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Abstract. We study irreversible A–B reaction kinetics at a fixed interface separating two immiscible bulk
phases, A and B. Coupled equations are derived for the hierarchy of many-body correlation functions.
Postulating physically motivated bounds, closed equations result without the need for ad hoc decoupling
approximations. We consider general dynamical exponent z, where xt ∼ t1/z is the rms diffusion distance
after time t. At short times the number of reactions per unit area, Rt, is 2nd order in the far-field
reactant densities n∞A , n

∞
B . For spatial dimensions d above a critical value dc = z − 1, simple mean field

(MF) kinetics pertain, Rt ∼ Qbtn
∞
A n
∞
B where Qb is the local reactivity. For low dimensions d < dc,

this MF regime is followed by 2nd order diffusion controlled (DC) kinetics, Rt ≈ xd+1
t n∞A n

∞
B , provided

Qb > Q∗b ∼ (n∞B )[z−(d+1)]/d. Logarithmic corrections arise in marginal cases. At long times, a cross-over
to 1st order DC kinetics occurs: Rt ≈ xtn∞A . A density depletion hole grows on the more dilute A side. In
the symmetric case (n∞A = n∞B ), when d < dc the long time decay of the interfacial reactant density, ns

A,
is determined by fluctuations in the initial reactant distribution, giving ns

A ∼ t−d/(2z). Correspondingly,
A-rich and B-rich regions develop at the interface analogously to the segregation effects established by
other authors for the bulk reaction A + B→ ∅. For d > dc fluctuations are unimportant: local mean field
theory applies at the interface (joint density distribution approximating the product of A and B densities)
and ns

A ∼ t(1−z)/(2z). We apply our results to simple molecules (Fickian diffusion, z = 2) and to several
models of short-time polymer diffusion (z > 2).

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
68.45.Da Adsorption and desorption kinetics; evaporation and condensation –
82.35.+t Polymer reactions and polymerization

1 Introduction

In a large class of chemically reacting systems, irreversible
bimolecular reactions occur at a permanent interface sep-
arating two bulk phases. Reactive molecules in one phase
are able to react with molecules in the other phase only;
hence reaction events can occur within the limits of the
narrow interfacial region only. A number of technologi-
cally important examples [1,2] entail small molecules re-
acting at liquid-liquid, liquid-gas or liquid-solid interfaces.
In the present study we address interfaces which are fixed
in space and do not broaden as reactions proceed; the two
bulk phases do not mix with one another. However, the
physics we will explore may provide insight to the very
different problem of non-stationary reactive fronts where
chemical reactions occur at a moving and possibly broad-
ening interface separating miscible phases [3–11].

Another important class of reactive interfacial systems
involves macromolecules. Of particular technological sig-
nificance is the process of reactive blending [12,13] where
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the compatibilization of two immiscible polymer melts A
and B is assisted by attaching reactive groups to a certain
fraction of the chains. The A–B copolymers generated by
reactions, which can occur at the A–B melt interface only,
serve both to reinforce the interface [14,15] and to pro-
mote the mechanical mixing of the two melts [13,16].

The manner in which reaction kinetics are modified by
the presence of an interface is a fundamental issue within
the general field of chemical reaction kinetics. Despite this,
and despite the numerous applications such as those men-
tioned above, no complete and systematic theory exists.
We emphasize that each reaction event necessitates the
simultaneous arrival, at the same location within the in-
terface, of two molecular species A and B, one from each
bulk phase. (This is very different to the problem [17,18]
of a single bulk adjacent to a homogeneous “reactive in-
terface” where each “reaction” event, e.g. the irreversible
adsorption of a molecule onto a solid surface, requires
the arrival of only one molecule at the interface.) The
interfacial reaction kinetics which are the subject of the
present paper were theoretically studied for the case of
small molecules by Durning and O’Shaughnessy [19], and
the end-functionalized polymer case by O’Shaughnessy
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and Sawhney [20,21] and Fredrickson [22]. These theo-
ries in fact described a certain short time regime only, for
systems where the reacting species are dilute in an un-
reactive background. Fredrickson and Milner [23] argued
that at later times different kinetic behaviors onset, with
forms dependent on reactive species concentration.

In this paper we develop a near-exact theory of irre-
versible interfacial reaction kinetics. We calculate time-
dependent reaction rates as a function of density and lo-
cal reactivity of the reactive species. In addition, density
profiles on either side of the interface are determined. A
short version of the present manuscript has appeared [24].
Our framework is quite general in terms of the diffusive
dynamics of the reactive species, as defined by the dynam-
ical exponent, z:

xt = a

(
t

ta

)1/z

, (1)

where xt is the rms displacement of a reactive group af-
ter time t. Here a is the linear dimension of the reactive
species A and B, and ta is the diffusion time correspond-
ing to a. Thus, setting z = 2 in our results yields reaction
rates for small molecules obeying Fick’s diffusion law. As
a second example, if one seeks the short time reaction ki-
netics of small reactive groups attached to polymer chains
in the melt, then appropriate values would be z = 4 or
z = 8, depending on the time regime and degree of entan-
glement [25,26].

This study will always assume the interface is clean.
Thus we ignore effects associated with accumulation of
A–B reaction products at the interface whose presence
may eventually diminish reaction rates [20,21,23].

Bulk kinetics (A+B → 0): a brief review

Before attacking the present interfacial problem, it is help-
ful to consider first the analogous and somewhat simpler
problem in the bulk, where irreversible bimolecular reac-
tions between A and B, generating inert products, can
occur anywhere within a single bulk phase. There are
no A–A or B–B reactions. For the small molecules case,
z = 2, many well-established results exist (“A + B → 0”)
[27–31]. Suppose A and B have equal diffusivities and
are initially uniformly distributed with equal densities
n(0) within some solvent. (The case n(0) = 1/ad would
correspond to every molecule being reactive; generally
n(0) ≤ 1/ad.) Reactions are now “switched on” at t = 0.
Then, whenever an A and a B particle collide (i.e. ap-
proach to within distance of order a of one another) they
react irreversibly with probability Qb per unit time, where
Qb is the local reactivity. For simplicity, let us confine our
bulk discussion to “infinitely” reactive particles; reaction
then occurs every time an A–B pair collides. This corre-
sponds to setting [32] Qb = 1/ta (the effective local reac-
tivity cannot exceed the rate, 1/ta, at which diffusion can
bring two reactive species together). Our discussion will
consider a general spatial dimensionality d.

What are the reaction kinetics in this bulk system?
What are the time dependencies of the number of reac-
tions per unit volume which have occurred after time t,
namely Rbulk

t , and the reactant density n(t)? The sim-
plest guess is that mean field (MF) theory applies: this
amounts to assuming reactants are always distributed as
in equilibrium. Hence the reaction rate equals the equilib-
rium density of A–B pairs in contact, multiplied by Qb.
Thus, Ṙt

bulk ≡ (d/dt)Rbulk
t = Qba

dn2(t) = (ad/ta)n2(t).
Now this MF prediction is in fact valid only for suffi-
ciently large d such that diffusion is effective in dissipating
reaction-induced non-equilibrium spatial correlations. The
maximum number of A–B pairs which diffusion can have
brought together by the time t increases as xdt ∼ td/z;
provided d > z, this is sufficient to restore the deple-
tion, which would arise in the two-body correlation func-
tion, due to reactions as implied by the MF prediction,
Rbulk
t ∼ t. But for lower dimensions, d < z, since diffu-

sion cannot supply material fast enough to keep pace with
this reaction rate, equilibrium spatial correlations are de-
stroyed: a depletion hole of size xt grows in the A–B 2-
body correlation function. Reaction kinetics are then very
different; for short times Rbulk

t ≈ xdtn
2(0) is the number

of reactive pairs initially within diffusive range of one an-
other, i.e. whose initial separations were less than xt. In
summary, for times short enough that the relative density
drop is small, n(t) ≈ n(0), we have

Ṙt
bulk

= −dn(t)
dt

= kbulkn2(t),

kbulk(t) ≈
{
ad/ta d > z

dxdt /dt ∼ td/z−1 d < z

(short times). (2)

These are second order rate kinetics, with a rate constant,
kbulk, which is time-dependent for low dimensions d < z.

The two classes of kinetics in equation (2) reflect the
fact that reactive groups explore space “compactly” in low
dimensions [33–35]: for d < z it is simple to show that (in
the absence of reactions) the number of collisions between
an A–B pair, with some given initial separation, increases
for large times as ∼ t1−d/z. Thus reaction is inevitable
by the time t for any reactive pair initially separated by
xt or less. By contrast, for d > z space is explored in a
“non-compact” or dilute fashion; with finite probability,
the same two particles may avoid collision as t→∞. This
survival probability is an increasing function of the ini-
tial separation. Reaction is no longer inevitable between
all pairs within diffusive range, and MF theory applies
[32,36]. For the interface problem, we will find a similar
division between compact and non-compact reaction ki-
netics, but now at a dimension d + 1 = z. Indeed, the
short time interface kinetics turn out to be analogous to
those of a (d+ 1)-dimensional bulk problem [19–21].

Equation (2) describes the short time kinetics. What
happens at very long times? For d > z one might an-
ticipate the MF kinetics of equation (2) would continue
indefinitely, implying n ∼ 1/t asymptotically. In fact,
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for two-species A–B systems this is true only for very high
dimensions, d > 2z. This was demonstrated for z = 2
by Ovchinnikov and Zeldovich [27] and by Toussaint and
Wilczek [28]. These authors showed that in lower dimen-
sions fluctuations in the initial density distribution deter-
mine the asymptotic form of n(t). Their argument, gen-
eralized to arbitrary z, is roughly as follows. Consider
a portion of the reacting system of volume Ω and let
NA(t), NB(t) be the number of unreacted A and B par-
ticles in this region at time t. Assuming random initial
spatial distributions of A and B, the initial fluctuations
of NA(0) and NB(0), about their mean value n(0)Ω, will
be of order

√
n(0)Ω. (Note that n(t) is the mean den-

sity after time t.) Of the same order will be the fluctua-
tions in δN0 ≡ NA(0)−NB(0), the average value of which
is zero. As reactions proceed, fluctuations will diminish.
However, since reaction events conserve the difference be-
tween the number of A and B particles, fluctuations in
δNt ≡ NA(t)−NB(t) can decay by diffusion only. Thus, if
we consider small regions, Ω < xdt , then by time t the ini-
tial difference of order δN0 has had sufficient time to decay
away due to diffusion. But for large regions, Ω > xdt , the
difference must be close to its original value, δNt ≈ δN0.
Roughly, then, in a region of volume xdt , the total num-
ber of reactants cannot be smaller than a number of the
order of

√
n(0)xdt . It follows that the density cannot de-

cay faster than n(t) ≈
√
n(0)xdt /xdt ∼

√
n(0)t−d/(2z). For

d < 2z, this is a slower decay than the MF t−1 predic-
tion, and one concludes that this diffusive relaxation of
initial fluctuations then governs the long time decay. To
summarize,

n(t→∞) ∼
{
t−1 d > 2z
t−d/2z d < 2z

(bulk). (3)

For interfacial reactions, we will establish a rather similar
long time fluctuation-dominated decay of densities near
the interface for sufficiently small d. Analogously to the
bulk case, this is accompanied by segregation of reactants
into A-rich and B-rich domains of size xt in the region
adjacent to the interface.

