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Abstract. We study the reaction kinetics of end-functionalized polymer chains dispersed in an unreactive
polymer melt. Starting from an infinite hierarchy of coupled equations for many-chain correlation functions,
a closed equation is derived for the 2nd order rate constant k after postulating simple physical bounds.
Our results generalize previous 2-chain treatments (valid in dilute reactants limit) by Doi [1], de Gennes
[2], and Friedman and O’Shaughnessy [3], to arbitrary initial reactive group density n0 and local chemical
reactivity Q. Simple mean field (MF) kinetics apply at short times, k ∼ Q. For high Q, a transition occurs to
diffusion-controlled (DC) kinetics with k ≈ x3

t/t (where xt is rms monomer displacement in time t) leading
to a density decay nt ≈ n0 − n2

0x
3
t . If n0 exceeds the chain overlap threshold, this behavior is followed

by a regime where nt ≈ 1/x3
t during which k has the same power law dependence in time, k ≈ x3

t/t, but
possibly different numerical coefficient. For unentangled melts this gives nt ∼ t−3/4 while for entangled
cases one or more of the successive regimes nt ∼ t

−3/4, t−3/8 and t−3/4 may be realized depending on the
magnitudes of Q and n0. Kinetics at times longer than the longest polymer relaxation time τ are always
MF. If a DC regime has developed before τ then the long time rate constant is k ≈ R3/τ where R is the
coil radius. We propose measuring the above kinetics in a model experiment where radical end groups are
generated by photolysis.

PACS. 82.35.+t Polymer reactions and polymerization – 05.40.+j Fluctuation phenomena, random
processes, and Brownian motion – 05.70.Ln Nonequilibrium thermodynamics, irreversible processes

1 Introduction

The study of polymer-polymer reaction kinetics is a fun-
damental problem in polymer science. Such reactions oc-
cur in many technologically important processes such
as vulcanization of rubbers and free radical polymeriza-
tion [4]. Compared to analogous reactions between small
molecules, polymer reaction kinetics are novel in that they
reflect static and dynamic properties of the polymer chains
which are host to the reacting groups. Theoretical studies
predict that rate constants depend both on the degree
of polymerization and time [1,2,5]. Model experiments
[6,7] and numerical simulations [8,9] testing these laws
thus offer a way to probe fundamentals of polymer dy-
namics. In this paper we focus on reactions between end-
functionalized chains in a polymer melt. So far, no sys-
tematic experiment exists measuring rate constants in a
melt as a function of molecular weight and time. It is our
aim to motivate such model experiments by developing a
complete theoretical picture for such reactions for direct
comparison with experiment.

The situation we analyze is illustrated in Figure 1. We
imagine that at t = 0 a certain fraction of the chains
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Fig. 1. End-functionalized polymer chains (coil radius R) dis-
persed within a polymer melt of inert but otherwise identical
chains. The initial density of reactive groups is n0.

randomly and uniformly distributed in a monodisperse
polymer melt carry chemically reactive end-groups. Ex-
perimentally this can be realized for example by attach-
ing photocleavable groups to the ends of a certain frac-
tion of the melt chains [10]. A laser pulse then cleaves
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Fig. 2. Schematic of the situation immediately after photoly-
sis of functional end-groups by a laser pulse generating radical
pairs (consisting of a monomeric radical and a macroradical).
The concentrated regime (overlapping reactive coils) is illus-
trated. After a transient most of the more mobile monomeric
radicals react leaving behind a fraction of order unity of the
polymer radicals. The situation of Figure 1 is then recovered.

these groups into radical pairs (Fig. 2), one of which is
a small molecule and the other of which is attached to
the end of the chain (a macroradical) [11]. It was shown
in reference [10] that after a transient the small radicals
disappear, leaving behind a fraction of order unity of the
macroradicals. The reaction kinetics of these kinetically
isolated macroradicals will then follow the kinetics devel-
oped in the following.

Anticipating second order kinetics, our aim is to de-
termine the second order time-dependent rate constant kt
defined by

ṅt ≡
dnt

dt
= −ktn

2
t , (1)

where nt is the number density of reactive groups at
time t. Now for the usual case of reactions between small
molecules, kt is independent of time. This is so because
small molecules (size a) obey simple Fickian diffusion,
xt ∼ t1/2, where xt is the rms displacement in time t.
This is a very dilute exploration of space (the exploration
volume x3

t increases faster than t) and diffusion is fast
enough to smooth out any reaction-induced correlations
[2,12]. Thus reactant distribution remains uniform and
random at all times, the number of pairs per unit volume
which are in contact at time t is therefore a3n2

t , and hence
ṅt ≈ Qa3n2

t where the local reactivity Q measures proba-
bility of reaction per unit time when in contact. This im-
plies a time-independent rate constant k ≈ Qa3. For “in-
finitely” reactive groups for which Q is effectively equal to
the rate at which diffusion brings apart a pair of molecules
in contact, i.e. Q ≈ 1/ta where ta is the reactant relax-
ation time, this leads to the well-known Smoluchowski [13]
rate constant k ≈ a3/ta ≈ Dsmalla where Dsmall ≈ a2/ta
is the small molecule self-diffusivity.

Interpolymeric reaction kinetics are more complicated.
For times shorter than the longest polymer relaxation time
τ , corresponding to a diffusion distance of order the coil
radius R, reactive groups attached to polymer chains ex-
plore space in a dense way: the dynamical exponent z,
defined by xt ∼ t1/z, is 4 or 8 depending on the degree of
entanglement and time [14,15]; thus the exploration vol-
ume x3

t is increasing more slowly than t and the number of
times reactive groups visit points within their exploration
volumes is an increasing function of time. This was clearly
pointed out by de Gennes [2] who differentiated between
“compact” exploration when z is greater than the dimen-
sionality of space d and “non-compact” for z < d.

