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Polymerization of actin proteins into dynamic structures is essen-
tial to eukaryotic cell life, motivating many in vitro experiments
measuring polymerization kinetics of individual filaments. Here,
we model these kinetics, accounting for all relevant steps revealed
by experiment: polymerization, depolymerization, random ATP
hydrolysis, and release of phosphate (Pi). We relate filament
growth rates to the dynamics of ATP–actin and ADP–Pi–actin caps
that develop at filament ends. At the critical concentration of the
barbed end, ccrit, we find a short ATP cap and a long fluctuation-
stabilized ADP–Pi cap. We show that growth rates and the critical
concentration at the barbed end are intimately related to cap
structure and dynamics. Fluctuations in filament lengths are de-
scribed by the length diffusion coefficient, D. Recently Fujiwara et
al. [Fujiwara, I., Takahashi, S., Takaduma, H., Funatsu, T. & Ishiwata,
S. (2002) Nat. Cell Biol. 4, 666–673] and Kuhn and Pollard [Kuhn, J.
& Pollard, T. D. (2005) Biophys. J. 88, 1387–1402] observed large
length fluctuations slightly above ccrit, provoking speculation that
growth may proceed by oligomeric rather than monomeric on–off
events. For the single-monomer growth process, we find that D
exhibits a pronounced peak below ccrit, due to filaments alternat-
ing between capped and uncapped states, a mild version of the
dynamic instability of microtubules. Fluctuations just above ccrit are
enhanced but much smaller than those reported experimentally.
Future measurements of D as a function of concentration can help
identify the origin of the observed fluctuations.

ATP cap � length diffusivity � modeling � critical concentration

The tendency of actin protein to spontaneously polymerize into
rapidly growing filaments is fundamental to the life of eukary-

otic cells. Cell motility (1, 2), cell division (3), and endocytosis (4)
are examples of processes exploiting the dynamic character of actin
structures composed of filaments. The regulation of filament
growth processes leads to well-defined structures and coordinated
function. For example, in combination with branching, capping, and
depolymerizing proteins, actin self-assembles into controlled dy-
namic cross-linked networks forming the dynamic core of lamelli-
podia (2).

These complex cellular actin-based systems exhibit multiple
superposed mechanisms. A large body of in vitro work has sought
to unravel these mechanisms and pin down rate constants for the
constituent processes in purified systems (5). An important class of
experiments entails measuring growth rate at one end by micros-
copy (6–9) or by bulk spectroscopic methods (10–16) as a function
of actin monomer concentration. From these and other in vitro
studies using various labeling techniques, the following picture has
emerged of filament growth kinetics in the presence of ATP (see
Fig. 1). (i) Monomers are added to a growing filament end as
ATP–actin. (ii) Rapidly, the ATP is then hydrolyzed to ADP and
phosphate (Pi), both remaining bound to the monomer host (ADP–
Pi–actin) (10, 14, 17–22). A rate of 0.3 s�1 was reported in ref. 22
in the presence of Mg, assuming random hydrolysis uninfluenced by
neighboring monomers. (iii) After a long delay, Pi release into
solution occurs, generating ADP–actin (23–25). Reported release
rates are in the range of 0.002 to 0.006 s�1 (23–26).

A typical filament in a growth rate experiment is thousands of
monomer units (mon) in length and thus consists mainly of ADP–

actin. Hence, the picture that emerges is of a long ADP–actin
filament with a complex three-state ‘‘cap’’ region at the filament end
(5) (see Fig. 1). A major goal of this work is to establish the
composition and kinetics of the cap and how these determine
growth rates and measurable length fluctuations. The monomer
composition is important in the context of cellular processes where
it is thought to regulate actin-binding proteins in a timely and
spatially organized way (2). For example, it has been suggested that
rates of branching generated by the Arp2�3 protein complex and�or
debranching processes may depend on which of the following three
monomer species is involved: ATP–actin, ADP–Pi–actin, or ADP–
actin (7, 26, 27). Pi release has been proposed to act as a timer for
the action of the depolymerizing�severing protein ADF�cofilin,
which preferentially attacks ADP–actin (2).

Our aim in this work is to establish theoretically the quantitative
implications of the currently held picture of actin polymerization.
Previous theoretical works addressed growth rates before the
important process of Pi release was established (28–30). To our
knowledge, to date, there has been no theoretical analysis of single
filament non-steady-state growth rates rigorously accounting for
the processes (i)–(iii) above. A recent theoretical work (31) has
addressed steady-state filament compositions.

The cap has important consequences for the growth rate j as a
function of ATP–actin concentration, c. Measured j(c) curves, such
as those in Fig. 5, are strikingly nonlinear in the region near the
concentration where growth rate vanishes (16, 32). These curves
become almost linear in excess Pi studies, where presumably the
ADP–actin species is no longer involved (16). The complexity of the
cap structure and dynamics also underlies the values of the critical
concentration ccrit at the fast-growing ‘‘barbed’’ end and slow-
growing ‘‘pointed’’ end of the polar actin filament (ccrit denotes the
concentration where mean growth rate at one end vanishes). It is
well known that in general these critical concentrations are different
because detailed balance cannot be invoked for these nonequilib-
rium polymers (30). Our work explores how these differences are
related to cap structure.