Interfacial kinetics: scaling arguments

Let us turn now to the interface problem, shown schemat-
ically in Figure 1. We consider two d-dimensional bulk
phases containing, respectively, reactive species A and B
with initial densities n∞A and n∞B . The reactants are of size
a ≤ h, where h is the width of the thin (d−1)-dimensional
interfacial region which is the locus of all reaction events.
We assume A and B have identical diffusion dynamics. To
begin, consider the symmetric case n∞A = n∞B ≡ n and the
infinitely reactive limit, Qb → 1/ta (every A–B collision
produces a reaction).

The short time reaction kinetics of this interfacial sys-
tem are analogous to those of a (d + 1)-dimensional bulk
problem. To see this, consider how many degrees of free-
dom are needed to specify the “reaction rate” for a single

x
t

n
B

n
A

B

h

A

l

Fig. 1. Two bulk phases A and B, separated by a thin in-
terface of width h, contain diffusing reactants A and B with
densities n∞A , n

∞
B . Reactions between A and B molecules, gen-

erating inert products, may occur in the interfacial region
only. The typical distance between reactants on the B side
is l = a(n∞B a

d)−1/d. During short time 2nd order diffusion-
controlled kinetics regimes, the reaction rate is determined
by the small fraction of A–B pairs which were initially close
enough to have diffused and met within time t. That is, re-
actions are confined to those pairs whose exploration volumes
(indicated by dashed lines) overlap at time t. Note that such
pairs must be within xt of the interface.

A–B pair. One coordinate must specify how far from the
interface particle A lies, and similarly for B. A further
d− 1 coordinates must specify their relative location, giv-
ing d + 1 degrees of freedom [19] in total. That is, there
are d + 1 diffusive degrees of freedom which must vanish
in order that an A–B pair may react. These are the re-
action conditions for a (d+ 1)-dimensional bulk diffusion-
reaction problem, and similar reasoning to that for the
bulk dictates that non-compact MF kinetics pertain for
d+ 1 > z, whilst for d+ 1 < z the kinetics are of compact
diffusion-controlled (DC) form. Thus the reaction rate per
unit interface area, Ṙt, obeys 2nd order rate kinetics with
a 2nd order rate constant k(2):

Ṙt = k(2)n2,

k(2)(t) ≈
{
had/ta d+ 1 > z

dxd+1
t /dt ∼ t(d+1)/z−1 d + 1 < z

(short times, Qbta = 1) (4)

in complete analogy to equation (2) for the bulk problem,
but with d replaced by d + 1. The mean field result for
d + 1 > z follows because in equilibrium there are hadn2

A–B pairs in contact per unit area of interface1. The DC
compact kinetics are determined by the small fraction (at
short times) of A–B pairs which were initially separated
by less than xt; for d+ 1 < z any such pair will definitely
have reacted by time t. The number of such A–B pairs per
unit interfacial area is xd+1

t n2 (see Fig. 1). Note that the

1 A slight complication here, which will be addressed in
Section 6, is that this result is modified when z < d+1 < z+1;
in that case k(2) ≈ hd+1/th where th ≡ ta(h/a)z.
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dimensions of k(2) are xd+1/t, as appropriate to a (d+ 1)-
dimensional bulk problem. For the remainder of this paper
we will refer to d + 1 > z and d + 1 < z as the “non-
compact” and “compact” cases, respectively.

Consider the long time behavior now. This is com-
pletely different to the bulk. In fact at long times the effec-
tive dimensionality of the problem changes from d+1 to 1
and, moreover, the reaction kinetics become of first order.
Let us first investigate the compact case, d+ 1 < z. Con-
sider an A particle that was initially within a distance l of
the interface, where l ≡ n−1/d is the typical separation be-
tween reactants. By time tl ≡ ta(nad)−z/d, its exploration
volume will typically contain one B particle, in the other
bulk, which was initially within l of the A particle. Since
d + 1 < z, reaction is certain. It follows that for times
t > tl the interface becomes, in effect, “perfectly absorb-
ing”: almost every reactive species reaching it will suffer
a reaction. Thus a density depletion hole develops at the
interface (see Fig. 3) and the reaction rate is limited by
diffusion to the interface, Rt ≈ xtn. One concludes that
long time reaction kinetics are now first order, with a first
order rate constant k(1) given by

Ṙt = k(1)n, k(1) ≈ dxt
dt
∼ t1/z−1 (t→∞). (5)

Notice that the dimensions of k(1) are x/t, as would be
appropriate to a one-dimensional bulk problem. In corre-
spondence to the kinetics being first order, this DC regime
is accompanied by a growing hole of size xt in the one-body
density “correlation function”, i.e. in the density field it-
self, n(r). This is very different to the hole, also of size
xt, which grew in the two-body density correlation func-
tion for the second order d + 1 < z compact DC kinetics
at short times, equation (4). For that regime, the density
field itself was unchanged from equilibrium.

What are the long time kinetics for the non-compact
case, d+1 > z? The answer is: the same as for the compact
case. The only difference is that the cross over from d+ 1
to 1-dimensional behavior no longer occurs at tl, but at
a timescale we name t∗m. In this case we can estimate t∗m
using a mean field picture since the early kinetics are MF.
Consider an A particle initially within xt of the interface,
as in Figure 2. After time t, it has made t/ta “steps”, a
fraction (h/xt) of which were within the interfacial region
where B particles are present at density n. Thus for each of
these interfacial steps the probability that the A particle
was in contact with any B particle is nad. Hence the total
reaction probability, Pm, is

Pm(t) ≈
(
h

xt

t

ta

)(
nad

)
≈ h

a
nad (t/ta)1−1/z

(Qb = 1/ta). (6)

Setting Pm(t∗m) = 1, one obtains t∗m/ta =
[a/(hnad)]z/(z−1). Thus, for t > t∗m any A particle
within diffusional range of the interface will definitely
have reacted with a B. This is a many-body effect; by t∗m
any A near the interface is bound to have reacted due to
the mean reaction field created by all of the B molecules.

B
n

BA xt

h

Fig. 2. Schematic of the trajectory of an A particle after time
t, given this particle was initially within diffusive range of the
interface. Since the number of encounters with the interface
is an increasing function of time, even for relatively weakly
reactive species the A particle is certain to have reacted at
sufficiently long times. The timescale is either t∗m or tl (see
main text).

We conclude that for large times a density depletion hole
develops also for the non-compact case, following the
same kinetics as equation (5).

So far we have considered “infinitely” reactive species,
Qb ≈ 1/ta. Such local reactivities Qb are realized for rad-
icals [37], and in certain other processes such as phospho-
rescence quenching [38]. However, these are very exotic
exceptions to the general rule: in virtually all practical
situations Qb is tiny, Qbta . 10−6. Indeed, for the vast
majority of reacting species, Qb values are many orders of
magnitude smaller than 10−6 [39,40]. It is essential, there-
fore, to establish how the picture we have developed above
is modified for finitely reactive systems. For non-compact
cases, d + 1 > z, there is no qualitative change from the
kinetics of equation (4): again, a short time 2nd order MF
regime, now with k(2) = Qbha

d, is followed at t∗m by a DC
first order regime, but now the formula for t∗m is modified.
Notice that the expression for Pm(t) in equation (6) is the
mean number of collisions experienced by the A particle;
multiplying this by the reaction probability per collision,
Qbta, yields the total reaction probability for general Qb.
Defining Pm(t∗m) ≡ 1, we have

Pm(t) ≈ (Qta) nad
(
t

ta

)1−1/z

,

t∗m
ta

=
(

1
Qta nad

)z/(z−1)

, Q ≡ Qb
h

a
, (7)

where Q emerges as an effective local reaction rate coarse-
grained over the interface width h.

In the compact case, d+ 1 < z, kinetics are more fun-
damentally modified by finite reactivity. For Qbta = 1 we
have seen an initial 2nd order DC regime followed at tl
by 1st order DC kinetics. But for Qbta < 1, a new MF
regime appears at early times. Consider an A–B pair near
the interface whose members are initially closer than xt
to one another, as in Figure 1. By time t, A has taken
(t/ta)(h/xt) steps in the interface. For a fraction (a/xt)d
of these, B was in contact with A since B is equally likely
to be anywhere within its exploration volume xdt . Thus,
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Fig. 3. A reactant density depletion hole of size xt ∼ t1/z

grows at the interface for long times. (a) The symmetric case,
n∞A = n∞B . The reactant density at the interface, ns

A, tends
asymptotically to zero. (b) In the asymmetric case, n∞B > n∞A ,
the interfacial density ns

A on the dilute side tends to zero, while
ns

B asymptotes n∞B − n∞A .

the 2-body reaction probability for this pair is given by

P2(t) ≈
(
h

xt

)(
ad

xdt

)(
t

ta

)
(Qbta) ≈ Qta

(
t

ta

)1−(d+1)/z

.

(8)

This implies a characteristic timescale, t∗2, defined such
that P2(t∗2) ≡ 1,

t∗2 = ta

(
1
Qta

)z/(z−d−1)

. (9)

For t > t∗2 any pair initially within diffusive range will
definitely have reacted; this tells us that kinetics must
have 2nd order DC form for such times. Thus the DC
regime of equation (4) begins only at t∗2; for shorter times,
t < t∗2, since P2(t) � 1, correlations are little disturbed
from equilibrium and it follows that MF kinetics apply,
k(2) = Qbha

d. In fact, for sufficiently small Q (“weak sys-
tems”) t∗2 will exceed t∗m in which case the 2nd order DC
regime will disappear. In later sections we will carefully
distinguish between this case and the case of “strong sys-
tems” (t∗2 < t∗m).

Interfacial kinetics: the technical difficulties

In the present work we will develop a near-exact formal-
ism to justify these scaling arguments. The difficulty is the
many-body character of this problem. Consider for exam-
ple the reaction rate per unit area, Ṙt. This equals the
number of reactive A–B pairs per unit area which are in
contact at the interface, ρs

AB(t), multiplied by the local
reactivity Qb:

dRt
dt

= λρs
AB(t), λ ≡ Qbhad = Qad+1 (10)

where the quantity λ will turn out to be a natural cou-
pling constant in our theory. Now ρs

AB(t) is the two-body

density correlation function ρAB(rA, rB; t) (the number of
A–B pairs at rA, rB per unit volume squared) evaluated
at the interface, rA = rB = 0:

ρs
AB(t) ≡ ρAB(0, 0; t). (11)

We take the origin of our coordinate system to lie on the
interface plane and we have used translational invariance
in the directions parallel to the interface (hence ρs

AB(t) is
spatially uniform). One sees that to determine the reaction
rate we need information on the two-body density corre-
lation function. However, any dynamical equation for the
latter inevitably involves three-body correlation functions
ρABA, ρBAB. The dynamics of these objects in turn involve
higher order correlations, and so forth. This hierarchical
structure is the signature of the many-body nature of the
problem.