Now in the limit in which reactants are very dilute,
n0R

3 � 1, the probability that by time τ a reactive
group’s exploration volume contains a second reactive
group is very small. Hence for t < τ reactions are due
to the few isolated pairs which happened to be initially
within diffusive range, i.e. the members of which were ini-
tially within xt of one another. Due to the compact explo-
ration, for times greater than t the number of collisions
between such a pair grows without bound. Therefore for
“infinitely” reactive groups (Qta ≈ 1) reaction is almost
certain by t. Thus a depletion hole of size xt starts to grow
in the 2-body correlation function. The number of reacted
pairs per unit volume is x3

tn
2
0, which when differentiated

with respect to time implies a short time time-dependent
rate constant kt ≈ x3

t /t. Diffusion dynamics change at τ ,
since center of gravity Fickian diffusion of the whole chain
takes over, xt ∼ t1/2. The hole in the 2-body correlation
function stops growing and the situation is as in the small
molecule infinite reactivity case, but now with an effec-
tive capture radius R reflecting the short time compact
dynamics. Thus

kt ≈

x3
t /t (t < τ)

(Qta = 1, n0R
3 � 1).

R3/τ (t > τ)
(2)

The t > τ expression for k was first obtained by
Doi [1,16] for unentangled melts and was extended by
de Gennes [2] to t < τ and entangled cases. Friedman and
O’Shaughnessy [3] derived k using the renormalization
group.

The generalization of equation (2) to the concentrated
regime, n0R

3 � 1, is far less obvious and is one of the
main objectives of this paper. In this case the timescale
by which a reactive group will almost certainly contain
another group within its exploration volume occurs dur-
ing the compact regime, t < τ . During this regime one
can no longer assign reactions to pairs since a given group
has the opportunity to react with more than one part-
ner. A proper study of the reaction kinetics requires a
full many-body treatment. Such a many-body formalism
involves an infinite hierarchy of coupled dynamical equa-
tions for correlation functions of different orders [17,18].
Other than renormalization group analyses [19,20], this
complication is typically resolved by decoupling approxi-
mations expressing higher order correlations in terms of
lower order correlation functions [21]. In our approach
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we are able to derive closed equations after assuming much
less restrictive bounds on the magnitude of correlation
functions. We show that the implicit assumption of ref-
erence [2], namely that equation (2) is also valid in the
concentrated regime, is correct.

Our study is also general in terms of the local reactivity
Q. This is very important experimentally, since typical
chemical reactivities are extremely small [22,23], Qta .
10−6, with the exception of radical species which are very
close to being infinitely reactive, Qta ≈ 1 [24].

In the following section we present the many-body for-
malism describing polymer-polymer reaction kinetics and
introduce our assumptions on the magnitude of correla-
tion functions. This results in a closed equation for k. We
solve this equation in Section 3 in terms of xt and iden-
tify sequences of kinetic regimes depending on the values
of Q and n0. We apply these general results to the case
of unentangled and entangled melts in Sections 4 and 5,
respectively. Results are presented in the form of a “phase-
diagram” in the Q-n0 plane, different regions of which cor-
respond to different kinetic sequences. We conclude with
a discussion of our results in Section 6.

2 Solution for rate constant kt

Consider the situation illustrated in Figure 1 in which re-
active ends are initially randomly distributed with density
n0. Reactions commence at t = 0. Let us define ρt(r1, r2)
to be the 2-body correlation function of reactive chain
ends located at r1, r2. Translational invariance implies ρt
is a function of r1–r2 only. Now the reaction rate per unit
volume at point r is proportional to the number density
of pairs in contact at r, a3ρ(r, r), multiplied by the local
reactivity Q. Here a is the monomer size. Using the fact
that translational invariance implies the average density
nt is independent of r one has

ṅt = −λρt(0, 0), λ ≡ Qa3. (3)

Thus the calculation of the reaction rate requires evalua-
tion of the 2-body correlation function. A rigorous dynam-
ical equation for ρt in the case of reactions between small
molecules has been derived by Doi in reference [18]. In the
polymer reaction problem considered here, in order to de-
rive a closed relationship for ρt in terms of the degrees of
freedom specifying the location of the reactive ends only,
one must first average out the degrees of freedom specify-
ing the locations of the other monomers; this is non-trivial
and requires renormalization group (RG) methods. How-
ever, RG studies of 2-body bulk polymer reaction kinetics
[3,25] indicate that the basic physics is completely cap-
tured by the approximate closing of the system in terms
of the coordinates of reactive groups: correct scaling be-
haviors are obtained, only the prefactors being unreliable.
Making the approximation of closure in terms of reac-
tive degrees of freedom, then the ρt dynamics involves the

(r2
(r2

, )(r1 t

,(r1 t ) ,(r1 t )

many-body term

, )(r1

two-body term

, )t t , )t

,(r t )2

Fig. 3. The depletion in the number density of reactive groups
at r1, r2 originates from two terms in equation (4). The two-
body term subtracts off those pairs which would have been
at r1, r2 at time t, but failed to do so because both members
reacted at an earlier time t′ at point r′1. The many-body term
subtracts off pairs which would have been at r1, r2 had there
been no reactions, but failed to arrive because one member of
the pair reacted at an earlier time.