The major experimental focus has been mean growth rates, j(c).
However, equally revealing are fluctuations about the mean whose
measurement can expose features of the dynamical processes
occurring at filament ends unavailable from j(c). These fluctuations
are characterized by a ‘‘length diffusivity’’ D measuring the spread
in filament lengths (see Fig. 1b) similarly to simple 1D Fickian
diffusion: after time t, the root mean square fluctuation in filament
length is (2Dt)1/2 about the mean value j(c)t. By using single-
filament microscopy, Fujiwara et al. (8) and Kuhn and Pollard (9)
recently measured unexpectedly high values of this diffusivity near
steady-state conditions, D � 30 mon2�s. This value should be
compared with what would be expected of an equilibrium poly-
merization involving the measured on�off rates of order 1 mon�s,
which would lead to D � 1 mon2�s (8, 30, 33, 34). A number of
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possible explanations were proposed. (i) Fluctuations arise from
‘‘dynamic instability’’ due to stochastic cap loss episodes. This
phenomenon would be a far milder version of the ‘‘catastrophes’’ in
microtubule polymerization (8, 35). (ii) Filament polymerization
proceeds by addition and subtraction of oligomeric actin segment
(8, 35); such kinetics would constitute a radical departure from the
accepted picture of filament growth kinetics involving single mono-
mer addition events. (iii) Growth involves extra stochastic events
such as short pauses possibly originating in filament–surface at-
tachments (9). (iv) Enhanced fluctuations result from an artifact
due to monomer labeling (36). (v) These observed fluctuations
result from experimental error in filament length measurements
(9). A major focus of this work is to calculate the concentration-
dependent length diffusivity, D(c), assuming that the standard
monomer-by-monomer addition picture is valid. We will see that
large D values are realized below ccrit; just above the critical
concentration fluctuations are enhanced, although much less than
the experimental values.

We consider the initial condition where long preformed ADP–
actin seeds are exposed initially to a buffer of fixed actin concen-
tration c and excess ATP. Thus, for a given c value, a filament
consists of a very long ADP–actin core at the end of which lies a
complex steady-state (but fluctuating) ATP–actin�ADP–Pi–actin
cap. Our analysis emphasizes the barbed end, with the pointed end
assumed blocked. Our results apply to very dilute filaments where
only ATP–actin is assumed to add to filaments because (i) free
monomers bind ATP more strongly than ADP (37) and (ii)
depolymerized ADP–actin or ADP–Pi–actin has enough time to
exchange its nucleotide for ATP before repolymerization. An
important issue is the nature of the ATP hydrolysis mechanism: the
experiments of refs. 20 and 21 support a random mechanism,
although others have suggested a cooperative vectorial mechanism
occurring at the interface between ADP–Pi–actin and ATP–actin
with rate 13.6 s�1 (19, 28). In this work, random hydrolysis is
assumed throughout.

Parameter Values and Mathematical Methods
One of the major aims of this work is to identify qualitative, but
experimentally measurable, features of the growth kinetics that are

independent of the precise values of rate constants, because the
latter depend on experimental conditions such as ionic strength
(38) and the values themselves are often controversial. The param-
eter values we use are shown in Table 1, in which kT

� is the
polymerization rate constant of ATP–actin, and vT

�, vD
�, and vP

� are
the depolymerization rates of ATP–actin, ADP–actin, and ADP–
Pi–actin, respectively. The rates of ATP hydrolysis and Pi release
(both assumed irreversible) are rH and rPi

, respectively. In addition,
we will explore the effects of changing some of these parameter
values. Because the monomer at the tip makes bonds with the two
nearest neighbors, each belonging to a different protofilament, one
expects that rate constants also may depend on the state of
neighbors. Here, however, we study the simplest ‘‘one-body’’ model,
assuming that on�off rates depend only on the attaching�detaching
species (6) and that hydrolysis and Pi release rates are uniform along
the filament. The influence of ‘‘many-body’’ effects will be dis-
cussed briefly below.

To calculate filament growth kinetics and composition, one is
faced with the formidable task of obtaining the steady-state prob-
ability distribution of all possible actin monomer sequences along
the filament; there are three possible states per monomer, so for
filaments of N units long 3N coupled equations must be solved. We
have managed, however, to obtain a solution for the mean elon-
gation rate j(c) by projecting the full system of 3N equations onto a
set of just 3 exact equations for the return probabilities �t

T, �t
P, and

�t
D. These are the probabilities that a given monomer that was

polymerized at t � 0 is again at the tip at time t as ATP–actin,
ADP–Pi–actin, or ADP–actin, respectively.

The outline of our method is as follows. For j � 0 the growth rate
is related to the return probabilities by j � vD

�pcore, where pcore �
1 � �0

�dt(�t
D � �t

P � �t
T) is the probability of exposure of the

ADP–actin core at the tip. For j � 0, the relation is j � kT
�c � �0

�dtFt,
where Ft 	 �t

TvT
� � �t

PvP
� � �t

DvD
� is the mean depolymerization rate

at time t of a monomer that added to the tip at t � 0. The integral
of Ft is the total depolymerization rate of added monomers. In
Supporting Material, which is published as supporting information
on the PNAS web site, we present the dynamical equations obeyed
by the return probabilities, from which we obtained a closed
recursion relation for the Laplace transform of Ft, namely fE. This
recursion relation relates fE to fE�rH

and fE�rPi
. With boundary

condition fE 3 0 as E 3 �, we started from large E values and
evolved this equation numerically toward E � 0 to obtain f0 	 �0

�

dtFt. Given f0, the time integrals of the return probabilities then were
obtained directly from the dynamical equations, and j was thereby
determined.

The above analytically based method does not generate cap sizes
and length diffusivities. To calculate these quantities and also to test
the validity of the analytical method, we have simulated the
stochastic tip dynamics employing the kinetic Monte Carlo (MC)
method known as the BKL (39) or Gillespie (40) algorithm to

Fig. 1. Actin cap structure and growth kinetics. (a) Schematic of the three-
species cap at the barbed end of a long actin filament. Near the critical
concentration we find a fluctuation-induced cap of Ncap � 25 monomers, with
a short ATP–actin component, Ncap

ATP of order one. (b) Mean growth rate and
fluctuations: in time t the average number of monomers added to a filament
end is jt, with a spread of (2Dt)1/2 about this value.

Table 1. Values of barbed end rate constants used in this work,
appropriate for solutions of 50 mM KCl and 1 mM MgCl2

kT
�, �M�1�s�1 11.6*

vT
� 1.4*

vP
� 1.1†

vD
� 7.2*

rH 0.3‡

rPi 0.004§

Units are s�1 unless otherwise indicated.
*From ref. 6.
†Assigned; at present, there is no direct measurement of vP

�, but j(c) measure-
ments with excess Pi (16) show the sum of the ADP–Pi–actin off rates at both
ends together is a few times smaller than vD

�.
‡From ref. 22.
§From refs. 23–26.
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evolve the state of a filament tip in time and to calculate its mean
growth rate. Each step of the algorithm entails updating time by an
amount depending on the rate and number of possible future
events, namely polymerization�depolymerization, hydrolysis, and
Pi release. Excellent agreement is found between MC results and
the numerical solutions of our closed equations for the growth rate
(see Fig. 3 Inset).