How can a theory deal with these many-body com-
plexities? One possible approach [23], a mean field ap-
proximation, would be to assume ρs

AB(t) = [ns(t)]2, where
ns(t) ≡ n(r = 0) is the density of A (or B) reactants
at the interface. This approximation cannot always be
valid: for example, in the compact case, d + 1 < z, this
would disagree with the short time 2nd order DC behav-
ior of equation (4) since in this regime the density field
is unchanged from equilibrium, ns(t) ≈ n(0); hence the
assumption ρs

AB(t) = [ns(t)]2 would wrongly yield Rt ∼ t.
Does this approximation make sense at longer times? Now
since we have established (Eq. (5)) the asymptotic law
Ṙt ∼ nt(1−z)/z, this approximation would then imply
ns(t) ∼ t(1−z)/(2z) which as we will see is correct for the
non-compact case only. For the compact case, the long
time decay of ns(t) is in fact determined by the rate at
which fluctuations in the initial distribution of A and B
reactants decay. This gives rise to a different decay law,
invalidating the local mean field approximation.

To see how densities at the interface, ns(t), decay for
large times, consider a simple generalization of the argu-
ment of Ovchinnikov and Zeldovich and Toussaint and
Wilczek, extended to the interface problem. Consider a
region at the interface of volume Ω, half of which is
on the A side and half on the B side. The difference
δN(t) ≡ NA(t)−NB(t) between the number of A and B in
Ω is initially of order

√
nΩ. Now fluctuations in δN(t) can

decay by diffusion only. Only if Ω is smaller than xdt did
these fluctuations have sufficient time to have decayed by
time t. For bigger regions, δN(t) ≈ δN(0) ≈

√
nΩ. Thus

reactant densities at the interface, for example, cannot de-
cay faster than

√
nxdt /x

d
t ∼

√
nt−d/(2z). In the compact

case, d + 1 < z, this is a slower decay than [ρs
AB(t)]1/2.

Thus the local mean field assumption is wrong, and sub-
tle correlations between reactants determine the long time
decay. Correspondingly, for the compact case only, there
is a segregation of reactants adjacent to the interface into
A-rich and B-rich regions of size xt.

Various approximation schemes have been used to
treat reaction kinetics in the bulk. Typically, the three-
body density correlation function is truncated in terms
of lower order correlations; this reduces the hierarchy
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of reaction-diffusion equations for the many-body correla-
tion functions to a closed set which are solved numerically
(see Ref. [41] and references therein). The ad hoc nature
of such approximations is balanced by their success, as
judged from direct numerical simulations [41]. Rigorous
analysis was initiated by Doi [42] who developed a gen-
eral formalism mapping classical many-particle systems
onto quantum field theoretic models. Doi’s formalism has
been the starting point of recent renormalization group
approaches to bulk reacting systems [31,43,44].

Our approach is rather different to previous ones. We
make a small number of simple assumptions which on
physical grounds we believe are correct: we assume bounds
on certain density correlation functions, and we assume
the reaction rate to be a decreasing function of time which
is asymptotically a power law. It is possible that these
bounds might be proved rigorously, but we do not attempt
this here. Having made these assumptions, the subsequent
analysis is exact. In the case of systems such as reacting
polymers which are not point-like (all the internal polymer
degrees of freedom are involved in addition to the locations
of the reactive groups) and for which z 6= 2 at small times,
our analysis, though not exact, provides a framework for
calculating all physically interesting quantities.

The rest of this paper aims to justify the scaling argu-
ments presented above. In Section 2 we present an exact
mathematical formulation of the problem. We significantly
simplify the problem in Section 3 by postulating bounds
on a three-body density correlation function. This allows
us to solve for the reaction rate. In Sections 4, 5 and 6 we
solve for the reaction rate in the compact, noncompact and
marginal (z = d + 1) cases. Our results verify the scaling
arguments presented above. In Sections 7 and 8 the den-
sity profile is calculated, including fluctuation effects and
reactant segregation. We conclude with a discussion of our
results in Section 9.

2 Interfacial pair density, ρs
AB

According to equation (10) the reaction rate is propor-
tional to the density of A–B pairs which are in contact
at the interface, ρs

AB(t). In this section, we will obtain an
exact self-consistent integral expression for ρs

AB.
We consider the general situation, illustrated in

Figure 1, where the initial reactant densities n∞A , n
∞
B are

not necessarily equal. (The entire discussion of Sect. 1
treated the symmetric case n∞A = n∞B for simplicity.) Our
convention will always be that n∞B ≥ n∞A . We choose the
d-dimensional A and B bulk phases to occupy x > 0 and
x < 0 respectively, with x being the direction orthogonal
to the interface, and we assume that A and B species have
identical dynamics (i.e. dynamical exponent z).

Throughout this paper, we use the convention that su-
perscript T denotes a d-dimensional vector lying in the
(d − 1)-dimensional interface. Thus by definition the x-
component of rT vanishes.

Let us begin by treating the case z = 2, which
is then simply generalized to arbitrary z. The second-
quantization representation for classical many-particle

systems developed by Doi [42] and by Zeldovich and
Ovchinnikov [45] allows us to derive an exact reaction
diffusion equation for the two-body correlation func-
tion ρAB(rA, rB; t). Using Doi’s formalism, we show in
Appendix A that for small non-interacting Fickian
molecules (z = 2) with diffusivity D{

∂

∂t
−D [∇2

A +∇2
B]

}
ρAB(rA, rB; t) =

− λ δ(xA)δ(rA − rB) ρAB(rA, rB; t)
− λ δ(xA) ρABB(rA, rB, rA; t)
− λ δ(xB) ρABA(rA, rB, rB; t), (12)

with reflecting boundary conditions at x = 0. Note the
appearance of the coupling constant λ ≡ Qbha

d intro-
duced in equation (10). The 3-body correlation function
ρABB(rA, rB, r′B; t) is the probability density to find an
A–B–B triplet at locations rA, rB, r′B. A similar definition
applies to ρABA(rA, rB, r′A; t).

The sink terms on the right hand side of equation (12)
describe the three ways in which reactions can diminish
ρAB(rA, rB; t). (1) The first two-body sink term represents
reactions between A–B pairs located at rA, rB. The delta
functions restrict reactions to rA, rB values such that both
A and B are in contact (i.e. within a of one another) and
both A and B are within the interface of width h located
at x = 0. These restrictions introduce a factor had. This
is a somewhat coarse-grained description: our “minimal”
delta-function sinks are appropriate provided we avoid
timescales of order th ≡ ta(h/a)z or smaller. (2, 3) The
remaining two sink terms in equation (12) describe reac-
tions involving just one particle of an A–B pair at rA, rB.
Such a reaction involves a third particle, weighted by the
appropriate 3-body correlation function. These are many-
body terms; were they absent, one would have a relatively
simple closed 2-body system. In the next section we will
deal with this difficulty by assuming bounds on the forms
of these 3-body correlation functions.

Consider a general value of z now, for which the two
particle free propagator is Gt(rA, r′A; rB, r′B), namely the
probability density an A–B pair is at rA, rB at time t given
initial location r′A, r

′
B, in the absence of reactions. Without

reactions A and B particles are statistically independent;
thus Gt can be written as a product of single particle
propagators G(1)

t :

Gt(rA, r′A; rB, r′B) = G
(1)
t (rA, r′A) G(1)

t (rB, r′B). (13)

Since G
(1)
t has only one characteristic scale, xt, dimen-

sional analysis dictates the scaling form

G
(1)
t (r, r′) =

1
xdt
g(r/xt, r′/xt),

g(u,v)→
{
f(ux, vx) |u− v| � 1
0 |u− v| � 1

(14)

where f(ux, vx) is a function of order unity for every value
of its arguments (ux and vx are the x components of u, v,
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respectively). The fact that f depends on ux, vx is a result
of the broken translational invariance in the x direction
due to the reflecting boundary at x = 0.

Returning to equation (12), we can write a self-
consistent expression for ρAB(rA, rB; t) in terms of the free
propagator Gt. Setting rA = rB = 0 one obtains

ρs
AB(t) = n∞A n

∞
B − λ

∫ t

0

dt′S(d+1)(t− t′)ρs
AB(t′)

− λ[IA
m(t) + IB

m(t)], (15)

where

S(d+1)(t) ≡
∫

drT′Gt(0, rT′; 0, rT′) ≈ 1
xd+1
t

(16)

is the two-body “return probability”, namely the proba-
bility density an A–B pair is in contact at time t at the
interface, given it was in contact somewhere within the
interface at t = 0. We have used equation (14) to show
that S(d+1)(t) ≈ 1/xd+1

t has the same scaling form as the
return probability in a (d+ 1)-dimensional bulk problem.
In equation (15), the two-body integral involving S(d+1)(t)
represents depletion in the interfacial reactive pair density
ρs

AB(t) due to A–B pairs whose members reacted with one
another at times t′ < t and therefore failed to reach the
origin at t (see Fig. 4). The terms IA

m(t), IB
m(t) measure

depletion due to many-body effects:

IA
m(t) ≡

∫ t

0

dt′
∫

drT
A

′
dr′BGt−t′(0, r

T
A

′
; 0, r′B)

× ρABB(rT
A

′
, r′B, r

T
A

′
; t′),

IB
m(t) ≡

∫ t

0

dt′
∫

dr′AdrT
B

′
Gt−t′(0, r′A; 0, rT

B

′
)

× ρABA(r′A, r
T
B

′
, rT

B

′
; t′). (17)

These integrals subtract off any A–B pair only one mem-
ber of which was involved in a reaction an earlier time (see
Fig. 4).

We will see later that the two-body integral involving
S(d+1)(t) in equation (15) is important at short times;
for such times reaction kinetics are hence like those in a
(d+1)-dimensional bulk reaction problem. At longer times
the many-body terms IA

m(t), IB
m(t) are always dominant

and kinetics cross over to one-dimensional form.
Equations (15–17) are immediately generalized to ar-

bitrary dynamics with arbitrary values of z: one simply
replaces the Gaussian (z = 2) propagator Gt, describ-
ing Fickian diffusion, with the appropriate propagator de-
scribing the dynamics. Now this would be a true statement
for the abstract concept of small (i.e. point-like) molecules
obeying xt ∼ t1/z with z 6= 2. However, in practice non-
Fickian diffusion normally results from the small reactive
species belonging to a large structure with complex in-
ternal dynamics. The most important case is when the
reactive group is a single monomer unit belonging to a
polymer chain of N units. In these cases the dynamics

r t( )

0,t( t)

ArA
T T( ,)

trB(
)

)

0,(

t,

,

two-body term many-body term

Fig. 4. The depletion in the number density of reactive A–B
pairs at the origin from the value it would have in the absence of
reactions originates from three terms, equation (15). The two-
body term counts those A–B pairs which would have been at
the origin at time t, but failed to arrive because both members
reacted at an earlier time t′ at point rT

A
′
. The first many-body

term (IA
m(t), described in the figure) counts A–B pairs which

would have been at the origin had there been no reactions, but
failed to arrive because one member of the pair, the A member,
reacted at an earlier time. The second many body term, IB

m(t),
is identical except the roles of A and B are interchanged.

of equation (15) are not exact because they incorrectly
presuppose a closed relationship in terms of the degrees
of freedom specifying the location of the reactive species
only. A proper treatment must first average out the other
degrees of freedom (e.g. the locations of the other N−1
monomers in the polymer case); this is non-trivial and
requires renormalization group (RG) methods [46]. How-
ever, RG studies of 2-body bulk polymer reaction kinetics
[36,46] indicate that the basic physics is completely cap-
tured by the approximate closing of the system in terms
of these coordinates only: correct scaling behaviors are ob-
tained, only the prefactors being unreliable. These issues
are discussed in detail in references [36,46,47]. Therefore
for the remainder of this paper we assume the validity of
equations (15–17) for any value of z.