3-body reactive groups correlation function ρ
(3)
t (r1, r2, r3)

[18,26]:

ρt(r1, r2) = n2
0 − λ

∫
dr′1dr

′
2

∫ t

0

dt′Gt−t′(r1, r2, r
′
1, r
′
2)

× ρt′(r
′
1, r
′
2)δ(r′1 − r′2)− λ

∫
dr′1dr

′
2dr
′
3

×

∫ t

0

dt′Gt−t′(r1, r2, r
′
1, r
′
2)ρ

(3)
t′ (r′1, r

′
2, r
′
3)

× {δ(r′1 − r′3) + δ(r′2 − r′3)},
(4)

where Gt(r1, r2, r
′
1, r
′
2) is the equilibrium chain end prop-

agator giving the net weighting for two ends to arrive at
r1, r2 given starting points r′1, r

′
2 in the absence of reac-

tions. This is a well-known object. The sink terms on the
right hand side of equation (4) (illustrated in Fig. 3) de-
scribe the three ways in which reactions diminish ρt from
its initial value n2

0. The first two-body sink term subtracts
off pairs which failed to reach r1, r2 because their members
reacted with one another at r′1 at time t′. The remaining
two sink terms subtract off pairs which would be at r1, r2

but only one member of which reacted at time t′ at loca-
tion r′3. Such a reaction involves a third chain, weighted
by the appropriate 3-chain correlation function. These are
many-chain terms; were they absent, one would have a
closed 2-chain system. In references [1,2] these terms were
omitted. As explained in the introduction one expects such
a 2-body approach to be valid in the dilute limit. In equa-
tion (4) we used a δ function as a reactive sink. This is a
coarse-grained description of the reaction process over a
scale of order the monomer size a.

Notice that equation (4) is not closed in terms of ρt
since it involves the unknown ρ

(3)
t . It is in fact impossi-

ble to write a closed exact equation for ρt since correla-
tion functions of all orders are coupled in an infinite hi-
erarchy of dynamical equations [18,17]. This complication
which arises in all many-body reacting systems is typically
resolved by approximating 3-body correlations in terms
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of lower order correlation functions [21]. In this study
we are able to write a closed equation for ρt after as-
suming less restrictive bounds on the magnitude of cor-
relation functions. To explore the constraints imposed by
these bounds we first transform equation (4) to an integral
expression for the function qt(r, 0) ≡ ρt(r, 0)/n2

t . Notice
that equation (1) then implies kt = λqt(0, 0). It is demon-
strated in Appendix A that after making this change of
variables, one has

qt(r, 0) = 1−

∫
dr′1

∫ t

0

dt′Gt−t′(r, 0, r
′
1, r
′
1)kt′

+ 2

∫
dr′1dr

′
2

∫ t

0

dt′Gt−t′(r, 0, r
′
1 + r′2, r

′
2)

× kt′{ρt′(r
′
1|0)− ρ(3)

t′ (r′1|0, 0)}, (5)

where ρt(r|0) and ρ
(3)
t (r|0, 0) are the conditional reactive

chain end densities at r, given one and two reactive ends,
respectively, at the origin:

ρt(r|0) ≡
ρt(r, 0)

nt
, ρ

(3)
t (r|0, 0) ≡

ρ
(3)
t (r, 0, 0)

ρt(0, 0)
· (6)

Equation (5) can be reexpressed in terms of the propaga-
tor Gsept (r1, r2) ≡

∫
dr′2Gt(r

′
1, r
′
1 + r1, r

′
2, r
′
2 + r2), namely

the probability density two chains ends are separated by
r1 at time t given initial separation r2. Thus equation (5)
becomes

qt(r, 0) = 1−

∫ t

0

dt′Gsept−t′(r, 0)kt′ + ϕt(r), (7)

where

ϕt(r) ≡

∫ t

0

dt′
∫
dr′Gsept−t′(r, r

′)kt′µt′(r
′),

µt(r) ≡ 2{ρt(r|0)− ρ(3)
t (r|0, 0)}. (8)

We want to solve equation (7) for kt or equivalently for
qt(0, 0). This requires information on the properties of
ϕt(0) which in turn involves 2-body and 3-body condi-
tional densities. Now we make the assumption that the
more reactive groups placed at the origin, the lower the
conditional density. Chemical reactivity can only induce
anticorrelations. Thus:

ρ
(3)
t (r|0, 0) ≤ ρt(r|0) ≤ nt (assumption). (9)

Equation (9) immediately implies the following constraint
on µ (see Eq. (8))

0 ≤ µt(r) ≤ 2nt. (10)

Equation (9) also implies that qt ≤ 1. Thus the magni-
tude of the second term on the rhs of equation (7) must

exceed that of the 3rd term,
∫ t

0
dt′Gsept−t′(r, 0)kt′ ≥ ϕt(r).

This is the full inequality which must be obeyed by the

function µt′(r
′) involving the unknown ρ(3). Integrating

over r yields the following less demanding inequality:∫ t

0

dt′kt′ ≥

∫ t

0

dt′
∫
dr′kt′µt′(r

′). (11)

On the strength of the above constraints, equa-
tions (10, 11), we will now argue that the solution of equa-
tion (7) for qt(0, 0), but with the term ϕt(0) deleted, gives
the correct power law solution for kt to within a constant
prefactor. Expressing qt(0, 0) in terms of kt, setting r = 0
and deleting ϕt(0), equation (7) becomes

kt = λ− λ

∫ t

0

dt′St−t′kt′ , (12)

where we have introduced the return probability St ≡
Gsept (0, 0).