Our analytical method is exact and avoids preaveraging, an
approximation where the joint probability of a given filament
nucleotide sequence is approximated as a product of probabilities
for individual actin subunits. This approximation neglects correla-
tions between units. To assess the accuracy of this scheme, we
compared our results for cap size and growth rate with those
obtained by using preaveraging (see Supporting Material for details).
Preaveraging has been used in other theoretical studies of actin
polymerization such as ref. 31 to study steady state and ref. 32 to
study growth rates.

Cap Structure and the Importance of Fluctuations
By using the parameters of Table 1, in Fig. 2 we present MC results
for (i) the total cap size, Ncap, namely the mean total number of
ATP–actin and ADP–Pi–actin subunits at the barbed end, as a
function of concentration, and (ii) the number of ATP–actin cap
subunits, Ncap

ATP. Fig. 2 shows that both caps become large for large
concentrations. This behavior is easy to understand. Consider, for
example, the ATP cap: when polymerization rates exceed both the
hydrolysis rate rH and the depolymerization rates, the interface
between ADP–Pi–actin and ATP–actin follows the growing tip with
a lag of j(c)�rH monomers. Thus,

Ncap
ATP � j
c��rH , Ncap

ADPPi � j
c��rPi

c �� ccrit� . [1]

Here, the number of ADP–Pi subunits, Ncap
ADPPi, is found by using

similar reasoning as for Ncap
ATP. The validity of Eq. 1 for large

concentrations is verified against MC data in Fig. 2.
The striking feature of Fig. 2 is that the total cap remains long

even below the critical concentration of the barbed end, being 25
units at ccrit and remaining larger than unity down to c � ccrit�2. One
might naively have guessed that below ccrit there would be no cap
at all, because the filament is shrinking into its ADP core. (Indeed,
the absence of a cap would also be suggested by Eq. 1 if one were
to extend its validity down to ccrit where j � 0.) This reasoning is,
however, invalid because it neglects fluctuations due to randomness
of monomer addition�subtraction.

To understand why fluctuations lead to long caps, consider the
length changes of the cap only, excluding changes in the ADP–actin
core length. Just below the critical concentration, the tip of a typical
long cap has a net shrinkage rate (33, 34), vcap(c). This value is a
weighted average of rates, summed over all possible states of the
short ATP–actin segment on top of the long ADP–Pi–actin seg-
ment. Because vcap is a smooth function of c, it can be Taylor-
expanded near the critical concentration and expressed as vcap �
keff

� (c � ccrit), where keff
� is an effective on rate constant, different

from kT
�. Now superposed on this average shrinkage, the cap tip also

performs a random walk in cap length space, described by a
diffusivity Dcap(c) (8, 33, 34), also an average over the states of the
short ATP cap. (Dcap is in fact the short-time diffusivity of the entire
filament; see discussion below.) For small times, diffusivity domi-
nates and of order (2Dcap t)1/2 units add to or subtract from the cap.
For times less than the cap turnover time tcap, this number is much
bigger than the number of units wiped out by coherent shrinkage,
vcapt. The cap lifetime tcap is the time when the shrinkage just catches
up, vcap tcap � (2Dcap tcap)1/2. Hence, the approximate dependence of
cap length on concentration is

Ncap � vcap tcap � 2Dcap��keff
� 
ccrit � c�
 , 
c � ccrit� ,

[2]

which indeed becomes large as ccrit is approached from below.
In summary, even though on average below ccrit no ATP–actin

monomers are being added to the tip, fluctuations in addition�
subtraction rates allow a cap to grow to length (2Dcap tcap)1/2 because
the cap length diffusivity is dominant for times less than tcap. Now
because Pi release is very slow, for simplicity in deriving Eq. 2 we
assumed the release rate was zero, rPi

� 0. However, the result of
Eq. 2 is valid even for a nonzero rPi

except for concentrations so
close to ccrit that the cap turnover time exceeds the Pi release time.
In this inner region, diffusion is only able to grow the cap for a time
of order rPi

�1 before Pi release intervenes. The maximum possible
cap length, attained very close to ccrit, is thus,

Ncap
crit � �2Dcap
ccrit��rPi


1/2. [3]

Eq. 2 is valid until Ncap reaches this bound.
These arguments explain the origin of the long caps below ccrit.

To make a quantitative comparison of Eqs. 2 and 3 to the numerics
of Fig. 2, the values of Dcap and vcap must be determined. Now
because for our parameter set vT

� and vP
� have similar values (see

Table 1), an estimate can be obtained by considering the special
case where vT

� � vP
� (identical ATP–actin and ADP–Pi–actin). This

case is convenient because Dcap and vcap can be calculated exactly;
the cap has just one monomer species, so keff

� � kT
�, and Dcap(ccrit) �

(kT
�ccrit � vT

�)�2 (8, 33, 34). By using the values of Table 1 in these
expressions and in Eq. 3 gives Ncap

crit � 26, of the same order as the
numerics of Fig. 2.

Finally, note that the preaveraging method shown in Fig. 2 is an
excellent approximation in regions where fluctuations are unim-
portant (very large or very small c), producing almost identical
results to MC. However, below ccrit it considerably underestimates
cap lengths. This error results from the preaveraged treatment of
fluctuations.