3 Structure of many-body integral terms
IA
m(t), IB

m(t)

In Section 2 we derived a self-consistent solution for the
interfacial reactive pair density ρs

AB(t), equation (15). Un-
fortunately this is not in a closed form for ρs

AB(t), since the
many-body terms involve higher order correlation func-
tions. In this section we introduce our three simple, phys-
ically motivated assumptions. These enable us to express
IA
m(t), IB

m(t) in terms of ρs
AB(t), which in the following sec-

tion will allow us to obtain a closed solution for ρs
AB. Most

calculational details will be left for Appendix B.
Consider the three-body correlation function ρABB ap-

pearing in IA
m(t) of equation (17). Let us introduce the

conditional density of B particles at rB given an A–B pair
at the origin,

ρBAB(rB|0, 0; t) ≡ ρABB(0, rB, 0; t)
ρs

AB(t)
· (18)
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Fig. 5. Trajectories of a typical A–B pair which at time t is
at the origin, and whose A member reacted at the interface
at time t′ with another B-type particle (B̄). Trajectories are
shown projected onto the x− τ plane where x is distance from
the interface and τ is time. The properties of trajectories of
this type determine the value of the integration which deter-
mines the many body term IA

m(t) (see Eq. (19) and following
discussion in main text). At t′, the B particle of the pair has
x-coordinate x′B which can be (a) in region I, if x′B > xτ (as
shown in the figure), or (b) in region II, if x′B < xτ .

Noting that translational invariance parallel to the inter-
face plane allows the replacement ρABB(rT

A

′
, r′B, r

T
A

′; t′)→
ρABB(0, r′B − rT

A
′
, 0; t′), we can express IA

m(t) as

IA
m(t) =

∫ t

0

dt′
∫

dr′B Ft−t′(r′B) ρBAB(r′B|0, 0; t′) ρs
AB(t′),

Ft−t′(r′B) ≡
∫

drT
A

′
Gt−t′(0, rT

A

′
; 0, r′B + rT

A

′
). (19)

In Figure 5 we identify two physically distinct space-time
regions which contribute to IA

m(t) in the r′B, t
′ integration

of equation (19). The assumptions we are about to intro-
duce are based on the following expectations about the
behavior of the conditional 3-body density in these two
regions. In region I, defined by points with x-coordinate
x′B > xt′ , the conditional density at time t′ approximates
its far field value, ρBAB(r′B|0, 0; t′) ≈ n∞B . This is because
far into region I such locations r′B are beyond diffusional
range of the interface: hence density correlations at r′B can-
not have been influenced by reaction events during (0, t′).
On the other hand, in region II (x′B < xt′), this condi-
tional density will be strongly influenced by such reaction
events. Whatever this density field may be, we expect that
its maximum will never be greater than a value of the or-
der of n∞B . Reactions tend to reduce densities, but we do
not exclude the possibility that subtle B–A–B correlations
could locally elevate the field somewhat.

Let us now translate the above general physical expec-
tations into two specific assumptions on the conditional
density field. Simultaneously we introduce a third assump-
tion, concerning ρs

AB(t).

Assumption 1

There exists a positive finite constant U , such that:

ρBAB(r′B|0, 0; t′)
n∞B

≤ U. (20)

This amounts to assuming that irrespective of what
reaction-induced correlations exist between points 0 and
r′B, the conditional density of B particles at r′B will al-
ways be less than, or at most of the order of, the far-field
density of B reactants in the B bulk.

Assumption 2

There exists a positive finite constant L, such that:

ρBAB(r′B|0, 0; t′)
n∞B

≥ L, for
x′B
xt′

> 1. (21)

Roughly speaking this amounts to assuming that points
in region I are uncorrelated with the interface.

Assumption 3

ρs
AB(t) is a decreasing function of time which is asymptot-

ically a power law.

Assumptions 1 and 2 immediately imply the same two
assumptions but with A and B interchanged (since A
and B are arbitrarily chosen labels). That is, the field
ρABA(r′A|0, 0; t′) appearing in IB

m(t) obeys two assump-
tions analogous to 1 and 2.

Based on these assumptions, we show in Appendix B
that the contribution to IA

m(t) from integration over re-
gion I is a fraction of order unity of the value of IA

m(t).
(Equivalently, a fraction of order unity of the A–B inter-
face pairs which involve one previously reacted A and are
subtracted off by λIA

m(t), involve a B member originat-
ing from region I.) Therefore, since assumptions 1 and 2
imply that ρBAB equals n∞B in region I to within a finite
prefactor bounded above and below, it follows that if we
replace ρBAB(r′B|0, 0; t′) → n∞B in the integrand of IA

m(t)
in equation (19), the result will equal the actual value
of IA

m(t) to within a (time-dependent) prefactor of order
unity, α(t). Making this replacement, using equation (13),
and performing an analogous replacement for IB

m(t), one
obtains

IA
m(t) = α(t) n∞B

∫ t

0

dt′S(1)(t− t′)ρs
AB(t′),

IB
m(t) = β(t) n∞A

∫ t

0

dt′S(1)(t− t′)ρs
AB(t′), (22)

where α(t), β(t), are bounded positive functions of order
unity,

αmin ≤ α(t) ≤ αmax,

βmin ≤ β(t) ≤ βmax. (23)

Here αmin, αmax, βmin, βmax are finite positive constants.
The one-dimensional return probability S(1)(t) is de-
fined as

S(1)(t) ≡
∫

drT
A

′
G

(1)
t (0, rT

A

′
) ≈ 1

xt
· (24)

It measures the probability a reactant initially at the in-
terface returns to the interface after time t. The scaling
form, S(1) ∼ 1/xt, is easily derived from the scaling form
of the propagator G(1)

t , equation (14).
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4 Reaction rate in compact case (d + 1 < z)

Having expressed the many-body terms IA
m(t), IB

m(t) in
terms of the interfacial reactive pair density ρs

AB(t), we
can solve for the reaction rate per unit area Ṙt =
λρs

AB(t). According to the results of the previous section,
equation (22), the self-consistent solution for ρs

AB(t),
equation (15), can be written

ρs
AB(t) = n∞A n

∞
B − λ

∫ t

0

dt′S(d+1)(t− t′)ρs
AB(t′)

− λn(t)
∫ t

0

dt′S(1)(t− t′)ρs
AB(t′),

n(t) ≡ α(t)n∞B + β(t)n∞A . (25)

This “solution” of course involves the unknown function
n(t). From the arguments of the previous section follow-
ing from our assumptions 1 and 2, we know that n(t)
is bounded above and below. Now according to assump-
tion 3, asymptotically ρs

AB(t) ∼ t−δ with δ > 0. Substi-
tuting this power law in equation (25), and substituting
xt ∼ t1/z in the scaling forms of S(d+1)(t) and S(1)(t) from
equations (16, 24), one finds that as t → ∞ the many-
body term dominates over the other time-dependent terms
in equation (25), and up to a constant prefactor is equal
to n(t)t1−1/z−δ. It follows that at long enough times the
many-body term must equal the first term on the rhs of
equation (25), n∞A n

∞
B , plus higher order corrections. Since

n(t) is bounded, this implies that δ = 1 − 1/z and that
n(t) tends to a constant at long times, n(∞). We will
prove in Section 7 that this constant is none other than
the reactant density in the more dense of the two phases:

n(∞) = n∞B . (26)

We remind the reader of our convention throughout this
study, n∞B ≥ n∞A .

Laplace transforming equation (25), t→ E, and recall-
ing that Ṙt = λρs

AB(t), it is simple to obtain the following
self-consistent relation for the Laplace transform of the
reaction rate per unit area, Ṙt(E):

Ṙt(E) =
λn∞A n

∞
B

E
[
1 + λS(d+1)(E) + λn∞B γ(E)S(1)(E)

] ,
γ(E) ≡ n(E)∗[S(1)(E)Ṙt(E)]

n∞B S
(1)(E)Ṙt(E)

· (27)

Here, ∗ indicates convolution in Laplace space. The func-
tion γ(E) has a simple form for small E; since, by
virtue of equation (26), n(E → 0) = n∞B /E, then from
equation (27) one has

γ(E) = 1 +O(E) (E → 0). (28)

Now from equations (1, 16, 24), S(d+1)(t) and S(1)(t) are
algebraic in time. Their Laplace transforms have the form
S(d+1)(E) ∼ E(d+1)/z−1 (valid only in compact dimen-
sions, d + 1 < z) and S(1)(E) ∼ E1/z−1 (always valid).

This section is concerned with the compact case; then we
can rewrite Ṙt(E) in two ways:

Ṙt(E) ≈ λn∞A n
∞
B

E
{

1 + (Et∗2)[(d+1)/z]−1 + γ(E)(Et∗m)(1/z)−1
}

≈ λn∞A n
∞
B

E
{

1 + (Et∗2)[(d+1)/z]−1
[
1 + γ(E)(Etl)−d/z

]} ,
(29)

where

tl ≡ ta
(

1
n∞B a

d

)z/d
,

t∗m ≡ ta
(

1
Qta n∞B a

d

)z/(z−1)

,

t∗2 ≡ ta
(

1
Qta

)z/[z−(d+1)]

, (30)

are essentially the three naturally occurring timescales
introduced in Section 1, generalized to the case of un-
equal initial reactant densities (n∞B ≥ n∞A ). It is impor-
tant to note that the characteristic density determining
these timescales is that of the denser bulk phase B. In
equation (29) for simplicity we have neglected numerical
prefactors in the terms in the denominator.

Note that the three characteristic timescales obey

t∗m = (t∗2)1−d/(z−1)(tl)d/(z−1) (31)

which implies that the magnitude of t∗m always lies be-
tween those of t∗2 and tl. Hence there are only 2 cases
(see Fig. 6). (a) For strongly reactive (“strong”) systems,
Q > Q∗, the ordering of timescales is t∗2 < t∗m < tl. (b)
For “weak” systems, Q < Q∗, one has tl < t∗m < t∗2. The
boundary between strong and weak regimes is defined by
a critical effective local reactivity, at which t∗2 = t∗m = tl:

Q∗ta ≡ (n∞B a
d)[z−(d+1)]/d. (32)

4.1 Strong systems: Q > Q∗, t∗2 < t∗m < tl

Before evaluating Ṙt in different time regimes, we note
that the many body term (the third term in the denom-
inator in Eq. (29)) is unimportant whenever Etl � 1
(corresponding to t � tl). Consider the term (that in-
volving S(1)) in equation (25) from which this many
body contribution is derived. Now imagine replacing n(t)
in this term by its maximum value, n(t) → nmax ≡
αmaxn

∞
B + βmaxn

∞
A , such that n(E) = nmax/E and hence

γ(E) = nmax/n(∞) ≈ 1. It would then indeed follow that
the many body term in equation (29) is higher order for
Etl � 1. Clearly, then, this must always be true.

Consider firstly short times, E−1 � tl. The many
body term can then be neglected. Considering the two
cases E−1 � t∗2 and t∗2 � E−1 � tl, respectively, inverse
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Fig. 6. Reaction rate per unit area as a function of time in the
Q-n∞B plane (n∞B ≥ n∞A ). Units are chosen such that a = ta =
1. (a) Compact case (d+1 < z). (b) Marginal case (d+1 = z).
Reaction kinetics in the noncompact case are the same as in
the “weak” regions of (a) and (b).