In Appendix B, a self-consistent argument is presented
to justify the deletion of ϕt(0). A summary of this ar-
gument is as follows. Now if one accepts equation (12),
then equations (1, 12) lead to a sequence of power law
regimes in time, both for kt and nt (these are explic-
itly obtained in the next sections). Using these solutions
in the constraints (Eqs. (10, 11)) and in the expression
for ϕt(0) (Eq. (8)), the function µmaxt′ (r′) which maxi-
mizes ϕt(0) (for a given time t) subject to the constraints
is determined. This in turn implies an upper bound on
ϕt(0), namely ϕmaxt (0), according to equation (8). It is
then shown in Appendix B that ϕmaxt (0)� 1. (Of course,
in reality there is one unique value for ϕt(0), since µt′(r

′)
is a determined function, Eq. (8). What has been achieved
here is to bound this function given our incomplete knowl-
edge.) Thus ϕt(0) may be deleted in equation (7) without
error; even prefactors are expected to be correct. There
is, however, one exception to this simple state of affairs.
During those time regimes where nt ≈ 1/x3

t (see next sec-
tions) we find ϕmaxt (0) = A, where A is a constant of order
unity. For these regimes, we are forced to make one fur-
ther assumption, that kt remains a power law during this
regime. In Appendix B, it is shown that this implies that
the possibility of ϕt(0) being of order unity may modify
the coefficient of kt only, not the power itself.

Thus in the following we simply solve equation (12).
This equation has been derived in reference [2] start-
ing from a 2-body formalism valid in the dilute reactive
species limit as discussed. Here we argue that it is valid
for all n0. Expressions equivalent to equation (12) were
the starting point in reference [27] the authors of which
pointed out the existence of a nt ≈ 1/x3

t regime in polymer
reaction kinetics.

Now Laplace transforming t → E one immediately
solves equation (12) for k(E):

k(E) =
λ

E(1 + λS(E))
, (13)

which is the main result of this section.
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3 Kinetic regimes and timescales

In the previous section we obtained a solution for k in
Laplace space. This involves the return probability St. It
is easy to show [2] that St ≈ 1/x3

t where xt is rms displace-
ment. In this section by substitution in equation (13) we
obtain solutions for k and n in terms of xt. Explicit forms
of xt for unentangled and entangled melts are considered
in Sections 4 and 5.

For times shorter than the longest polymer relaxation
time τ (corresponding to E � τ), xt ∼ t1/z with z = 4
and 8 depending on time and the degree of entanglement
[14,15]. Thus St ∼ t−3/z which implies S(E) ∼ E3/z−1

for 1/E � τ . For times t � τ , center of gravity Fickian
diffusion applies, xt ∼ t1/2. Thus St ∼ t−3/2 and it fol-
lows that for 1/E � τ , S(E) approaches its E = 0 limit,∫∞

0 dtS(t) ≈ τ/R3 (see Refs. [1,2]). Thus, as a function of
1/E, S(E) increases and then saturates at τ .

To determine kt we must determine which of the two
terms, 1 or λS(E) in equation (13) is dominant. There

are two cases. If Q (or λ) is sufficiently small, Q < Q̂
(see definition below), then λS(E) � 1 for all E values,
implying

kt ≈ λ, (Q < Q̂). (14)

For Q > Q̂ there exists a 1/E value (shorter than τ),
corresponding to a timescale t∗2, after which λS(E) � 1.
In this case during the regime t∗2 � E−1 � τ , k(E) ≈
1/ES(E) ∼ E−3/z. Thus Laplace inverting equation (13)
we have:

kt ≈


λ (t� t∗2)

x3
t /t (t∗2 � t� τ), (Q > Q̂).
R3/τ (t� τ)

(15)

The quantities t∗2 and Q̂ are defined by

x3
t∗2

t∗2
= λ (t∗2 < τ), Q̂ =

R3

a3τ
· (16)

The value of t∗2 is determined by demanding continuity of
kt. In Laplace space, t∗2 corresponds to the 1/E value value
at which λS(E) becomes of order unity. Equation (16) has
a solution for t∗2 only if Q is large enough so that t∗2 < τ .

Thus the condition t∗2 = τ defines Q̂ in equation (16).
Now let us see what equations (14, 15) imply for the

decay of nt, considering the cases Q > Q̂ and Q < Q̂ in
turn.

3.1 Case Q > Q̂

The solution of equation (1) is nt = n0/(1 + n0

∫ t
0 kt′dt

′).
Thus using equation (15) one has

nt

n0
≈


1/(1 + t/t∗m) (t� t∗2)

1/(1 + n0x
3
t ) (t∗2 � t� τ) (Q > Q̂).

1/(1 + t/t∗m,R) (t� τ)

(17)

We define the timescales t∗m, t
∗
m,R and tl by

t∗m ≡
1

λn0
, t∗m,R ≡

τ

n0R3
, x3

tl
=

1

n0
· (18)

Here tl is the time to diffuse a distance of the order of the
typical initial separation between reactants. Notice that at
a certain timescale the time-dependent term in the denom-
inator of nt in equation (18) becomes of order unity. This
time is one of t∗m, tl, and t∗m,R. Different kinetic behav-
ior occurs depending on the ordering of these timescales
amongst themselves and with respect to t∗2 and τ .

Let us consider first the kinetics in the “concentrated”
case, n0R

3 > 1, i.e. tl > τ . Then the monotonically in-
creasing time-dependent term in the denominator of nt in
equation (17) becomes of order unity before τ . There are
two possibilities depending on whether or not Q is large
enough such that t∗2 is smaller than tl (notice that tl is
independent of Q). Now if indeed t∗2 < tl one has

nt ≈ n0 − λn
2
0t

t∗2−→ n0 − n
2
0x

3
t

tl−→
1

x3
t

τ
−→

1

R3t/τ

(t∗2 < tl < τ, Sconc). (19)

We use the symbol Sconc for “strong concentrated” since
equation (19) applies for high Q and n0 values (see phase-
diagrams of Figs. 4, 5). Notice that we do not need to

specify Q > Q̂ in equation (19) since only for such Q
values is t∗2 < τ . If on the other hand t∗2 > tl, one similarly
has

nt ≈ n0 − λn
2
0t

t∗m−→
1

λt

t∗2−→
1

x3
t

τ
−→

1

R3t/τ

(Q > Q̂, tl < t∗2,W) (20)

where W stands for “weak” since these systems are less
reactive when compared to the strong concentrated regime
(see Figs. 4, 5). Notice that we do not need to specify

tl > τ in equation (20), since this is implied by Q > Q̂ (or
equivalently t∗2 < τ) and tl < t∗2.