Mean Growth Rate, j(c)
How is the behavior of the average rate of growth j(c) correlated
to cap structure and dynamics? The lowest curve of Fig. 3 shows
numerical results for barbed end growth, using identical parameters
to those of Fig. 2. A noticeable feature is that the slopes are very
different above and below the critical concentration of the barbed
end. This difference directly reflects the cap structure just dis-
cussed, as follows. For c �� ccrit the ATP–actin segment is long and
hides the remaining ADP–Pi–actin portion of the cap, so j � kT

�c �

Fig. 2. Total cap length Ncap(c) and ATP–actin cap length Ncap
ATP(c) at barbed

end. Parameters are from Table 1. Squares indicate MC results. Dashed lines
refer to Eq. 1. Solid lines indicate preaveraging approximation. Vertical
dashed line indicates ccrit � 0.119 �M.
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vT
� has simple linear form and slope kT

�, approximately behaving as
if ATP–actin were the only species involved. In the region where c �
ccrit, the slope of j(c) is large because the cap length is changing
rapidly as concentration increases (see Fig. 2). Filament length
change is now generated by capless episodes, when the ADP–actin
core is exposed, and the filament shrinks with velocity vD

� (the
steady-state cap has fixed mean length and does not on average
contribute). Thus, j � �vD

�pcore where pcore � 1�Ncap is the
probability the cap length vanishes, assuming a broad distribution
of cap lengths with mean Ncap. By using Eq. 2, this expression gives
j � vD

�keff
� (ccrit � c)�(2Dcap) in the region where Eq. 2 is valid.

Because vD
� is large, this is a much larger slope than for concen-

trations above ccrit.
The region very close to ccrit, where Eq. 3 takes over, is an

interesting one. (i) Here the total cap becomes long, of length
approximately Ncap

crit, implying that ADP–actin is rarely exposed at
the tip. It follows that the depolymerization rate of ADP–actin will
have only a small influence on the value of ccrit. This effect is verified
in Fig. 3 where we display j(c) curves for vD

� values ranging from 2.2
to 7.2 s�1. These changes produce only a very small shift in ccrit, even
though j(c) changes significantly for c � ccrit. (ii) The mean
ATP-cap length is small (of order unity), and because the tip
composition and cap length are constantly fluctuating, both ATP–
actin and ADP–Pi–actin are frequently exposed at the tip. Thus, we
expect a dependence of ccrit on the value of vP

�. This dependence is
verified in Fig. 4, where we display how the growth rate and ccrit
change with the value of vP

�. The magnitude of the shift is
influenced by the assumed rate of ATP hydrolysis: if one uses, for
example, a hydrolysis rate 10 times smaller, the change in growth
remains substantial but is considerably reduced (see Fig. 4 Inset).

Note also that preaveraging estimates the growth rate very
accurately (see Fig. 4). Even in the fluctuation-dominated region
just below ccrit, where cap size is substantially underestimated, it
remains accurate although slightly less so than elsewhere.

An important question is the effect of many-body interactions
between actin subunits, so far neglected in this work. We have found
that the shape of the mean growth rate near and below the critical
concentration is sensitive to these interactions. As an example, Fig.
3 Inset shows the dependence of j(c) on the depolymerization rate

of ATP–actin when its nearest neighbor is ADP–actin (vT�D
� ), with

all other rates as in Table 1. Other types of many-body interactions
can lead also to shifts in ccrit (data not shown). Including many-body
interactions rapidly increases the number of rate constants. Because
these constants are unknown and presumably hard to measure, the
uniqueness with which growth rate curves can be modeled near ccrit
is limited. We stress, however, that the central qualitative conclu-
sions, namely the existence of a long cap at ccrit and the associated
change of slope of the growth rate, are general. An example of
fitting experimental j(c) curves with a one-body model is shown in
Fig. 5.

Fluctuations in Growth Rate
Turning now to fluctuations in growth rates, we find these behave
dramatically around the critical concentration, reflecting a mild
version of the dynamic instability exhibited by microtubules (30,
41). In Fig. 6 Inset, we used MC to evaluate the length diffusivity,

Fig. 3. Dependence of growth rate on concentration: influence of vD
�

(indicated in s�1 next to each curve). Other parameters are as in Table 1. MC
and exact numerical solution results are indistinguishable. The spread in ccrit

values for the three curves is 5%. (Left Inset) Blow-up of critical region
showing the agreement between MC (squares, error bars are standard devi-
ation of mean) and numerical method (solid line). (Right Inset) Influence of
many-body effects; the value shown in s�1 next to curves is the depolymer-
ization rate of ATP–actin next to ADP–actin, vT�D

� .

Fig. 4. Growth rate: influence of the value of vP
� (shown in s�1). Other values

are as in Table 1. Solid lines indicate numerical solutions and MC simulations
(indistinguishable). Dashed line indicates preaveraging approximation for
vP

� � 1.1 s�1. (Inset) Same but with rH � 0.03 s�1.

Fig. 5. Growth rate j(c) vs. concentration from data taken from figure 1 of
ref. 14 for simultaneous growth at both ends (in KCl and Mg). Solid line
indicates numerical results, barbed end (parameters from Table 1), multiplied
by a prefactor to fit data that lack absolute scale. Differences between
numerical and experimental results may originate from the pointed end
contribution or possibly are due to the experimental ionic conditions.
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D(t) 	 (�L2� � �L�2)�(2t), where L is the number of subunits
added�subtracted after time t, starting from filaments with steady-
state caps at t � 0. For c � 0.15 �M (above ccrit), we find D is
essentially independent of time. Its magnitude is of order 1 mon2�s,
as would be expected for a growth process of identical subunits that
add�subtract with rates of order 1 s�1 (8, 30, 33, 34). However, for
c � 0.1 �M (below ccrit), D is increasing with time, reaching a large
asymptotic value D� after several hundred seconds. Fig. 6 shows the
dependence of D� on concentration; it exhibits a sharp peak below
ccrit and then drops rapidly.