Laplace transformation of equation (29) yields

Ṙt = k(2)n∞A n
∞
B ,

k(2) ≈
{
λ t� t∗2
dxd+1

t /dt ∼ t(d+1)/z−1 t∗2 � t� tl
. (33)

These are 2nd order rate kinetics. An initial MF regime is
followed at t∗2 by a DC regime. Notice that the timescale
t∗m is irrelevant. We remind the reader that our analysis
does not describe times less than th (see comments follow-
ing Eq. (12)); hence, if Q is so great that equation (30)
implies t∗2 < th, then equation (33) correctly describes the
second DC regime only.

Now consider very long times E−1 � tl; the many-
body term in equation (29) is then dominant. Since at
long enough times we may replace γ(E)→ 1 as discussed,
one now finds first order kinetics:

Ṙt = k(1)n∞A , k(1) ≈ dxt
dt
∼ t1/z−1 (t� tl). (34)

Thus, at long enough times the reaction rate is controlled
by the diffusion to the interface of the more dilute A
species.

4.2 Weak systems: Q < Q∗, tl < t∗m < t∗2

Now the many-body term in the curly brackets in equa-
tion (29) is much smaller than 1 whenever E−1 � t∗m (this
can be seen by replacing n(t) with its maximum value as in
Sect. 4.1). But for such E values, it is automatically true
that Et∗2 � 1 by virtue of the definition of weak systems
(t∗2 > t∗m), and hence the 2-body term in equation (29)
is also much smaller than unity. It follows that MF 2nd
order kinetics pertain for all times less than t∗m

Ṙt = k(2)n∞A n
∞
B , k(2) ≈ λ (t� t∗m). (35)

Notice that the 2-body and many-body terms are both
proportional to negative powers of E, and that the mag-
nitude of the many-body term’s exponent is the greatest
of the two. Now consider E−1 � t∗m, when the many body
term is much bigger than unity. It follows that this term
is then also much bigger than the 2-body term, because
t∗m < t∗2 for these weak cases. Thus kinetics are first-order
for t� t∗m:

Ṙt = k(1)n∞A , k(1) ≈ dxt
dt
∼ t1/z−1 (t� t∗m). (36)

To obtain equation (36) we have replaced γ(E) → 1 for
small E. For weak systems, neither t∗2 nor tl are relevant.
The reactivity is so small that the two-body term is never
relevant, and 2nd order DC kinetics are absent.

5 Reaction rate in marginal case (d + 1 = z)

The previous section dealt with low compact dimensions,
for which the 2-body return probability in Laplace space
had the form S(d+1)(E) ∼ E(d+1)/z−1. For d+ 1 ≥ z, this
is no longer true. In this section we consider the marginal
case, d+ 1 = z; thus S(d+1) ≈ 1/xd+1

t ∼ 1/t, giving

S(d+1)(E) ≈
∫ ∞
th

dt e−Et
th

hd+1 t

≈ th
hd+1

ln[1/Eth] (Eth � 1). (37)

We have introduced a cut-off at t = th; at shorter times
S(d+1)(t) crosses over to a form appropriate to a d-
dimensional bulk problem, S(d+1) ≈ 1/(hxdt ) whose time
integral gives a contribution of the same order as that from
the lower limit in equation (37).

Aside from this modification, all steps leading to
equation (29) of the compact case are unchanged: the ex-
pression for the reaction rate Ṙt(E) (Eq. (27)) remains
valid, and the form of S(1)(E) is unchanged. Thus,

Ṙt(E) ≈ λn∞A n
∞
B

E

{
1 +

ln(1/Eth)
ln(et∗2/th)

+ γ(E)(Et∗m)1/z−1

}
≈ λn∞A n

∞
B

E

{
1 +

ln(1/Eth)
ln(et∗2/th)

[
1 + γ(E)

(Etl)−d/z

ln(1/Eth)

]} ·
(38)
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Here the definitions of tl and t∗m are unchanged from the
compact case (Eq. (30)), but now

t∗2 ≡ (th/e) e1/(Qta). (39)

Let us define Tl to be the time such that for E < T−1
l

the many-body term (∝ S(1)(E)) dominates over the
two-body term (∝ S(d+1)(E)) in the denominator of
equation (38):

Tl
tl

= [ln(eTl/th)]z/d . (40)

(We have included factors of e in the definitions of t∗2 and
Tl above simply to ensure continuity of reaction rates; see
Eqs. (42, 43) below.)

Analogously to the compact case, the condition t∗2 =
t∗m = Tl defines a critical reactive strength Q∗,

Q∗ta ≡
1

ln [eTl/th]
, (41)

defining the boundary between “weak” and “strong” ki-
netics (see Fig. 6), for which it can be shown that the
3 relevant timescales have the same orderings as for the
compact case.

5.1 Strong systems: Q > Q∗, t∗2 < t∗m < Tl

Consider first short times, E−1 � Tl. Similar reasoning as
for the compact cases implies that the many-body term in
equation (38) can be neglected for such E values. Consid-
ering the two cases E−1 � t∗2 and E−1 � t∗2 one obtains

Ṙt = k(2)n∞A n
∞
B ,

k(2) ≈
{
λ t� t∗2
hd+1/[th ln(et/th)] t∗2 � t� Tl

. (42)

The logarithm arises after inverse Laplace transformation
of 1/{E ln(1/Eth)} which gives 1/ ln(t/th) for t� th. This
is shown in Appendix C.

For long times, E−1 � Tl, the many-body term dom-
inates. Using γ(E) ≈ 1 for small enough E, which is eas-
ily demonstrated using similar arguments to those for the
compact case, one finds first-order DC kinetics which are
no different in structure to those for the compact case (see
Eqs. (34, 36)):

Ṙt = k(1)n∞A ,

k(1) ≈ dxt
dt
∼ t1/z−1 (t� Tl). (43)

5.2 Weak systems: Q < Q∗, Tl < t∗m < t∗2

For small times, E−1 � t∗m, the many body term is much
less than unity; this is also true of the 2-body term since
t∗2 > t∗m (definition of weak system). On the other hand,

when E−1 � t∗m, the many body term is much larger
than unity; it is also much bigger than the logarithmic 2-
body term since E−1 � Tl follows automatically, because
Tl < t∗m. Thus

Ṙt =

{
k(2)n∞A n

∞
B , k

(2) ≈ λ (t� t∗m)
k(1)n∞A , k(1) ≈ dxt/dt ∼ t1/z−1 (t� t∗m)

.

(44)

6 Reaction rate in noncompact case
(d + 1 > z)

In this section high non-compact dimensions are consid-
ered, d+ 1 > z. Perhaps the commonest physical example
of small molecules (z = 2, d = 3) belongs to this class.
Mathematically, the only distinguishing feature is that the
Laplace transform of the 2-body return probability is now
dominated by small times, since S(d+1)(t) of equation (16)
now decays faster than 1/t for times t > th:

S(d+1)(E) ≈
∫ ∞
th

dt e−Et
1

hd+1

(
th
t

)(d+1)/z

≈ th
hd+1

(Eth � 1, z < d+ 1 < z + 1). (45)

The above result is determined by the dominant cut-off
at t = th. In fact it is valid only provided d < z because
only then is the t < th time integral dominated by its up-
per limit, t = th: for these smallest times (which have been
neglected in the original statement of our model, Eq. (12))
one has in effect an infinite bulk reaction problem. It
is as if the interface were infinitely large. Correspond-
ingly, the true return probability is S(d+1) ≈ 1/(hxdt ) for
t < th. When time integrated, for dimensions so high that
even bulk reaction kinetics are non-compact, d > z, the
lower cut-off at ta is now dominant,

∫ th
ta

e−EtS(d+1)dt ≈
taS

(d+1)(ta) for Eth � 1. This contribution now exceeds
that displayed in equation (45), and one has

S(d+1)(E) ≈ ta
had

(Eth � 1, d > z). (46)

Consider firstly z < d + 1 < z + 1. The reaction rate in
Laplace space of equation (27) now reads

Ṙt(E) ≈ λn∞A n
∞
B

E
{

1 +Qbta(adth/hdta) + γ(E)(Et∗m)1/z−1
} ·
(47)

Here γ(E) is the quantity defined in equation (27) and, as
for the compact and marginal cases, it can be shown that
γ(E) ≈ 1 for small enough E. Thus for Qbta < (a/h)z−d

Ṙt =

{
k(2)n∞A n

∞
B , k

(2) ≈ λ (t� t∗m)
k(1)n∞A , k(1) ≈ dxt/dt ∼ t1/z−1 (t� t∗m)

(48)
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whilst for Qbta > (a/h)z−d one has

Ṙt =


k(2)n∞A n

∞
B , k(2) ≈ hd+1/th

(t� th(n∞B h
d)z/(1−z))

k(1)n∞A , k(1) ≈ dxt/dt ∼ t1/z−1

(t� th(n∞B h
d)z/(1−z))

. (49)

Now consider the highest dimensions, d > z. Then
Ṙt(E) is as in equation (47), except one replaces
Qbta(adth/hdta) → Qbta. This leads to equation (48)
which is now valid for all Qb values.

7 Density profile

We have seen that short time 2nd order reaction ki-
netics cross over at a regime-dependent timescale to
1st order diffusion-controlled kinetics. This suggests
that the density fields on either side of the interface,
nA(rA; t), nB(rB; t), are uniform for shorter times but de-
velop depletion holes at the interface of size xt when the
1st order kinetics onset. To demonstrate this explicitly, we
begin by using Doi’s formalism in Appendix A to derive
the density field dynamics for small molecules (z = 2). We
will then generalize results to arbitrary dynamical expo-
nent z. For z = 2, we find{

∂

∂t
−D∇2

A

}
nA(rA; t) = −λδ(xA)ρs

AB(t),{
∂

∂t
−D∇2

B

}
nB(rB; t) = −λδ(xB)ρs

AB(t). (50)

The sink terms on the right hand sides of equation (50)
are proportional to the number of A–B pairs which are
in contact at the interface, per unit area. Noting that
translational invariance parallel to the interface plane im-
plies nA, nB depend on xA and xB only, equation (50) has
solution

nA(xA; t) = n∞A − λ
∫ t

0

dt′G(1)
t−t′(xA)ρs

AB(t′),

nB(xB; t) = n∞B − λ
∫ t

0

dt′G(1)
t−t′(xB)ρs

AB(t′), (51)

where G
(1)
t (x) ≡

∫
drTG

(1)
t (r, 0) is the weighting for a

particle, initially at the interface, to be distant x from the
interface after time t. For arbitrary z, one just uses the
appropriate propagator Gt in equation (51).

Before proceeding, let us use the above dynamics to
prove equation (10), Ṙt = λρs

AB(t), a result that we
have so far assumed as physically obvious. Now the to-
tal number of reactions per unit area is Rt =

∫
dxA[n∞A −

nA(xA; t)]; integrating the first of equations (51) over all
xA and using the fact that G(1)

t (x) is normalized to unity,
one has Rt = λ

∫ t
0 dt′ρs

AB(t′) which proves the desired re-
sult.