Now in the the “dilute” case, n0R
3 < 1, the time-

dependent term in the denominator of nt in equation (17)
becomes of order unity for t > τ :

nt ≈ n0−λn
2
0t

t∗2−→ n0−n
2
0x

3
t

τ
−→ n0−n

2
0R

3 t

τ

t∗m,R
−→

1

R3t/τ

(Q > Q̂, tl > τ, Sdil). (21)

Here Sdil stands for “strong dilute.”

3.2 Case Q < Q̂

Finally let us examine the Q < Q̂ case. Substituting equa-
tion (14) in (1) one immediately has:

nt ≈ n0 − λn
2
0t

t∗m−→
1

λt
(Q < Q̂, WW). (22)
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Fig. 4. (a) Unentangled melts, reaction kinetics “phase dia-
gram” in Q-n0 plane. Axes are logarithmic and units chosen
such that ta = a = 1. Maximum possible density is n0a

3 = 1/N
(all chains functionalized). Different sequences of kinetic be-
havior arise in the 4 regions Sconc, Sdil, W and WW. (b) As
(a), but reactivities and densities expressed in terms of degree
of polymerization N .

We use the symbol WW (very weak) to refer to systems
belonging to this class which correspond to the lowest Q
values in which mean field kinetics are always applicable.

We have thus identified 4 distinct behaviors, equa-
tions (19–22), for the decay of nt, corresponding to 4 re-
gions in the Q-n0 plane. In the following two sections we
explicitly plot these regions for both unentangled and en-
tangled melts after giving expressions for xt as dictated
by the Rouse and reptation model, respectively.

4 Application to unentangled melts

The dynamics of polymers in an unentangled melt, i.e.
with degree of polymerization N shorter than the en-
tanglement threshold Ne, are well-known to obey Rouse
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Fig. 5. As Figure 4, but for entangled melts. Regions Sconc,
Sdil and W now develop fine structure. In a given sub-region
each relevant timescale occurs within a given reptation diffu-
sion regime thus defining a unique sequence of kinetic regimes.

dynamics [14,15]:

xt ≈


a(t/ta)1/4 (t < τ)

τ

ta
= N2,

R

a
= N1/2.

R(t/τ)1/2 (t > τ)
(23)

Thus Rouse dynamics is characterized by compact (z =
4) short time behavior, followed by noncompact Fickian
diffusion (z = 2).

By substitution of equation (23) in (16, 18) we obtain
explicit expressions for t∗2 and tl:

t∗2 = ta/(Qta)
4 (Q > Q̂)

tl = ta/(a
3n0)4/3 (n0R

3 > 1) (24)



B. O’Shaughnessy and D. Vavylonis: Reaction kinetics in polymer melts 369

(the timescale tl is only relevant to the kinetics when
n0R

3 > 1). Timescales t∗m, t∗m,R are already given explic-
itly in equation (18). Using these expressions, in Figure 4
the lines t∗2 = τ, tl = τ , and tl = t∗2 have been drawn in
the Q-n0 plane. Certain sections of these lines are omit-
ted, in those regions where they are irrelevant. These lines
define four distinct regions. It is straightforward to verify
that each one of these corresponds to one of the kinetic
regimes defined in equations (19–22) as indicated in the
figure.

Notice that the condition tl = t∗2 also implies tl =
t∗2 = t∗m, as one can easily verify using equations (16, 18).
In the Q-n0 plane, the tl = t∗2 = t∗m line separating the
Sconc from the W region thus defines a density-dependent
reactivity Q∗:

Q∗ta = (n0a
3)1/3, (25)

indicated in Figure 4.
Perhaps the most interesting feature of the unen-

tangled case is the nt ∼ t−3/4 decay of nt during the
nt ≈ 1/x3

t regime in regions Sconc, W.

5 Application to entangled melts

In the case of very long chains, N > Ne, polymer mo-
tion is affected by entanglements. In the reptation model
[14,15] entanglements are assumed to inhibit lateral chain

motion on the scale of the “tube” of diameter re = N
1/2
e a,

corresponding to a portion of chain comprising Ne units.
For times shorter than the diffusion time te = N2

e ta to dis-
tance re, monomers do not feel the tube and obey Rouse-
like t1/4 dynamics as in unentangled melts. For t > te,
the chain diffuses curvilinearly up and down the tube in
1-dimensional t1/4 Rouse motion. During these “breathing
modes”, monomer rms displacement in space increases as
t1/8, since the tube is itself a random walk. The chain
relaxes its configuration relative to the tube by time
tb = N2ta, corresponding to monomer diffusion distance
rb = re(N/Ne)

1/4. For longer times, coherent diffusion
along the tube gives rise to t1/4 rms monomer displace-
ment. This regime persists until the longest polymer re-
laxation or “reptation” time, τ = (R/rb)

4tb = (N3/Ne)ta,
by which time the chain has completely diffused out of
its initial tube into a new and uncorrelated one (here
R = N1/2a). The process then repeats itself indefinitely,
corresponding to long time Fickian center of gravity mo-
tion, xt = R(t/τ)1/2. In summary,

xt ≈


a(t/ta)1/4 (t < te ≡ N2

e ta)

re(t/te)
1/8 (te < t < tb ≡ N2ta)

rb(t/tb)
1/4 (tb < t < τ ≡ (R/rb)

4 = N3ta/Ne)

R(t/τ)1/2 (t > τ).
(26)

Thus, there are 3 compact regimes with a sequence of
dynamical exponents z = 4, 8, 4, followed by noncompact
z = 2 exploration.