To understand the physics underlying this behavior, consider
the simple model where ATP–actin and ADP–Pi–actin are identical
(vT

� � vP
�) and Pi release very slow (rPi

3 0). Now D describes the
random walk performed by the filament tip; if the tip makes a
random forwards or backwards step of L monomer units every time
interval T, then one can write D � L2�T. Just above the critical
concentration, where on and off rates are approximately equal, the
tip randomly adds or subtracts one ATP–actin (L � 1) in a mean
time T � 1�vT

�, giving D � vT
�. Just below the critical concentration,

however, we know there is a long steady-state cap. Because most
filaments are capped, at short times D is determined by length
changes of the cap, and its value is thus close to the cap diffusivity,
Dcap. As time increases, more and more uncapping episodes occur,
each episode now contributing to filament length change. Such
events are correlated on the timescale of the cap lifetime, tcap �
Ncap

2 �vT
� [we used Dcap � vT

� for the simple model (33, 34)]. This fact
explains why D(t) changes with time up to the cap lifetime (see Fig.
6 Inset). Thus, to determine D�, one must take T � tcap. By using
a well known result from the theory of 1D random walks (42), the
number of uncapping events during the time tcap is approximately
(Dcaptcap)1/2 � Ncap. Because the number of core monomers lost
during each uncapping episode before a polymerizing monomer
arrives is of order vD

��vT
�, thus L � NcapvD

��vT
�. Thus, one obtains a

very different expression for the diffusivity, D� � (vD
�)2�vT

�; there
is a discontinuity in diffusivity at ccrit of magnitude

�D� � vT
�
�2 � 1� , � � vD

��vT
� . [4]

At the barbed end the instability parameter � � 5.1 and fluctuations
at the critical concentration are very large, with a pronounced
discontinuous drop in D� as one passes to higher c. A rigorous
derivation of Eq. 4 is shown in Supporting Material where in addition
we obtain the full sawtooth curve shown in Fig. 6; evidently, the

simple model captures many features of the actual D�(c) profile.
The effect of Pi release and ATP–actin�ADP–Pi–actin differences
is to shift ccrit and to smooth the sharp peak and shift it to somewhat
below ccrit.

How do the results of Fig. 6 compare with the large fluctuations
observed by Fujiwara et al. (8) and Kuhn and Pollard (9) and also
suggested by the findings of ref. 43? Fig. 6 shows a peak value of
D� � 34 mon2�s�1, dropping to D� � 5 mon2�s�1 at ccrit. The
experimentally reported value was �30 mon2�s�1; however, these
measurements were performed at (8) or close to (9) a treadmilling
steady state, i.e., at a concentration slightly above ccrit for the barbed
end and well below that for the pointed end. At this concentration,
Fig. 6 shows a diffusivity of �5 mon2�s�1. Thus, both theory and
experiment exhibit large fluctuations near ccrit but at different
concentrations. Further experimental measurements of the full
D�(c) profile are needed to establish the relationship, if any,
between these.

Our work leads also to the following prediction: Because Pi will
bind to ADP–actin and eliminate the effect of a large instability
parameter, thus fluctuations and D at the barbed end will be
suppressed in the presence of excess Pi.

Discussion
Pointed End j(c): Why Is ccrit So Different? In this work, we emphasized
the barbed end, but our methods are also applicable to the pointed
end, provided the same mechanisms of uniform random hydrolysis
and slow Pi release remain valid. Making this assumption, let us now
discuss why ccrit (for ATP–actin) at the pointed end is almost six
times the value at the barbed end (6). Now an important issue is how
different the ATP–actin and ADP–Pi–actin species are, in terms of
on and off rate constants. That they are similar is suggested by the
observation that excess Pi reduces the critical concentration in a
pure ADP–actin polymerization to a value rather close to the
barbed end ccrit in ATP (16, 44–46). However, the assumption that
the two species are similar and that the same basic mechanisms
apply at the pointed end is inconsistent with the very different ccrit
values. This inconsistency is due to the cap structure we have
established here: the cap includes a long ADP–Pi segment essen-
tially hiding the ADP–actin core, which is thus rarely seen at the
filament tip (see Fig. 1a). For the barbed end (Fig. 2) Ncap � 25 at
ccrit, and we find a large value for the pointed end at its ccrit, although
smaller than the barbed end (data not shown). Thus, ADP–actin
on�off rates are almost irrelevant to ccrit (see Fig. 3), and hence
differences between ATP–actin and ADP–actin cannot account for
the large ccrit differences. Thus, the origin must be different
ATP–actin�ADP–Pi–actin compositions at the pointed and barbed
ends; because the ATP–actin segment is short, both species are
regularly exposed at filament ends, and substantially different ccrit
values will result, provided the two species have different rate
constants. Were these identical, ccrit at both ends would be very
similar, because the on�off rates at the filament ends would then be
very close to the values for an all ATP–actin filament; for such a
filament, detailed balance dictates that the ratio of on�off rates at
each end are identical (30). [However, in apparent contradiction to
this conclusion are the findings of ref. 6. where different on�off
ratios were reported at each end, under conditions where long
ATP–actin caps are expected. A conceivable explanation is possi-
bility (ii); see below.] Many-body effects will further affect ccrit.

We are driven to the following two possibilities: (i) ATP–actin
and ADP–Pi–actin are substantially different, or (ii) different
mechanisms operate during pointed end growth. Certain workers
(47, 48) have proposed possibility (i), based on the irreversibility of
hydrolysis (47), which suggests a large energetic change, possibly a
structural change of the filament. Possibility (i) may in fact be
consistent with the experiments of refs. 16 and 44–46, which did not
probe individual on�off rate constants of ADP–Pi–actin and that
may have involved significant ADP–actin polymerization (45). We
are unaware of any crystallographic (49) or electron microscopic

Fig. 6. Long time length diffusion coefficient, D�(c). Squares indicate MC
results, using parameters from Table 1. Vertical dashed line indicates ccrit. Solid
line indicates prediction of simple model: vP

� � vT
� � 1.4 s�1, rPi � 0, other values

from Table 1. (Inset) Time-dependence of diffusivity at two concentrations.
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(50) experiments examining ATP�ADP–Pi differences for filamen-
tous actin.

