body reacting systems,
we have derived the following exact expression:

ns
A�t� � n`

A 2 l
Z t

0
dt0 S

�1�
t2t0r

s
AB�t0� . (2)

Here S
�1�
t � 1�xt is the one-dimensional return probabil-

ity: the probability an A or B group, initially at the inter-
face, returns to it after time t in the absence of reactions.
The integral term simply subtracts off A reactants which
failed to arrive at the interface at time t due to earlier
reactions.

The technical difficulty is already apparent. The reac-
tion rate and interfacial densities involve the two-body cor-
relation function rAB. But one can show (see below) that
the dynamics of rAB involve three-body correlation func-
tions; these in turn are coupled to four-body correlations,
and so on. This is the infinite hierarchy. How can one
close Eqs. (1) and (2)? A simple way to achieve this is to
assume MF kinetics, i.e., to neglect density correlations at
the interface. The reaction rate is then simply proportional
to the product of interfacial densities:

rs
AB�t� � ns

A�t�ns
B�t� �MF approximation� . (3)

Let us proceed by simply assuming MF kinetics are
valid. We return later to the question of when this as-
sumption breaks down. Consider first the symmetric case,
n`

A � n`
B. Now, since the integral term in Eq. (2) is zero

initially and grows continuously, at short times it must be
much less than n`

A , and hence ns
A � ns

B � n`
A . Using the

MF approximation, Eq. (3), one sees that the integral term
then increases as ln`

An`
Bt�xt � t121�z and thus becomes

of order n`
A at a time scale t�

m � ta�ltan`
B�a�z��12z�, where

ta is the diffusion time corresponding to a. Thus, for times
greater than t�

m, ns
A tends to zero and the integral term now
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balances with n`
A in Eq. (2). Seeking a power law solution

for ns
A, one immediately obtains its long time decay:

ns
A � n`

A �t ø t�
m� ,

ns
A � �xtn

`
A�tl�1�2 � t�12z���2z� �t ¿ t�

m� �MF� .
(4)

The number of reactions, from Eqs. (1) and (3), is thus

Rt � ltn`
An`

B �t ø t�
m�,

Rt � xtn
`
A � t1�z �t ¿ t�

m� �MF� .
(5)

These reaction kinetics are rather novel: they are not of
fixed order. The short time second order behavior crosses
over to long time first order kinetics.

The above results have a very clear physical interpre-
tation. At short times, interfacial densities are unchanged
from their initial values. But by time t an A reactant, ini-
tially within diffusive range of the interface (i.e., closer
than xt), will have collided with it of order �t�ta� �h�xt�
times. Each collision produces reaction with probability
�n`

BadQta. By time t�
m, therefore, the net reaction proba-

bility becomes of order unity. Thus for t . t�
m a deple-

tion hole of size xt grows at the interface, the reaction
rate is diffusion controlled, and first order kinetics onset.
The expression Rt � xtn

`
A is just the total number of A

molecules per unit area within xt of the interface. Equat-
ing its time derivative to the expression for �Rt implied by
Eqs. (1) and (3), one immediately obtains the long time
decay of the interfacial density, ns

A � t�12z���2z�.
The analysis for the asymmetric case, n`

B . n`
A , is simi-

lar, except that we find ns
B�t ! `� � n`

B 2 n`
A , ns

A�t !
`� � 0. A density hole of size xt grows on the more dilute
A side.

When are these MF results valid? To answer this ques-
tion properly, one must examine the dynamics of r

s
AB.

Using Doi’s formalism [5], we have derived an exact self-
consistent relation for r

s
AB which involves the three-body

correlation rBAB�r j 0, 0; t�, namely, the conditional den-
sity of B groups at r, given an A-B pair at the origin. This
relation reads

rs
AB�t0� � n`

An`
B 2 l

Z t

0
dt0 S

�d11�
t2t0 rs

AB�t0�

2 IBAB�t� 2 IABA�t� , (6)

where IBAB�t� � l
Rt

0 dt0
R

dr Gt2t0�r�rBAB�r j 0, 0; t0� 3

r
s
AB�t0�, and similarly for IABA. Here, S

�d11�
t � 1�xd11

t
is the probability that an A-B pair is in contact at the
interface at t, given its members were in contact at the
interface initially, in the absence of reactions. Gt�r� is
the probability a pair is in contact at the interface at t,
given initial pair separation r with one member being at
the interface.