Substituting equation (26) in (16) one obtains

t∗2 ≈


ta(Qta)−4 (Q > r3

e/(tea
3))

te(Qtea
3/r3

e)−8/5 (r3
b/(tba

3) < Q < r3
e/(tea

3))

tb(Qtba
3/r3

b)
−4 (Q̂ < Q < r3

b/(tba
3)).

(27)

Notice that, unlike the unentangled case, the appropriate
formula for t∗2 is now dependent on the dynamical regime
during which it happens to occur. This is determined byQ.
Similar remarks apply to tl, expressions for which depend
on n0. Equation (26) in (18) leads to

tl ≈


ta(n0a

3)4/3 (n0 > r−3
e )

te(n0r
3
e)8/3 (r−3

e > n0 > r−3
b )

tb(n0r
3
b )4/3 (r−3

b > n0 > R−3).

(28)

Once again the condition tl = t∗2 = t∗m defines a density-
dependent reactivity Q∗:

Q∗ =


(n0a

3)1/3/ta (n0 > r−3
e )

(n0r
3
e)8/3/(ten0a

3) (r−3
e > n0 > r−3

b )

(n0r
3
b )4/3/(tbn0a

3) (r−3
b > n0 > R−3).

(29)

Similarly to the unentangled case, the phase diagram of

Figure 5 is constructed. Now the three Q > Q̂ regions de-
velop fine structure. In each of these subregions, crossovers
in nt behavior occur during different short time compact
regimes.

How does one use this phase diagram to determine
the reaction kinetics for a given system? The system’s Q
and n0 values define a point in the diagram. Depending on
which of the 4 regions, Sconc, Sdil, W, WW, this point hap-
pens to belong to, the reaction kinetics are then given by
the appropriate member of the 4 equations (19–22). But in
these expressions for reaction kinetics timescales t∗2 and tl
may appear. The appropriate formulae for these timescales
are determined by the fine structure location of the point
within the region (Eqs. (24, 28)). The other timescales,
t∗m, t

∗
m,R, if relevant, are given by equation (18).

For example, let us consider point α in Figure 5 be-
longing to region Sconc. According to equation (19) the
relevant timescales (in addition to τ) are t∗2 and tl. Fig-
ure 5 then indicates t∗2 < te and te < tl < tb. Thus the
n0−λn2

0t regime of equation (19) occurs before te, followed
by n0 − n2

0x
3
t which occurs during the latter part of the

first xt ∼ t1/4 regime and the earlier part of the xt ∼ t1/8

regime. The crossover to nt ≈ 1/x3
t occurs during the t1/8

regime, lasting up to τ . During these times nt ∼ t−3/8

followed by nt ∼ t−3/4.

6 Conclusions

This study has addressed the kinetics of reactions between
end-functionalized polymer chains diffusing in an unreac-
tive polymer melt matrix, as a function of initial reac-
tant density n0 and chemical reactivity Q. Results were
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presented in the form of a “phase diagram” in the Q-n0

plane.
At short times, simple mean field (MF) kinetics apply:

the rate constant k ≈ Qa3 is independent of time. These
kinetics give rise to a density decay nt ≈ n0 − n0 t/t

∗
m. In

regions W and WW of the Q-n0 plane (Figs. 4, 5) these
MF kinetics persist for times greater than t∗m, leading to
nt ∼ 1/Qt. Physically, t∗m as defined in equation (18) is
the timescale after which a reactive group is very likely to
have reacted with the “mean reactive field” supplied by
all other reactants in the system.

A transition to diffusion-controlled (DC) kinetics oc-

curs for sufficiently reactive groups, Q > Q̂. This is a re-
sult of compact exploration of space at times shorter than
the longest chain relaxation time τ . Thus a timescale t∗2
exists after which any pair which was initially within dif-
fusive range (i.e. the exploration volumes of its members
are overlapping by t) is bound to react. If t∗2 occurs at
times shorter than the time tl needed for a reactive end to
diffuse a distance of order the typical separation between
reactive groups (regions Sconc, Sdil of Figs. 4 and 5), then
the depletion in the initial density n0 is proportional to
the number of pairs with initial separation less than xt:
nt ≈ n0 − n2

0x
3
t . Equivalently, kt ≈ x3

t /t [2]. For unentan-
gled melts this leads to kt ∼ t−1/4, while for entangled
cases successive regimes kt ∼ t−1/4, t−5/8 and t−1/4 may
exist depending on Q, n0.

In regions Sconc and W kinetics are diffusion-controlled
for times longer than tl. During these times the explo-
ration volumes of reactive groups overlap. We find a den-
sity decay nt ∼ 1/x3

t [27]. Roughly, this means that only
one reactant exists within a region of size comparable to
the exploration volume x3

t ; had there been several, they
would have reacted. For unentangled melts this implies
nt ∼ t−3/4, while an extra nt ∼ t−3/8 regime arises in en-
tangled systems. These DC kinetics are analogous to the
anomalous long time decay nt ≈ 1/xdt in the case of small
molecule reactions (A+A→ ∅) obeying Fickian dynamics,
xt ∼ t1/2, in spatial dimensions below a critical dimension
dc = 2. For arbitrary dynamics, xt ∼ t1/z, the critical di-
mension is dc = z; thus d = 3 is below dc for t < τ since
z is then either 4 or 8. Notice that the rate constant dur-
ing these times, kt ≈ x3

t /t, is the same as for short time
(t < tl) DC kinetics (as described above). However there
is no obvious reason to expect them to be identical since
each one has different physical origins. Indeed, our calcu-
lations suggest that the numerical coefficients of these two
rate constants are different.