If we adhere to the assumption that the growth mechanisms as
previously outlined apply to both ends, we then are led to the
following prediction: the values of ccrit for ATP–actin at both ends
will be only weakly affected by the presence of excess Pi (provided
ionic conditions are strictly unchanged). This prediction follows
because the binding of Pi to ADP–actin segments is almost irrele-
vant because these are rarely exposed at the tip due to long caps at
ccrit. Indeed, for the barbed end no significant shift has been
observed in the presence of Pi (16, 44–46). For the pointed end,
however, a reduction of ccrit has been reported in the presence of
Pi and barbed end capping proteins (16, 44–46). This observation
cannot be explained within the present framework and suggests
possibility (ii). Future experiments will hopefully settle this impor-
tant issue.

Conclusions
In this work, filament growth rates j(c) and their fluctuations, as
measured by the diffusivity D(c), were calculated as functions of
ATP–actin concentration c. This work presents a rigorous calcula-
tion of these quantities accounting for all known basic mechanisms.
Pantaloni et al. (28, 29) studied j(c) at the barbed end in a work
before the mechanism of Pi release was discovered. Infinitely fast
Pi release and vectorial hydrolysis were assumed. Given the data
available at that time, to explain the sharp change in slope of j(c)
at ccrit (see, e.g., Fig. 5), they further assumed (i) strong three-body
ATP–actin�ADP–actin interactions that lead to stable short ATP–
actin caps, and (ii) zero hydrolysis rate of the nucleotide bound to
the terminal monomer. In our work, the origin of the sharp change

in slope is precisely the fact that Pi release is slow, similar to an
earlier model of microtubule polymerization (51).

Recently, Bindschadler et al. (31) studied the composition of
actin filaments accounting for all three actin species at steady state.
We have examined the preaveraging approximation used in their
work and showed that it leads to very accurate j(c) curves, but the
cap lengths are underestimated below ccrit.

Here, we have addressed random ATP hydrolysis only. Further
work is needed to analyze the implications of the vectorial hydrolysis
suggested by refs. 19 and 28. We showed that for random hydrolysis
j(c) is linear far above the critical concentration. Growth rate
experiments for both ends together in the absence of KCl have
exhibited nonlinearities up to c � 10 �M, far above the critical
concentration of the barbed end, which is 1 �M under these
conditions (10, 11). In refs. 10 and 28, this observation was
attributed to vectorial hydrolysis at the barbed end, whereas in ref.
6 this behavior was assigned to the nonlinear contribution of the
pointed end whose critical concentration is �5 �M under the same
conditions.

Perhaps our most interesting finding is that the long time
diffusivity D� has a large peak below the critical concentration ccrit
of the barbed end, followed by a sharp drop in a narrow range above
ccrit. This conclusion is quite general, and its origin is the smallness
of the Pi release rate and the large value of the off rate of ADP–actin
at the barbed end. Future measurements of length diffusivities over
a range of concentrations promise to provide new information and
insight on the fundamentals of actin polymerization.

We thank Ikuko Fujiwara, Jeffrey Kuhn, and Thomas Pollard for
stimulating discussions. This work was supported by Petroleum Research
Fund Grant 33944-AC7 and National Science Foundation Grant CHE-
00-91460.
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SUPPORTING MATERIAL

A. Numerical Method for Growth Rates.

Here we describe the numerical method we used in the main text to calculate the growth rate curves of
Figs. 3 and 4. Consider an ATP-actin monomer that polymerizes at the filament tip at time t = 0. We
define the return probabilities ψT

t , ψP
t , and ψD

t to be the probability that this monomer is once again at the
tip after time t as ATP-actin, ADP-Pi-actin, or ADP-actin, respectively. The total depolymerization rate of
this monomer at time t is

Ft = v−Tψ
T
t + v−Pψ

P
t + v−Dψ

D
t . (1)

The dynamical equations obeyed by the return probabilities are

d

dt
ψT

t = −(k+
Tc+ v−T + rH)ψT

t + k+
Tc
∫ t

0
dt′ψT

t′Ft−t′e
−rH(t−t′) ,

d

dt
ψP

t = −(k+
Tc+ v−P + rPi)ψ

P
t + rHψ

T
t + k+

Tc
∫ t

0
dt′ψP

t′Ft−t′e
−rPi(t−t′)

+ k+
Tc
∫ t

0
dt′ψT

t′Ft−t′
rH

rPi − rH

(

e−rH(t−t′) − e−rPi(t−t′)
)

,

d

dt
ψD

t = −(k+
Tc+ v−D)ψD

t + rPiψ
P
t + k+

Tc
∫ t

0
dt′ψD

t′Ft−t′ + k+
Tc
∫ t

0
dt′ψP

t′Ft−t′

(

1 − e−rPi(t−t′)
)

+ k+
Tc
∫ t

0
dt′ψT

t′Ft−t′

(

1 −
rPi

rPi − rH
e−rH(t−t′) +

rH
rPi − rH

e−rPi(t−t′)
)

. (2)

Here the non-integral terms on the right-hand sides represent change of tip status due to polymerization,
depolymerization, hydrolysis, and phosphate release events at time t. The integral terms represent rates of
reappearance of the monomer at the tip, weighted by factors accounting for the probability of hydrolysis or
phosphate release during the time interval since the last appearance at the tip. For example, the first term on
the right-hand side of the first equation represents the rate of change of the probability of finding the ATP-
actin monomer at the tip due to (i) polymerization of another monomer on top of it, (ii) depolymerization of
the monomer itself, or (iii) hydrolysis of the ATP nucleotide bound to the monomer at the tip. The integral
term on the right-hand side represents reappearance events of the ATP-actin unit at the tip given that it got
buried inside the filament due to a polymerization event at time t′, an event that occurred with rate k+

Tc.
Factor F represents the rate of reappearance of the buried monomer at the tip due to depolymerization of
all the monomers that were added on top of it. The factor e−rH(t−t′) is the probability that the ATP-actin
monomer in question is not hydrolyzed while being buried.