Equation (6), which contains unknown three-body cor-
relations, can be closed for r

s
AB by postulating physi-

cally motivated bounds on the three-body terms. This



VOLUME 84, NUMBER 14 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL 2000
is a much milder measure than approximating rBAB as
a product of lower order correlation functions [1]. We
postulate the existence of constants U and L such that
(i) rBAB�r j 0, 0; t� # Un`

B and (ii) rBAB�r j 0, 0; t� $ Ln`
B

for x . xt , where x is the distance from the interface.
Assumption (i) states that conditional densities never be-
come much greater than far-field densities. Assumption
(ii) states that conditional densities at points beyond diffu-
sional range of the interface are uncorrelated with it. These
assumptions imply that Un`

B is an upper bound for rBAB

for each r, while a lower bound is zero for x , xt and Ln`
B

for x . xt . We thus obtain bounds on IBAB (and similarly
for IABA) by substituting these two extreme cases into its
definition. We find, after substitution into Eq. (6),

rs
AB�t� � n`

An`
B 2 l

Z t

0
dt0 S

�d11�
t2t0 rs

AB�t0�

2 ln�t�
Z t

0
dt0 S

�1�
t2t0r

s
AB�t0� , (7)

where n�t� � A�t� �n`
A 1 n`

B�, and A is a bounded positive
function of order unity. The exact form of n�t� is unknown;
however, we have found that the vanishing of the interfacial
density on the A side at long times implies n�`� � n`

B
exactly. Since the term involving n�t� is relevant at long
times only, in effect n may be replaced by n`

B.
It is now straightforward to solve Eq. (7) for r

s
AB and

thus obtain the reaction rate via Eq. (1). One can show that
deletion of the term containing S�d11� reproduces the MF
kinetics of Eq. (5). This term is indeed irrelevant above a
critical dimension, d . dc � z 2 1. It is also irrelevant
for d , dc if the reactivity Q is smaller than a certain
value, Q , Q� (see below).

For lower dimensions and high reactivities, however,
we find that during a certain interval t�

2 , t , tl this
same term, the term containing S�d11� in Eq. (7), is domi-
nant. The MF approximation then breaks down and re-
action kinetics are of second order and DC. This is a
new regime whose physical origin is as follows. Con-
sider A and B molecules which happen to be so close to
each other that their exploration volumes overlap by time
t (see Fig. 1). How many A-B collisions, Ncoll, have
there been by time t? The A molecule visited the inter-
face of order �t�ta� �h�xt� times, and during each visit en-
countered the B molecule with probability �a�xt�d . Hence
Ncoll � �t�ta� �had�xd11

t �, and the total reaction proba-
bility QtaNcoll � t�dc2d��z is thus an increasing func-
tion of time for d , dc. It reaches unity at a time t�

2 �
ta�Qtah�a�z��d2dc�. Below the critical dimension, there-
fore, for t . t�

2 any A-B pair with separation xt or less
will definitely have reacted by time t. Thus a depletion
hole develops in the two-body correlation function, invali-
dating the MF assumption. Instead, Rt is proportional to
the number of such pairs per unit area, xd11

t n`
An`

B . The
kinetic sequence is now
Rt �

8<
:

ltn`
An`

B �t ø t�
2�

xd11
t n`

An`
B � t�d11��z �t�

2 ø t ø tl�
xtn

`
A � t1�z �t ¿ tl�

�d , dc, Q . Q�� ,

(8)

which may be explicitly verified by direct substitution into
Eq. (7). For times t . tl , where tl � ta�n`

Bad�2z�d is the
time to diffuse the mean separation between B molecules,
at least one B lies within the exploration volume of any
A within xt of the interface. Hence any such A must
have reacted, and we cross over to first order DC kinetics
as in Eq. (5). These arguments have implicitly assumed
that t�

2 , tl , i.e., Q . Q� � ah21t21
a �n`

Bad��dc2d��d . For
weakly reactive groups, Q , Q�, the new second order
DC regime is absent; A reactants collide with many B’s
before reaction is likely. The relevant time scale is then
t�
m and the kinetics of Eq. (5) are recovered.