All diffusion-controlled kinetics are truncated at τ
which marks a crossover to Fickian center of gravity poly-
mer diffusion. Thus long time kinetics are always MF. In
cases where DC kinetics preceded, the short time kinetics
are reflected in a “renormalized” rate constant k ≈ R3/τ
[1,2] leading to nt ≈ 1/(R3t/τ) at long times.

Experimentally, the most interesting region of the Q-
n0 plane is Sconc. This region includes the rather pecu-
liar nt ≈ 1/x3

t decay. Probing reaction kinetics in this
region would require extremely reactive species such as
radicals (or electronically excited groups as in photo-

physical systems [6]) since typical chemical reactivities,

Qta . 10−6, are far below the Q = Q̂ threshold, even
for very long chains (see Figs. 4, 5). One can imagine ex-
perimentally probing the Sconc region by photocleaving
functional groups attached to polymer chain ends with a
laser pulse, generating radical pairs with initial density
n0 as in Figure 2. Each pair consists of a polymer radical
(P) and a monomeric radical (M). An experiment of this
type was studied theoretically in references [10,28]. There
are 2 underlying principles: (1) for large N , since poly-
mers are much less mobile than monomers, the polymer-
polymer reaction constant kPP is much less than the
monomer-monomer constant kMM . (2) Polymer-monomer
reactions are dominated by the more mobile monomer
[29], i.e. kMP ≈ kMM to within a prefactor of order
unity. In the following we take kMP = kMM for simplic-
ity. It was shown in references [10,28] that after a time
T ≈ (kMMn0)−1 virtually all M have reacted, leaving be-
hind a finite fraction of the P: the polymer radicals are
kinetically isolated and the t > T kinetics involve polymer-
polymer reactions only (Fig. 1). Specifically, after time T
a fraction 1/e of the P remain whilst only a fraction ε/e
of the M remain, where ε ≡ kPP /kMM � 1.

Returning to the present case, if we assume all rad-
ical groups have similar reactivities Q ≈ t−1

a we identify
T ≈ (λn0)−1 = t∗m. (This is the MF timescale we have met
previously, as expected: small molecules in d = 3 obey MF
kinetics.) Let us suppose n0 is chosen so the polymer rad-
icals are strongly overlapping, n0R

3 � 1 as in Figure 2.
The conclusion is that after t∗m our reactive polymer sys-
tem belongs to the Sconc region [30] since Q exceeds the
Q∗ threshold. But in region Sconc by definition t∗m is much
less than the time tl for a reactive polymer end group
to diffuse the distance between reactive ends. Thus (con-
sistent with the above arguments) macroradicals cannot
have substantially reacted with one another by time t∗m.
Monitoring the decay of macroradical density for t > t∗m,
the full sequence of kinetics is thus experimentally acces-
sible, i.e. nt ≈ n0 − n2

0x
3
t for t∗m < t < tl followed by

nt ≈ 1/x3
t for tl < t < τ . Experiments of this type thus

hold promise for the measurement of fundamental scaling
laws of polymer-polymer reaction kinetics.

This work was supported by the National Science Foundation
under grant n◦ DMR-9403566.

Appendix A: Derivation of equation (5)

Equation (4) can be written equivalently as [18]

∂ρt(r1, r2)

∂t
−Dρt(r1, r2) = −λρt(r1, r2)δ(r1 − r2)

− λ

∫
dr3ρ

(3)
t (r1, r2, r3){δ(r1 − r3) + δ(r2 − r3)} (A.1)

where the terms on the right hand side represent reaction
sinks and D is the diffusion operator. The propagatorG in
equation (4) is the inverse of (∂/∂t−D). Notice that −Dρ
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is equal to the divergence of the reactive chain end current
j at r1, r2: Dρ = −(∇r1 +∇r2)j(r1, r2). (For example for
small molecules one would have j = −D(∇r1 + ∇r2)ρ,
where D is the diffusion coefficient.) Since j must be linear
in ρ, one has Dρt = Dqtn2

t = n2
tDqt. Then, substituting

ρt(r1, r2) = qt(r1, r2)n2
t in equation (A.1) one obtains [26]

∂qt(r1, r2)

∂t
−Dqt(r1, r2) = −λqt(r1, r2)δ(r1 − r2)

+ 2ρt(r1 − r2, 0)ktnt − 2ρ
(3)
t (r1 − r2, 0, 0)/n2

t (A.2)

where we have performed the r3 integration in equa-
tion (A.1) and used the identities ρt(r1, r2) = ρt(r1−r2, 0)

and ρ
(3)
t (r1, r2, r1) = ρ

(3)
t (r1, r2, r2) = ρ

(3)
t (r1 − r2, 0, 0)

which result from translational invariance. Inverting equa-
tion (A.2) one obtains equation (5) after using equa-
tions (1, 3) and the definitions of the conditional densities
in equation (6).

Appendix B: Bounds on ϕt(0)

This Appendix shows that the deletion of the positive
term ϕt(0), which results in equation (7) resulting in equa-
tion (12) gives the correct scaling solution for kt. We show
this by first determining an upper bound, namely ϕmaxt (0),
by finding the function µmaxt′ (r′) in the definition of ϕ
(Eq. (8)), which subject to the constraints satisfied by the
real µ, equations (10, 11), maximizes ϕt(0). We consider
each of the 4 regions in Figures 4, 5 in turn.