Now the filament growth rate is given by

j =















v−D
[

1 −
∫

∞

0 dt(ψD
t + ψP

t + ψT
t )
]

(j < 0)

k+
Tc−

∫

∞

0 dtFt (j > 0)

. (3)

Carrying out a Laplace transformation, t→ E, Ft → fE , and ψt → ΨE one has from Eq. 3

j =















v−D
[

1 − ΨD
0 − ΨP

0 − ΨT
0

]

(j < 0)

k+
Tc− f0 (j > 0)

(4)

while from Eq. 2 one obtains

ΨT
E = 1/

(

E + v−T + rH + k+
Tc(1 − fE+rH

)
)

,

1



ΨP
E =

rH + k+
Tc rH(fE+rH

− fE+rPi
)/(rPi − rH)

E + v−P + rPi + k+
Tc(1 − fE+rPi

)
ΨT

E ,

ΨD
E =

(

rPi + k+
Tc(fE − fE+rPi

)
)

ΨP
E + k+

Tc (fE − rPifE+rH
/(rPi − rH) + rHfE+rPi

/(rPi − rH)) ΨT
E

E + v−D + k+
Tc(1 − fE)

.(5)

Eliminating all Ψ in the Laplace transformation of Eq. 1 after using Eq. 5 one obtains the following
recursive relationship involving the function f alone:

fE = R[fE+rH
, fE+rPi

] , (6)

where

R[fE+rH
, fE+rPi

] =
−b1 +

√

b21 − 4b2b0

2b2
. (7)

Here the symbols b0, b1, and b2 are functions of E, fE+rH
and fE+rPi

as follows:

b0 = A0,2E
2 + A0,1E + A0,0 ,

b1 = A1,3E
3 + A1,2E

2 + A1,1E + A1,0 ,

b2 = A2,2E
2 + A2,1E + A2,0 , (8)

where

A0,2 = −(rH − rPi)v
−

Tk
+
Tc ,

A0,1 = (v−DrH − rPiv
−

T + rH(−v−P + v−T ))(k+
Tc)

2fE+rPi
+ (rHv

−

P − v−DrPi)(k
+
Tc)

2fE+rH

− (rH − rPi)k
+
Tc(rHv

−

P + v−T (v−D + v−P + rPi + 2k+
Tc)) ,

A0,0 = −v−D(rH − rPi)(k
+
Tc)

3fE+rPi
fE+rH

− (rH(v−P − v−T ) + rPiv
−

T )k+
Tc+ v−D((rH)2 − rPiv

−

T + rH(−rPi + v−T + k+
Tc))(k

+
Tc)

2fE+rPi

+ (rHv
−

Pk
+
Tc+ v−D(rH(v−P + rPi) − rPi(v

−

P + rPi + k+
Tc)))(k

+
Tc)

2fE+rH

− (rH − rPi)k
+
Tc(k

+
Tc(rHv

−

P + v−T (v−P + rPi + k+
Tc)) + v−D(rH(v−P + rPi) + v−T (v−P + rPi + k+

Tc))) ,

A1,3 = rH − rPi ,

A1,2 = −(rH − rPi)k
+
Tc(fE+rPi

+ fE+rH
) + (rH − rPi)(v

−

D + rH + v−P + rPi + v−T + 3k+
Tc) ,

A1,1 = (rH − rPi)(k
+
Tc)

2fE+rPi
fE+rH

− (rH − rPi)(v
−

D + rH + v−T + 2k+
Tc)k

+
TcfE+rPi

− (rH − rPi)(v
−

D + v−P + rPi + 2k+
Tc)k

+
TcfE+rH

+ (rH − rPi)(v
−

P v
−

T + rPiv
−

T + 2v−Pk
+
Tc+ 2rPik

+
Tc+ 3v−Tk

+
Tc+ 3(k+

Tc)
2

+v−D(rH + v−P + rPi + v−T + k+
Tc) + rH(v−P + rPi + 2k+

Tc)) ,

A1,0 = (rH − rPi)(v
−

D + k+
Tc)(k

+
Tc)

2fE+rPi
fE+rH

+ (−v−D(r2
H − rPiv

−

T + rH(−rPi + v−T + k+
Tc))

+k+
Tc(−r

2
H + rH(v−P + rPi − 2v−T − k+

Tc) + rPi(2v
−

T + k+
Tc)))k

+
TcfE+rPi

+ (v−D(−rH(v−P + rPi) + rPi(v
−

P + rPi + k+
Tc))

+k+
Tc(rPi(v

−

P + rPi + k+
Tc) − rH(2v−P + rPi + k+

Tc)))k
+
TcfE+rH

+ (rH − rPi)(v
−

D(rH(v−P + rPi) + v−T (v−P + rPi + k+
Tc))

+k+
Tc(rH(2v−P + rPi + k+

Tc) + (v−P + rPi + k+
Tc)(2v

−

T + k+
Tc))) ,

A2,2 = rPi − rH ,

A2,1 = (rH − rPi)k
+
Tc(fE+rPi

+ fE+rH
) − (rH − rPi)(rH + v−P + rPi + v−T + 2k+

Tc) ,

A2,0 = −(rH − rPi)(k
+
Tc)

2fE+rPi
fE+rH

+ (rH − rPi)(rH + v−T + k+
Tc)k

+
TcfE+rPi

+ (rH − rPi)(v
−

P + rPi + k+
Tc)k

+
TcfE+rH

− (rH − rPi)(v
−

P + rPi + k+
Tc)(rH + v−T + k+

Tc) . (9)
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We remark that Eq. 7 is the solution of a quadratic equation; which of the two solutions of the quadratic is
meaningful is easily checked by demanding f < 1 in the E → ∞ limit.

Now for any given monomer concentration c, with the boundary condition fE → 0 as E → ∞,
we started from a large enough E value and evolved Eq. 6 towards E = 0 to obtain f0, frPi

, and frH
.

Substituting these values in Eq. 5 we further obtained ΨT
0 ,Ψ

P
0 , and ΨD

0 . Thus, given f0,Ψ
T
0 ,Ψ

P
0 , and ΨD

0

we evaluated j(c) using Eq. 4. It was shown that this method converges to a unique solution provided one
starts the evolution from large enough E, retaining a sufficient number of significant digits.