In the below we need calculate only one of the density
fields, say the less dense field nA, since one field uniquely

implies the other. This follows after subtracting the two
equations in (51), and using G(1)

t (x) = G
(1)
t (−x), giving

nA(x; t) − nB(−x; t) = n∞A − n∞B . (52)

That is, the difference between mean A and B reactant
densities at equal distances from the interface is constant
in time.

7.1 Long time density at interface

It may appear that equation (51) together with
equations (10, 27) provide a closed solution for the den-
sity fields. However, in fact equation (27) involves the un-
known function γ(E), whose small E behavior is needed
to obtain the long time density fields. Hitherto we have
asserted that its asymptotic behavior is γ(0) = 1, equiv-
alent to the assertion that n(∞) = n∞B (see Eqs. (26–28)
and surrounding discussions). We must now prove these
assertions. To do so, we will first argue that the A density
at the interface, ns

A(t) ≡ nA(0; t), vanishes for long times.
This extra piece of information will allow the determina-
tion of γ(0).

We are able to prove ns
A(∞) = 0 by first relating

ns
A to the like particle correlation functions, ρs

AA(t) ≡
ρAA(0, 0; t) and ρs

BB(t) ≡ ρBB(0, 0; t), on the strength of
the following physically motivated assumption on these
functions:

Assumption 4

[ns
A(t) ]2 ≤ ρs

AA(t), [ns
B(t) ]2 ≤ ρs

BB(t). (53)

This states that reaction-induced correlations can only
increase density-density correlations of like particles, rel-
ative to the totally random case where one would have
ρs

AA(t) = [ns
A(t)]2. That is, we admit the possibility of

clustering of like particles.
To obtain information about ρs

AA and ρs
BB we first re-

late them to ρs
AB. In Appendix D we use Doi’s framework

to derive dynamics for ρAA, ρBB from which we derive the
following exact equation

ρs
AA(t) + ρs

BB(t) = (n∞A − n∞B )2 + 2ρs
AB(t)

+ 2λ
∫ t

0

dt′S(d+1)(t− t′)ρs
AB(t′). (54)

According to the results of Sections 4, 5 and 6, at long
times ρs

AB(t) = Ṙt/λ ∼ t(1/z)−1. (Note this conclu-
sion followed from assumption 3 and is quite independent
of the numerical value of γ(0).) Substituting this power
law in equation (54), using S(d+1)(t) ∼ t−(d+1)/z from
equation (16) and incorporating cut-offs in the marginal
and non-compact cases (see Eqs. (37, 45, 46)) one sees
that the time-dependent terms on the right hand side
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of equation (54) tend to zero at long times. Thus, making
use of equation (52), we obtain from equation (54)

[A(∞)− 1][ns
A(∞)]2 + [B(∞) − 1][ns

B(∞)]2 =
− 2ns

A(∞)ns
B(∞), (55)

where we have defined the unknown functions A and
B such that ρs

AA(t) ≡ A(t)[ns
A(t)]2 and ρs

BB(t) ≡
B(t)[ns

B(t)]2. Note that assumptions 4 imply A(t), B(t) ≥
1; this in turn implies that the lhs of equation (55) is pos-
itive or zero. But the rhs is negative or zero. It follows
that both sides of this equation must vanish, i.e. either or
both of ns

A(∞) and ns
B(∞) vanish. But from equation (52),

ns
A(∞) ≤ ns

B(∞). Hence ns
A(∞) = 0 is proved.

7.2 Full density field

Having determined that ns
A(∞) vanishes, we return to

equations (51) from which we will first determine γ(0) and
then calculate the full density profile. Using the expres-
sion for Ṙt(E) in equation (27), and making the substitu-
tion ρs

AB(E) = Ṙt(E)/λ, equation (51) can be written in
Laplace space as

nA(xA;E) =

n∞A
E

[
1− λn∞B G

(1)
E (xA)

1 + λS(d+1)(E) + λn∞B γ(E)S(1)(E)

]
. (56)

Here the Laplace transform of the propagator G(1)
t (x) has

the following structure:

G
(1)
E (x) = S(1)(E) g̃(xE1/z),

g̃(u)→
{

1 u� 1
0 u� 1

, (57)

where g̃ is a scaling function with the stated limits. We
have used equation (14) and the fact (see Eq. (24)) that
S(1)(t) = G

(1)
t (x = 0).

We can now prove γ(E = 0) = 1. Consider the limit
E → 0 of the expression in equation (56) evaluated at
xA = 0. In this limit the square bracket must vanish since
ns

A(t =∞) = 0. Now for small enough E, the many body
term λn∞B γ(E)S(1)(E) always dominates over the other
two terms 1 and λS(d+1)(E) (see Eqs. (29, 38, 47)). Thus,
using G(1)

E (0) = S(1)(E), we must have γ(0) = 1.
Consider now general values of xA, t and let us compare

the two terms in the brackets on the rhs of equation (56).
According to equation (57), the numerator of the 2nd term
is less than or equal to the many body term in the denom-
inator; it follows that the quotient can be comparable to
1 only for E values sufficiently small that the many body
term dominates. As we saw in equations (29, 38, 47), this
corresponds to times longer than the timescale signifying
the crossover from second to first order kinetics. There-
fore, retaining leading order terms only in equation (56),

one has

nA(xA; t) ≈
{
n∞A “short” times
n∞A f(xA/xt) t→∞

(58)

where

f

(
xA

xt

)
≡ L−1

[
1− g̃(xAE

1/z)
E

]
,

f(u)→
{

0 u� 1
1 u� 1

(59)

and L−1 denotes inverse Laplace transform. Here by
“short” times, we refer to times when second-order kinet-
ics are valid. This completes our calculation of the den-
sity profile, which evidently confirms the physical expec-
tations. One sees that at short times nA(xA; t) retains its
equilibrium value, whereas at longer times a reactant den-
sity depletion hole of size xt develops at the interface (see
Fig. 3).

As an example of the form of f(u), consider small
molecules (z = 2) for which G

(1)
t (x) is a Gaussian. De-

termining G
(1)
E (xA), one finds from equation (59) that

f(u) = erf(u); this is identical to the asymptotic den-
sity profile in the situation in which initially uniformly
distributed small molecules adsorb irreversibly onto a sur-
face [17,18].

8 Segregation effects and decay of interfacial
density, ns

A(t)

We found in Section 7 that the reactant density at the
interface, ns

A(t), tends to zero at long times. In this section
we determine the long time power law decay of ns

A(t),
considering for simplicity the symmetric case only, n∞A =
n∞B . Interestingly, we will find segregation of reactants into
A-rich and B-rich domains at the interface for the compact
case.

We begin by establishing time-dependent bounds on
ns

A(t). Now assumption 4 will lead to an upper bound
of this type, because for the symmetric case ρs

AA(t) can
be determined from equation (54) since ρs

AB(t) is al-
ready known. What we need, in addition, is a lower time-
dependent bound, which we now introduce by making one
further assumption. This assumption is motivated by the
physical expectation that the density of A–B interfacial
pairs, ρs

AB(t), will never exceed the value it would have
if there were no correlations between A and B particles,
namely [ns

A(t)]2. That is, A–B reactions will always tend
to diminish this pair density relative to the uncorrelated
value.

Assumption 5

There exists a positive finite constant b, such that:

b ρs
AB(t) ≤ [ns

A(t)]2 (n∞A = n∞B ). (60)
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8.1 Noncompact case (d + 1 > z)

In Appendix D, equation (D.4), using equation (54) we
show that for large enough times ρs

AA(t) ≈ (n∞A /λ)dxt/dt.
Meanwhile, equations (48, 49) imply that ρs

AB(t) ≈
(n∞A /λ)dxt/dt. Thus the upper and lower long time
bounds on ns

A implied, respectively, by assumptions 4
and 5 are proportional to the same algebraically decay-
ing function of time. Hence

ns
A(t) ≈

√
n∞A
λ

dxt
dt
∼ t(1−z)/(2z)

(t→∞, d+ 1 > z), (61)

up to a (time-dependent) prefactor of order unity.

8.2 Compact case (d + 1 < z)

For this case, as shown in Appendix D, equation (54)
leads to the conclusion (see Eq. (D.5)) that asymptotically
ρs

AA(t) ≈ n∞A x
−d
t ∼ t−d/z. Meanwhile, equations (34, 36)

imply the same decay for ρs
AB as for the noncompact case,

ρs
AB(t) ≈ (n∞A /λ)dxt/dt ∼ t(1−z)/z. Hence the upper and

lower bounds on ns
A(t) implied by assumptions 4 and 5 in-

volve different power laws: ns
A(t) decays at least as slowly

as t−d/(2z) and at least as rapidly as t(1−z)/(2z). This is
insufficient to determine the actual decay.

We can make progress, however, by invoking the
interface analogue of the arguments which were used
by Ovchinnikov and Zeldovich [27], and Toussaint and
Wilczek [28] to analyze the bulk reaction system A+B→
0. According to this generalization, which we have pre-
sented in the introduction, the density of A reactants
at the interface cannot decay faster than

√
n∞A x

−d/2
t ∼

t−d/(2z), which is the rate determined by the decay of fluc-
tuations in the random initial reactant distribution. But
we have already shown that t−d/(2z) is an upper bound.
Hence

ns
A(t) ≈

√
n∞A x

−d/2
t ∼ t−d/(2z)

(t→∞, d+ 1 < z). (62)

Therefore, the asymptotic density decay at the interface is
controlled by the rate of decay of fluctuations. It follows
that A-rich and B-rich regions of linear size xt develop
adjacent to the interface. These are illustrated schemat-
ically in Figure 7. An important point to stress is that
the long time reaction rate is itself not influenced by this
segregation, to leading order: the long time reaction rate
is governed merely by the fact that ns

A(∞) = 0, whilst
segregation effects are associated with higher order terms
in ns

A(t), i.e. the manner in which ns
A decays to zero.

9 Discussion

We have shown here that the critical dimension for reac-
tion kinetics at a fixed interface is dc = z − 1. This is

xt

x

Fig. 7. Schematic representation of asymptotic segregation of
reactants into A-rich and B-rich domains of size xt near to
the interface. This segregation occurs only for sufficiently low
dimensions, d+ 1 < z.

quite different to the result for reactions at a movable and
broadening interface separating 2 miscible phases, which
problem has been widely studied for the case z = 2 where
dc = 2 has been found [4,5,8,9]. For the fixed interface
problem studied here, one has instead dc = 1. The differ-
ence between these 2 critical dimensions is due to the fact
that for the case of miscible reactants, A–B reactions are
not restricted to occur only in a (d−1)-dimensional plane.

The most novel feature to have emerged from this
study is that interfacial reaction kinetics are not of fixed
order. This is rather unusual. For example, trimolecular,
bimolecular and unimolecular reaction processes are gen-
erally governed by 3rd, 2nd and 1st order kinetics, respec-
tively. The peculiar feature here is that 2nd order reaction
rate laws are obeyed at short times, whilst 1st order ki-
netics describe the long time behavior:

Ṙt = k(2)n∞A n
∞
B (2nd order),

Ṙt = k(1)n∞A (1st order). (63)

The 2nd order coefficient k(2) may either be a constant
(mean field kinetics, MF) or time-dependent (diffusion-
controlled kinetics, DC). The time-dependence in the lat-
ter case is k(2) ≈ dxd+1

t /dt. In contrast, the 1st or-
der kinetics are always DC, and the 1st order coefficient
k(1) ≈ dxt/dt is always time-dependent.