MF theory does not give the correct reaction rate in low
dimensions. In fact, the density decay of Eq. (4) is also
incorrect. For the symmetric situation, n`

A � n`
B , peculiar

correlations develop at the interface at long times which
invalidate this MF decay. Consider a region of volume V,
half of which is on the A and half of which is on the B side.
The fluctuations DNV in the initial difference between the
number of A and B reactants in V is of order �n`

AV�1�2.
Since reactions conserve this difference, these difference
fluctuations can decay through diffusion only. Now if V $

xd
t , such fluctuations had insufficient time to decay by t.

Hence the density in a region of size xd
t at the interface is

at least DNxd
t
�xd

t � t2d�2z . For d , dc, this is a slower
decay than the MF prediction of Eq. (4). Thus fluctuations
determine the ns

A asymptotics in low dimensions:

ns
A�t� � �n`

Ax2d
t �1�2 � t2d�2z , �d , dc� . (9)

Correspondingly, reactants segregate into A-rich and
B-rich regions of size xt at the interface. Such anti-
correlations are of course unaccounted for by the MF
approximation, Eq. (3). These segregation effects are very
similar to those found at long times for bulk two-species
reactions, A 1 B ! 0 [2].

In summary, we find that an interface lowers the criti-
cal dimension, dc � z 2 1, relative to simple one-species
bulk reactions where dc � z [4]. (We note this also is dif-
ferent from the problem of nonstationary reactive chemi-
cal fronts where, for z � 2, dc � 2 has been found [9].)
For spatial dimensions above dc, densities on either side
of the interface are decorrelated and mean-field kinetics
apply. Below dc, strong anticorrelations develop at the in-
terface. Correspondingly, a short time second order DC
regime arises for very reactive species, and in the symmet-
ric case, at long times, reactants are segregated along the
interface and interfacial densities decay with an anoma-
lous power law in time. A peculiarity is that kinetics are
of mixed order in the far-field densities n`

A , n`
B . Intuition

suggests second order kinetics, since reaction requires an
3195
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FIG. 2. A and B random walkers on a square lattice annihi-
lating on contact at an interface separating A and B bulks with
various densities n`

A , n`
B . Time is in units of site hopping time.

Standard deviation of mean for each point is less than 3% in all
cases. Open (filled) symbols: d � 2 (d � 1). (a) n`

An`
Bt�4Rt

vs t for short times �t�
m, tl . 106�: second order kinetics. The

d � 2 data asymptote a constant (MF kinetics), while d � 1
data approach a straight line, consistent with theoretical law
Rt � t� lnt. (b) Rt�n`

A vs t, long times �t�
m , 100�. Collapse

of data onto the straight line of slope 1�2 indicates first order
DC kinetics governed by dilute A bulk, Rt � n`

At1�2.

A-B pair to meet at the interface. But at long times, reac-
tion rates are controlled by diffusion of molecules on the
more dilute A side to the interface, i.e., they depend on n`

A
only. The more dense side plays a different role: Charac-
teristic time scales involve n`

B rather than n`
A .

The simplest application is small molecules, where z �
2 (Fickian diffusion) and dc � 1. MF kinetics apply for
d � 3 and d � 2, while d � 1 is marginal. We have not
considered marginal cases here for reasons of space, but
we find logarithmic corrections to the second order DC
regime [the second of the regimes listed in Eq. (8)]. The
result for d � 1, z � 2 is Rt � t� lnt. We have tested
our theory for small molecules by numerical simulations
3196
in d � 1 and d � 2. These exhibit second order kinetics
for short times [see Fig. 2(a)], with MF kinetics in d � 2
and logarithmically corrected DC kinetics in the marginal
case d � 1. At long times there is a crossover to first or-
der DC behavior with Rt � n`

At1�2 governed by the more
dilute side [see Fig. 2(b)]. These numerical results are all
consistent with our theoretical predictions. On the experi-
mental side, we hope this work will motivate future stud-
ies of, for example, interfacial polymer systems involving
laser-induced macroradicals [12]. These can help to re-
solve fundamental issues in interfacial science.
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