B. Preaveraging Approximation: Calculation of Growth Rates.

Here we present the method we used to calculate cap sizes and growth rates based on a preaveraging
approximation. As discussed in the main text, compared with the exact calculations, this method gives
different results for the cap size below ccrit, but provides very good approximations to growth rates. We
denote φT(n), φP(n), and φD(n) the probability that the nth monomer away from the tip binds ATP, ADP-
Pi, or ADP, respectively. Consider first the tip, i. e. n = 1. One has (1)

d

dt
φT(1) = k+

Tc[φP(1)+φD(1)]+[v−PφP(1)+v−DφD(1)]φT(2)−v−T [φP(2)+φD(2)]φT(1)−rHφT(1) . (10)

The first term on the right-hand side represents change of tip status into ATP-actin due to polymerization
of ATP-actin at an ADP-Pi-actin or ADP-actin tip. The second term represents change of tip status into
ATP-actin due to (i) depolymerization of ADP-Pi-actin or ADP-actin at n = 1, and (ii) exposure of ATP-
actin, previously buried at position n = 2. Within the preaveraging approximation, the joint probability
of ADP at n = 1 and simultaneously ATP at n = 2, for example, is approximated as a product of prob-
abilities: φDT(1, 2) ≈ φD(1)φT(2) in Eq. 10. Similarly, the third term on the right-hand side represents
depolymerization of ATP-actin while the last term is change due to hydrolysis.

For ADP-Pi-actin one has similarly

d

dt
φP(1) = [v−TφT(1) + v−DφD(1)]φP(2) −

{

v−P [φT(2) + φD(2)] + k+
Tc+ rPi

}

φP(1) + rHφT(1) . (11)

The analogous equations for n > 1 are (1)

d

dt
φT(n) = k+

Tc[φT(n− 1) − φT(n)] + [v−TφT(1) + v−DφD(1) + v−PφP(1)][φT(n+ 1) − φT(n)] − rHφT(n)

d

dt
φP(n) = k+

Tc[φP(n− 1) − φP(n)] + [v−TφT(1) + v−DφD(1) + v−PφP(1)][φP(n+ 1) − φP(n)]

+ rHφT(n) − rPiφP(n) (n > 1) (12)

The rate of change of the ADP-actin probabilities are determined from φT(n) + φP(n) + φD(n) = 1.
Starting from an arbitrary nucleotide profile and using long filaments, we evolved numerically Eqs. 10-
12 for a long enough time to allow the profile to reach its steady state [note that an analytical solution is
also possible since Eq. 12 is linear, except for the tip terms (1)]. The growth rate and the cap size were
calculated from

Ncap =
∞
∑

n=1

φT(n)+φP(n) , NATP
cap =

∞
∑

n=1

φT(n) , j = k+
Tc−v

−

TφT(1)−v−PφP(1)−v−DφD(1) .

(13)
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C. Analytical Calculation of Length Diffusivity as a Function of Concentration.

Here we prove that D∞(c) in Fig. 6 has a sawtooth shape in the special case v−P = v−T and rPi → 0.
Consider first shrinking barbed ends, c < ccrit. For long times, tÀ tcap, apart from fluctuations in the size
of the steady-state ATP/ADP-Pi cap, fluctuations in tip displacement are due to fluctuations in how far the
ADP core has shrunk. Let us call u(τ |t) the probability that in time t the filament is uncapped for a total
time τ . The probability that N monomers have been lost during this time is

p(N, t) =
∫

∞

0
dτ u(τ |t)P(N, v−Dτ) , P(N, x) ≡ xNe−x/N ! , (14)

where the Poisson distribution, P , describes the probability distribution of the number of depolymerized
ADP-actin monomers during the total uncapped period. Let us evaluate u by noting that the average value
of τ and its second moment are given by

〈 τ 〉 = t S∞ ,
〈

τ 2
〉

= 2S∞

∫ t

0
dt′

∫ t

t′
S(t′′ − t′)dt′′ , (15)

for long enough times. Here S(t) is a return probability, namely the probability that the tip is uncapped
at time t, given that it was uncapped at t = 0, and S(t) → S∞ for t → ∞. To prove Eq. 15, define
ξ(t′′|t′) to be a random variable that is zero (unity) when the tip is capped (uncapped) at time t′′, given it
was uncapped at t′. One has 〈 τ 2 〉 =

∫ t
0

∫ t
0 dt

′dt′′ 〈 ξ(t′|0)ξ(t′′|0) 〉 = 2
∫ t
0 dt

′
∫ t
t′ dt

′′ 〈 ξ(t′|0) 〉 〈 ξ(t′′|t′) 〉.
Noting that S(t) = 〈 ξ(t|0) 〉 one recovers Eq. 15.

Now the exact result for S is (2)

S(t) = e−(k+

T
c+v−

T
)t[I0(2tx)+y

−1/2I1(2tx)+(1−y)
∞
∑

j=2

y−j/2Ij(2tx)] , y ≡ k+
Tc/v

−

T , x ≡ (k+
Tcv

−

T )1/2 ,

(16)
where Ij are modified Bessel functions. Using S∞ = 1 − c/ccrit one obtains for long times 〈 τ 〉 =
t(1 − c/ccrit) and 〈 τ 2 〉c = (t/v−T ) where 〈 〉c denotes second cumulant. Thus relative fluctuations in τ
become small for long times and u becomes Gaussian, u(τ |t) ≈ const. exp[−(τ − 〈 τ 〉)2/(2 〈 τ 2 〉c)].
Substituting u in p(N, t) of Eq. 14 and performing the integration one obtains

D∞(c) =

{

(v−D/2)[1 + (2v−D/v
−

T − 1)c/ccrit] (c < ccrit)
(k+

Tc+ v−T )/2 (c > ccrit)
, (17)

which is the sawtooth curve plotted in Fig. 6. Notice that D∞ decreases for smaller concentrations
since at c = 0 one must recover the Poissonian fluctuations of a pure depolymerization process for which
D∞ = v−D/2. In Eq. 17, the c > ccrit expression represents the fluctuations of a polymerization process of
identical subunits (3) (since in the limit considered here the cap is never lost above ccrit).
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