An important feature of these 1st order kinetics con-
cerns the different roles played by the two far-field reactant
densities, n∞A and n∞B , in the case where they are unequal.
The timescale at which these kinetics onset (either t∗m or
tl) is determined by the greatest, n∞B . However, the rate
law itself involves the smallest one, n∞A (see Eq. (63)).
Correspondingly, in the region within a distance xt of the
interface the density profile falls to a value close to zero on
the dilute A side, whereas on the denser B side the profile
in this region drops to a finite value close to n∞B − n∞A .

Apart from our main concern, the reaction rate,
this paper has also addressed the evolution of density
fields, key features of which are the densities at the in-
terface ns

A, n
s
B. This enabled us to examine the valid-

ity of the “local mean field” decoupling approximation,
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Ṙt ≈ λns
B(t)ns

A(t), which approximates the densities on
either side of the interface to be independent of one an-
other, ρs

AB ≈ ns
An

s
B. In this picture the denser B side

is viewed as presenting a uniform “reactive surface” of
strength λns

B(t) to the more dilute A reactants. Consider
long times, when the diffusive flux of A particles per unit
area at the interface is n∞A dxt/dt. Equating this to the
reaction rate, one sees that the “local mean field” approx-
imation suggests

ns
A(t) ≈ 1

λns
B(t)

dxt
dt

n∞A

(t→∞, local mean field approx.). (64)

Now in the symmetric case, ns
A = ns

B, the above result
implies ns

A(t) ∼ t(1−z)/(2z). But we saw in Section 8 that
the decay rate is always limited by the rate at which fluc-
tuations in the initial differences between densities on the
A and B side near the interface can diffuse away. This
limiting decay was shown to be ∼ t−d/(2z). This sug-
gests that only in high dimensions, d + 1 > z, is the
ns

A(t) ∼ t(1−z)/(2z) prediction correct; indeed, we demon-
strated this in Section 8. We conclude that the local mean
field approximation is essentially valid for d+1 > z at very
long times. For all low dimensions d+1 < z, however, fluc-
tuations determine the decay law: ns

A(t) ∼ t−d/(2z), seg-
regation occurs at the interface, ns

A and ns
B are no longer

independent and the the local mean-field approximation
is wrong.

Let us make a few comments about the interfacial den-
sities in the asymmetric case, ns

B > ns
A. In this case we

expect equation (64) to be valid for all dimensions, since
ns

B(∞) = n∞B − n∞A is then non-vanishing (see Eq. (52)).
Hence the B side will indeed supply a uniform reactive
surface for the A reactants. Thus, we expect a different
decay law, ns

A ∼ t(1−z)/z for all dimensions. If the initial
reactant densities n∞A , n

∞
B are almost but not quite equal

to one another, we expect the symmetric case results will
be valid up to a cross-over time at which ns

B(t) drops to a
value close to its asymptotic value, n∞B − n∞A . Thereafter,
equation (64) will correctly describe ns

A.
We stress that this study has concerned irreversible re-

actions. Thus an equilibrium state is never attained. The
final state will be governed by saturation effects at the in-
terface, which have not been considered here. As t →∞,
in principle a final state will be attained in which reac-
tion product fills every available surface site (in practice,
however, the timescale for this state to be reached may be
experimentally inaccessible [20,21]).

To conclude, consider a few specific examples. An im-
portant parameter determining the class of reaction kinet-
ics is the dimensionless local reactivity, Qbta. Perhaps the
most useful relation to help one estimate its value for a
given system is Qbta ≈ kbulk/kbulk

rad where kbulk ≈ Qba
3

is the bulk rate constant, i.e. the 3-dimensional rate con-
stant which would describe A–B reaction kinetics if the
molecules could react anywhere within the bulk (see in-
troduction). Here kbulk

rad ≈ a3/ta ≈ 109 l mol−1 s−1 is the
same quantity for radicals which are nature’s most reac-
tive chemical species. We assume here the molecular size

a is roughly the same (a ≈ 3 Å) in all small molecule
cases. Thus if one has access to kbulk for an A–B system,
then one can estimate Qbta. In the case where the reac-
tive groups are attached to polymer chains, kbulk refers of
course to the small molecule bulk analogue reaction sys-
tem, i.e. the rate constant describing reactions between
the same species after removal from their host polymer
chains.

Small molecules: z = 2, d = 3

Consider firstly unequal initial bulk densities, n∞A 6= n∞B .
The early 2nd order behavior is non-compact (d+ 1 > z)
and MF 2nd order kinetics pertain with k(2) = h(Qba3).
These continue until t∗m = D/[h(Qba3)n∞B ]2, when first
order kinetics onset with time-dependent rate constant
k(1) = D/(Dt)1/2 where D is the molecular diffusivity.
Note that the cross-over time t∗m is determined by the
greater of the two far-field densities, n∞B .

The density profile on the less dense A side is (to lead-
ing order) identical to the “reactive surface” situation,
having a depletion hole of size (Dt)1/2. The A density at
the interface decays for long times to zero as ns

A ∼ 1/t1/2.
There is no “hole” on the more dense B side, though the
density is reduced from its initial value over a region ex-
tending (Dt)1/2 into the bulk and has the long time value
n∞B −n∞A at the interface. The symmetric case, n∞A = n∞B ,
is different: there are long time holes on both sides and
the interfacial density decay is ns

A ∼ 1/t1/4.
Typical numerical values are a ≈ h ≈ 3 Å and D ≈

10−5 cm2/s. Now for the vast majority of reacting species,
kbulk . 103 l mol−1 s−1, implying t∗m & 10 s/φ2

B, where
φB = n∞B a

3 is the far-field volume fraction of B reactants.
Thus, depending on the value of φB, this timescale may
become so large that the diffusion-controlled kinetics get
washed out by other effects such as convection. For highly
reactive species such as radicals, on the other hand, one
has kbulk ≈ 109 l mol−1 s−1 and t∗m ≈ 10−10 s/φ2

B; these
kinetics are then observable over a very large range of
densities.

Small molecules in d = 1

This is a marginal situation (z = d+ 1) arising in systems
where small molecules (z = 2) are restricted to an effec-
tively one-dimensional geometry, e.g. molecules trapped
in a thin tube.

For highly reactive species, Qbta ≈ 1 (i.e. kbulk ≈
kbulk

rad ) the initial regime is 2nd order with a weakly time-
dependent rate constant k(2) ≈ D/ ln(t/th). At time
Tl = D−1(n∞B )−2[ ln(n∞B h)2 ]2 first order kinetics onset
with time-dependent k(1) = D/(Dt)1/2.

For most cases, however, the local dimensionless reac-
tivity Qbta will be below a very high threshold value (i.e.
very close to unity) given by Q∗bta = (a/h)/[ ln(n∞B h)2 ]2.
In such cases an initial 2nd order mean field regime with
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k(2) = Qbha = kbulkh/a2 is followed at time t∗m =
ta/(Qbtan∞B h)2 by the same 1st order kinetics. In all cases
a depletion hole of size (Dt)1/2 grows at long times on the
dilute A side.

Unentangled polymers, short times: z = 4, d = 3

Consider an interface separating two immiscible unentan-
gled polymer melts comprising chains with degree of poly-
merization N and radius of gyration R, each carrying
one reactive group. Thus the density of reactive groups
is n∞A = n∞B = 1/(Na3) or equivalently φA = φB = 1/N .
Then Rouse dynamics apply [25,26], xt ≈ R(t/τ)1/4 for
times less than the single chain longest relaxation time,
τ ≈ taN

2. Thus, for t < τ , we are in the marginal situa-
tion z = d+ 1 = 4.

Consider first the maximally reactive case Qbta =
1. Initially kinetics are 2nd order with weakly time-
dependent rate constant k(2) = (R4/τ)/ ln(t/th).
The cross over to first order kinetics, with k(1) ≈
(R/τ) (t/τ)−3/4, occurs at Tl = taφ

−4/3
B ln(φ−4/3

B a4/h4).
For typical values h/a = 5, N = 200 one has Tl ≈ 0.02 τ .

For less reactive species, Qbta < Q∗bta where Q∗bta ≈
a/[h ln(φ−4/3

B a4/h4)], the kinetics are different. (For the
above typical numerical values, Q∗bta ≈ 0.7.) In this case
second order MF kinetics with k(2) = h(Qba3) are followed
at t∗m = ta[Qb(h/a)taφB]−4/3 by 1st order kinetics with
k(1) = (R/τ)(t/τ)−3/4.

In both of these examples, a long time depletion hole
grows on the dilute A side whose size increases in time as
xt ≈ R(t/τ)1/4.

Entangled polymers, “breathing” modes: z = 8, d = 3

Consider the same polymer example as above, but now
chains are entangled. Using the reptation model to de-
scribe the polymer dynamics, let us ask what reaction
kinetics are during the short time “breathing modes”
regime (te < t < tb) when [25,26] xt = re(t/te)1/8. Here
te = N2

e ta is the entanglement time (Ne being the entan-
glement threshold), tb = (N/Ne)2te is the Rouse time for
the one-dimensional tube motion and re = N

1/2
e a is the

tube diameter. This is an interesting example of a compact
case, d+ 1 < z = 8.

Consider very reactive groups such as radicals, Qbta ≈
1, and n∞B values such that tl (the diffusion time corre-
sponding to a distance equal to the typical separation be-
tween the B reactive groups) satisfies te < tl < tb. Then
tl = te(n∞B r

3
e )−8/3. Now for t > te there is no MF regime

and kinetics are 2nd order DC, k(2) ≈ (r4
e/te)(t/te)

−1/2.
For t > tl the kinetics become 1st order with k(1) =
(re/te)(t/te)−7/8 and a depletion hole grows on the A side
of size ∼ t1/8.

As a specific example, if all B-chains carry one reactive
end-group (n∞B a

3 = 1/N) and N ≈ 104, Ne ≈ 200 one has
tl ≈ 30te ≈ 10−3tb. Thus both 2nd and 1st order kinetics
as described above will occur within the t1/8 regime.

This work was supported by the National Science Foundation
under grant No. DMR-9403566. We thank Uday Sawhney for
stimulating discussions.

Appendix A: Derivation for z = 2
of dynamical equations for 2-body
and 1-body density correlation functions

In this Appendix we employ the second-quantization for-
malism for classical many-particle systems developed by
Doi [42] to derive exact evolution equations, in the case
of small molecules (z = 2), obeyed by the 2-body correla-
tion functions ρAB, ρAA, ρBB and the density fields nA, nB.
We do not attempt here a self-contained discussion of
the Doi formalism: the reader is referred to Doi’s papers,
reference [42], for the necessary background.