Region Sconc

A. Times t� tl

During these times nt ≈ n0 to within higher order correc-
tions (see Eq. (19)). In this case we just need to consider
the constraint imposed on µ by equation (10) only (in-
cluding constraint (11) would lead to an even more strict
bound which is not necessary here). Thus equation (10)
implies µmaxt′ (r′) = 2nt. Substituting µmax in equation (8)
and performing the r′ integration leads to

ϕmaxt (0) = n0

∫ t

0

dt′k′t ≈

{
t/t∗m (t� t∗2)

n0x
3
t (t∗2 � t� tl)

(B.1)

after use of equation (15). In the Sconc regime t∗2 � t∗m
and t � tl. Thus equation (B.1) implies ϕmaxt (0) � 1.
Hence during this regime ϕ is unimportant since it is much
smaller than terms 1 and qt(0, 0) in equation (7). Equa-
tion (12) is thus expected to give the correct k (even the
prefactor will not be modified by deletion of ϕ).

B. Times tl � t� τ

In this case we consider both constraints (10) and (11).
Now clearly from its definition in equation (8), ϕt(0) is
maximized when the integral of kt′µt′(r

′) has its maxi-
mum value; this corresponds to replacing the inequality

in (11) by an equality. Moreover, µt′(r
′) should be dis-

tributed around the points at which Gsept−t′(0, r
′) in the

definition of ϕt(0) in equation (8) is maximum. But Gsep

has the well-known scaling form

Gsept (0, r) ≈

{
1/x3

t (r < xt)

0 (r > xt)
(B.2)

Thus Gsept−t′(0, r
′) is roughly constant (in space) for r′ <

xt−t′ and vanishes for larger r′. For a given r′, it achieves
maximum values at the maximum available t′ values out-
side the vanishing region. Furthermore, we note that the
maximum amplitude of µmaxt′ is of order nt′ . Hence the
function maximizing ϕt(0) is approximately

µmaxt′ (r′) ≈

{
nt′Θ(xt−t′ − r′) (tc < t′ < t)

0 (t′ < tc),∫ t

0

kt′dt
′ =

∫ t

tc

dt′
∫
dr′kt′µ

max
t′ (r′), (B.3)

where Θ is the step function (Θ(x) = 0 for x < 0,Θ(x) = 1
for x ≥ 0). That is, µmaxt′ (r′) is localized at (t′, r′) close
to (t, 0) where it has its maximum amplitude. The time tc
defines the lower limit of the support of µmax and is de-
termined by demanding that the total integral of kµmax

yields the required value. Assuming that tc is of order t
(which is verified self-consistently), we determine tc by
substituting kt and nt from equations (15, 19) in equa-
tion (B.3) and performing the r′ integration. It is simple

to show that this implies
∫ 1

tc/t
(1 − u)3/z/u du ≈ 1, after

using xt ∼ t1/z. Hence tc = β t, where β is a constant of
order unity (0 < β < 1).

Substituting µmax into the expression for ϕt(0) in
equation (8) and integrating over r′ one obtains

ϕmaxt (0) ≈
∫ t
tc
dt′kt′nt′ ≈ ln[n(tc)/n(t)] after use of equa-

tion (1). Since tc = β t thus ϕmaxt (0) = A, where A is a
constant of order unity.

We now argue that, assuming kt is still a power law,
and given the boundndess of ϕt(0), this implies kt ≈ x3

t /t
during this regime. Substituting kt ∼ t−α in the integral
term in equation (7) and setting r = 0, one easily de-
rives the time-dependence of this term is tα−(3−z)/z. Since
ϕt(0) is positive and bounded by A, and since the term
qt(0, 0) tends to 0 at long times, the only way to satisfy
equation (7) for r = 0 is by setting α = (3 − z)/z. This
implies kt ≈ x3

t/t. For this value of α the integral term
in equation (7) tends to a constant. Hence if ϕt(0) is of
order unity during this regime, it must be a constant in
order for equation (7) to be satisfied. The actual numer-
ical prefactor of kt will then be a function of the value
of ϕt(0).

C. Times t� τ

During these times nt ≈ 1/(R3t/τ) and kt ≈ R3/τ (see
Eqs. (15, 19)). We use the same reasoning as in 1B up to
equation (B.3). As in 1B, it is easy to show that tc/t =
1 − γ, where γ ≈ [R3t/(x3

t τ)]2/5 and that ϕmaxt (0) ≈ γ.
Since γ � 1 for t� τ , it follows that ϕt(0)� 1 and that
ϕt(0) may be deleted from equation (7).
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Region W

A. Times t� t∗m

Similar arguments as in part 1A apply.

B. Times t∗m � t� t∗2

The procedure is exactly the same as in part 1C, but now
using kt ≈ λ and nt ≈ 1/λt (see Eqs. (15, 20)). In this case
one has tc/t = 1−γ with γ ≈ (λt/x3

t )
2/5 and ϕmaxt (0) ≈ γ.

Since γ � 1 for t � t∗2 it follows that ϕt(0) � 1 during
this regime.

C. Times t� t∗2

Identical to 1B for t∗2 � t� τ and to part 1C for t� τ .

Region Sdil

A. Times t� t∗m,R

For times t � τ , same as part 1A. During this regime
ϕmaxt (0) in equation (B.1) is much smaller than unity since
tl > τ . For τ � t � t∗m,R, similarly to 1A, one finds
ϕmaxt (0) = t/t∗m,R which is much smaller than unity.

B. Times t� t∗m,R

Same as part 1C.

Region WW

A. Times t� t∗m

Same as part 1A.

B. Times t� t∗m

Same as part 2B, but now notice that γ � 1 for all t (t∗2
is not defined in this region).
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