In the Doi formalism any physical quantity A is
mapped onto a quantum operator Ã given in terms of
the Bose creation and annihilation operators. For systems
consisting of two types of particles, A and B, there are
two types of Bose operators, ψA(r), ψB(r), for every spa-
tial location r. These satisfy the following commutation
relations

[ψν(r), ψ†µ(r′)] = δ(r− r′)δνµ,

[ψ†ν(r), ψ†µ(r′)] = [ψν(r), ψµ(r′)] = 0, (A.1)

where ν = A,B and µ = A,B. The dynamics of A(t) are
determined by a quantum propagator G̃,

A(t) =
〈

1
∣∣∣Ãe−G̃t

∣∣∣ c〉 . (A.2)

Here, 〈1| ≡ 〈0| exp[
∫

drAψA(rA)
∫

drBψB(rB)] is a co-
herent state, 〈0| is the vacuum state and 〈1|ψ†A(r) =
〈1|ψ†B(r) = 〈1| . The quantum state |c〉 represents the
initial state of the system; although its form will not
be relevant in the subsequent calculations, we remark
that in the case where A and B particles are initially
randomly distributed with densities n∞A and n∞B then
|c〉 = exp[n∞A n

∞
B

∫
drAψ

†
A(rA)

∫
drBψ

†
B(rB)] |0〉.

In the present reaction-diffusion interface problem, the
propagator G̃ = G̃0 +G̃r consists of a “diffusion” part, G̃0,
and a “reaction” part, G̃r. For small molecules obeying
simple Fickian diffusion, according to Doi [42]

G̃0 = −D
∫

drAψ
†
A(rA)∇2

AψA(rA)

−D
∫

drBψ
†
B(rB)∇2

BψB(rB). (A.3)

The reaction part, G̃r, is constructed [42] from the reaction
sink function which in our model is λδ(xA)δ(rA− rB). We
find that the corresponding quantum operator is

G̃r = λ

∫
drT

{
ψ†A(rT)ψ†B(rT)ψA(rT)ψB(rT)

−ψA(rT)ψB(rT)
}
. (A.4)
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The two annihilation operators in the second term in G̃r

are responsible for reactions between A–B pairs in contact
at the interface, while the first part is necessary to ensure
proper normalization of averages [42].

Differentiating equation (A.2), and using the identity
〈1| G̃ = 0 which follows from the above definition of G̃,
one has

dA(t)
dt

=
〈

1
∣∣∣[G̃, Ã]e−G̃t

∣∣∣ c〉 . (A.5)

We can now derive the dynamical equations obeyed by
the correlation functions from equation (A.5). The opera-
tor representations of the many-body correlation functions
are [42] as follows:

ñν(r) = ψ†ν(r)ψν(r),

ρ̃µν(r, r′) = ψ†ν(r)ψ†µ(r′)ψν(r)ψµ(r′),

ρ̃σµν(r, r′, r′′) = ψ†σ(r)ψ†µ(r′)ψ†ν(r′′)ψσ(r)ψµ(r′)ψν(r′′)

(σ, µ, ν = A,B).
(A.6)

From equation (A.5), with A = nA and Ã = ñA, and using
the above representation for ñA, one obtains

dnA(rA; t)
dt

= D∇2
A 〈1|ψ

†
A(rA)ψA(rA)e−G̃t |c〉

− λδ(xA) 〈1|ψ†A(rT
A)ψ†B(rT

A)ψA(rT
A)ψB(rT

A)e−G̃t |c〉
(A.7)

after using the commutation relations of equation (A.1)
and the properties of the coherent state 〈1|. From
equations (A.6, A.2) one recognizes this as the first of
equations (50) in the main text (dynamics of nA, nB). No-
tice that the commutation of G̃ with ñ in equation (A.5)
produced, among other quantities, a higher order correla-
tion function; this is the origin of the hierarchical structure
of the reaction-diffusion equations.

Performing a similar analysis for the 2-body correla-
tion functions (setting A = ρµν and Ã = ρ̃µν) one obtains
equations (12) (dynamics of ρAB) and equation (D.1) (dy-
namics of ρAA, ρBB).

Appendix B: Proof that relative contribution
of region I to IA

m(t) is order unity

We saw in Section 3 that the many-body integral term
IA
m(t) involving ρBAB(r|0, 0; t) in equation (19) receives

contributions from two space-time regions, I and II. In
this appendix we demonstrate that the contribution from
region I is a fraction of order unity of the value of IA

m(t)
itself. We show this by firstly deriving an upper bound
on IA

m(t). Then we derive a lower bound on IA
m(t) corre-

sponding to ρBAB being zero in region II and having its
minimum value in region I. The lower and upper bounds
will then be shown to be of the same order, proving the

desired result. These bounds are all consequences of as-
sumptions 1, 2 and 3 (see main text).

From assumption 1 one sees that the substitution
ρBAB(r′B|0, 0; t) → Un∞B in the expression for IA

m(t)
(Eq. (19)) defines an upper bound on IA

m(t),

IA
m(t) ≤ Un∞B

∫ t

0

dt′S(1)(t− t′)ρs
AB(t′), (B.1)

where we have used equation (13) to perform the integra-
tion.

Now assumption 2 implies that

ρBAB(r′B|0, 0; t′) ≥
{
Ln∞B x′B/xt′ > 1, region I
0 x′B/xt′ < 1, region II

.

(B.2)

Substituting the above lower bound on ρBAB in the ex-
pression for IA

m(t) of equation (19), we obtain the following
lower bound on IA

m(t)

IA
m(t) ≥ Ln∞B

∫ t

0

dt′
1

xt−t′
ρs

AB(t′)
∫

ξx>(xt′/xt−t′ )

ddξ h(ξ),

(B.3)

where we have used the following scaling structure for the
function Ft(r′B) appearing in the expression for IA

m(t) of
equation (19),

Ft(r′B) =
1

xd+1
t

h

(
r′B
xt

)
, h(u)→

{
1 u� 1
0 u� 1

. (B.4)

This follows from equation (14). The integration variable
in equation (B.3) is ξ = r′B/xt−t′ and ξx denotes the com-
ponent of ξ orthogonal to the interface.

Now using equation (B.4), there exists a positive con-
stant E of order unity such that∫
ξx>(xt′/xt−t′ )

ddξ h(ξ) ≥{
E (xt′/xt−t′ < 1 or t′ < t/2)
0 (xt′/xt−t′ > 1 or t′ > t/2)

. (B.5)

Expression (B.5) in inequality (B.3) implies that

IA
m(t) ≥ ELn∞B

∫ t/2

0

dt′
1

xt−t′
ρs

AB(t′). (B.6)

Notice that according to equation (16), S(1)(t) ≈ 1/xt.
Therefore, inequality (B.6) is very close to showing that
the lower bound on IA

m(t) is of the same order as the
upper bound in equation (B.1), except for the fact that
the time integral on the right hand side of this inequality
has upper limit t/2 rather than t. However, if one makes
the replacement t/2 → t for this upper limit, this yields
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the same result to within a constant of order unity. This
is a consequence firstly of the fact that since z > 1 in
equation (1) thus both

∫ t/2
0

dt′/xt−t′ and
∫ t
t/2

dt′/xt−t′ are
of the same order, and secondly that ρs

AB(t′), according to
assumption 3, is a decreasing function of time.

Thus we have shown that the upper and lower bounds
on IA

m(t) are of the same order. But the crucial point is
that the lower bound on IA

m(t) of equation (B.3) results
from an integration receiving zero contribution from re-
gion II and minimal contribution from region I. It follows
that the actual contribution from region I must be of the
same order as the actual value of IA

m(t).

Appendix C: Inverse Laplace transform
of 1/(E ln E)

We show in this appendix that

L−1

[
−1

E ln(Eth)

]
=

1
Γ (1) ln(t/th)

(t� th), (C.1)

where L−1 denotes inverse Laplace transform. Now it is
well-known that

L−1

[
1

(Eth)n

]
=

tn−1

th
nΓ (n)

(n > 0). (C.2)

Integrating both sides of equation (C.2) with respect to n
from n = 0 to n = 1 then gives

L−1

[(
1− 1

Eth

)
1

lnEth

]
=

1
t

∫ 1

0

en ln(t/th)

Γ (n)
dn. (C.3)

The function 1/Γ (n) is finite for all n in [0, 1]. Thus, ex-
panding 1/Γ (n) in a Taylor series around n = 1 in the
integral on the rhs of equation (C.3), we obtain

1
t

∫ 1

0

en ln(t/th)

Γ (n)
dn =

1
Γ (1)th ln(t/th)

+O

(
1

th[ln(t/th)]2

)
(t� th). (C.4)

Considering the limit t � th, corresponding to Eth � 1,
from equations (C.3, C.4) we deduce equation (C.1).

Appendix D: Like particle correlation
functions ρAA, ρBB: asymptotic decay
and proof of equation (55)

Using Doi’s second-quantization formalism [42] it is
shown in Appendix A that for z = 2 (small molecules)
ρAA(rA, r′A; t) and ρBB(rB, r′B; t) obey the following

dynamics{
∂

∂t
−D [∇2

rA
+∇2

r′A
]
}
ρAA(rA, r′A; t) =

− λδ(xA)ρAAB(rA, r′A, rA; t)

− λδ(x′A)ρAAB(rA, r′A, r
′
A; t){

∂

∂t
−D [∇2

rB
+∇2

r′B
]
}
ρBB(rB, r′B; t) =

− λδ(xB)ρBBA(rB, r′B, rB; t)

− λδ(x′B)ρBBA(rB, r′B, r
′
B; t).

(D.1)

Equations (D.1) have a similar form to equation (12) for
the ρAB(rA, rB; t) dynamics except that the two-body sink
term responsible for pair reactions in equation (12) is ab-
sent since two particles of the same species cannot re-
act with one another. Solving equations (D.1) and setting
rA, r′A, rB, r′B = 0 we obtain

ρs
AA(t) = (n∞A )2 − 2λIB

m(t),

ρs
BB(t) = (n∞B )2 − 2λIA

m(t), (D.2)

where IA
m(t), IB

m(t) are defined in equation (17) of
Section 2 and are the identical many-body integral ex-
pressions which appeared in the solution for ρs

AB of
equation (15).

Using the above expressions for the like interfacial pair
densities together with equation (15) for ρs

AB, one obtains
the exact relation displayed in equation (54). This result
tells us we can determine the sum ρs

AA(t) + ρs
BB(t) from

knowledge of ρs
AB(t). For general z, equation (54) remains

valid, provided one replaces everywhere the Gaussian z =
2 propagator with the propagator Gt appropriate to the
dynamics.

Consider the symmetric case, ρs
AA(t) = ρs

BB(t).
Laplace transforming equation (54) we obtain

ρs
AA(E) = ρs

AB(E)
{

1 + λS(d+1)(E)
}

(n∞A = n∞B ).

(D.3)

In the non-compact case (d + 1 > z), from equa-
tions (45, 46), according to which S(d+1)(E) is a constant,
and from the asymptotic form of ρs

AB(t) = Ṙt/λ ∼ t1/z−1

(see Eqs. (48, 49)) one has

ρs
AA(t) ≈


{(1 + λth/h

d+1)/λ} n∞A dxt/dt
z < d+ 1 < z + 1

{(1 +Qbta)/λ} n∞A dxt/dt
d > z

(n∞A = n∞B , t→∞). (D.4)

Meanwhile in the compact case, from equation (16) one
has S(d+1)(E) ∼ E(d+1)/z−1; thus, using ρs

AB(E) =
Ṙt(E)/λ ∼ E−1/z from equation (29), valid for E → 0,
one has from equation (D.3)

ρs
AA(t) ≈ n∞A x−dt ∼ t−d/z

(d < z, n∞A = n∞B , t→∞). (D.5)
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