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Self-Reconfiguration in Response to Faults in
Modular Aerial Systems

Neeraj Gandhi1, David Saldaña2, Vijay Kumar3, and Linh Thi Xuan Phan1

Abstract—We present a self-reconfiguration technique by
which a modular flying platform can mitigate the impact of rotor
failures. In this technique, the system adapts its configuration
in response to rotor failures to be able to continue its mission
while efficiently utilizing resources. A mixed integer linear
program determines an optimal module-to-position allocation in
the structure based on rotor faults and desired trajectories. We
further propose an efficient dynamic programming algorithm
that minimizes the number of disassembly and reassembly steps
needed for reconfiguration. Evaluation results show that our
technique can substantially increase the robustness of the system
while utilizing resources efficiently, and that it can scale well with
the number of modules.

Index Terms—Cellular and Modular Robots; Aerial Systems:
Applications; Failure Detection and Recovery

I. INTRODUCTION

TERMITES, bees, and ants are prominent examples of
many small units working together to accomplish large

undertakings (e.g., a termite mound). Recently, there has
been a trend towards replicating such swarm-like behavior
in robotic systems to solve complex collective tasks such as
exploration [21], construction [13], and transportation [4] [8].
For example, robot swarms have been used to create large
structures that are impossible for a single agent to accom-
plish [1], [6], [19].

Using robot bodies as building units, individual agents
in the swarm can attach to one another to form complex
structures such as bridges or towers [12], [13], [16]. The
versatility such systems can provide is vast – they can change
their configuration to suit a wide range of tasks [17]. In the
robotics literature, there exist aerial modular systems that can
be manually assembled [3], [10], [20], [22], systems that
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(b) After self-reconfiguration.

Fig. 1: An aerial structure in a plus-shape following a helical
trajectory. Illustrations of the structures are shown to the right
of each plot. Translucent red disks indicate faulty rotors. (a)
Six faulty rotors can be fatal for a structure driving it to
undesired locations. (b) The structure can follow the trajectory
after self-reconfiguration.

self-assemble on the ground [11], or even ones that self-
assemble in midair [13]. Despite having inherent redundancy
in actuation, these systems are not fault tolerant by default:
modules are often tightly coupled, and thus the failure of a
small number of modules can substantially impact the overall
system performance (see Fig. 1 for an example scenario).

Rotor failures have been investigated in multirotor systems.
For instance, the work in [9] examines rotor failures for
quadrotors. Since a quadrotor does not provide redundancy, it
cannot follow a trajectory without undesirable rotations. The
authors of [18] studied how thrust can be redistributed in an
octorotor when a rotor fails such that the aircraft can continue
flying. The approach described in [2] explores a fault-detection
method inspired by the flashing lights of fireflies to detect and
repair faults in a timely manner. However, existing work is
limited to only single-module systems.

This paper takes advantage of the inherent redundancy mod-
ular aerial systems can provide to propose self-reconfiguration
techniques for cooperative multi-agent systems to recover from
rotor failures. It focuses on modular aerial robots, specifically
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ModQuad [13]; however, our approach is general and can
be adapted to other robotic systems. ModQuad is a modular
aerial system in which each module is a cuboid propelled
by a quadrotor. Modules are bound together with permanent
magnets at the corners of their frames to form a single rigid
body. With this mechanism, a ModQuad swarm can rapidly
(dis)assemble flying structures in midair, which is particularly
useful in time-critical situations, such as in a disaster-relief
missions. Previous work has shown that a system like Mod-
Quad is physically feasible using a small quadrotor platform
like Crazyflie 2.0 robots [14] [13] [4], or by using custom-built
larger quadrotors [5]. While ModQuad might be far from being
applied commercially, these initial papers show that the system
is physically possible and has the potential to be applied in
real-world settings.

Traditionally, multirotor vehicles handle faults by having
more than four rotors. However, the maximum number of
faults is fixed and limited by the number of rotors. For
instance, a hexarotor might be able to handle two rotor failures,
and perhaps stay aloft with four failures, but it cannot handle
more. A multi-robot system such as ModQuad allows for the
structure itself to expand, thereby increasing the number of
faults that can be handled. If we wish for a system to withstand
more faults, we can simply append an additional module to
the structure.

Motivating scenario: Let us consider a fault scenario in
a ModQuad structure consisting of 5 modules arranged in a
plus-sign shape. The structure needs to travel along a helical
trajectory, as shown in Fig. 1. Multiple rotor failures in critical
locations can render the system to a nonfunctional state, as
depicted in Fig. 1(a). Through optimal self-reconfiguration
(using our proposed technique), the system is able to adapt
to the faulty rotors and complete its task. As illustrated in
Fig. 1(b), the actual trajectory of the system closely follows
the planned trajectory despite having six faulty rotors. Self-
reconfiguration can thus be effective in minimizing the impact
of faults on performance, and it may even be necessary for
mission completion.

Challenges: To make ModQuad adaptable to
faults, we need to address two research questions:
i) how should the modules be allocated to
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Fig. 2: Factors affecting
optimal configurations.

the structure to minimize the im-
pact of the faulty rotors? and ii)
how should a structure change its
existing configuration to a new
configuration such that faulty ro-
tors are properly handled?

Finding an optimal new config-
uration for the modules is highly
non-trivial, as it depends on not
only the positions of the faulty
rotors but also the current path of
the structure. To illustrate this, con-
sider the structure in Fig. 2, where

each square represents a module, and Module 1 experiences

a rotor failure (marked by a red disk). This module should
be positioned differently in the new configuration based on
the desired path to minimize path divergence. For instance,
for Path 1, Module 1 should be moved to the current position
of either Module 4 or Module 5. For Path 2, Module 1 can
remain in its current position. Finally, for Path 3, it should be
placed in the current position of either Module 2 or Module 7.

Further, it is neither always feasible nor always desirable to
move to the new configuration by disconnecting all modules
from one another and then re-assembling. As illustrated in
Fig. 3, for any given path, the impact of faults in Module
1 can be mitigated by moving Module 1 to the position of
Module 3. However, achieving Goal Structure 1 is infeasible,
as it requires Module 1 to be disconnected from the rest (after
which we will not be able to move it into a docking position).
In contrast, Goal Structure 2 is achievable because the breaks
we introduce in the original structure do not isolate any module
with faulty rotors.

Our technique addresses these challenges using three goals
when computing new configurations and reconfiguration strat-
egy: i) minimize the impact of the faulty rotors on the
motion of the structure over the entire trajectory, ii) ensure
all modules in the structure complete the trajectory by making
sure faulty modules are never isolated in the migration between
configurations, and iii) minimize the number of disassembly
and reassembly steps during reconfiguration, as each step in-
curs non-negligible time and energy overhead. We assume that
such computation is done offline and stored in a configuration
tree. That is, given some sequence of faults that occur in the
system, the robot can look through the configuration tree and
find the specific new reconfiguration it should self-reconfigure
to given the specific sequence of faults that occurred.

II. MODEL

A ModQuad module has a cuboid shape and is propelled
by a single quadrotor. Groups of modules can join their
vertical faces (yz,xz planes) to form a structure. A structure
is represented as a graph S = (V,E), where vertices are
individual rotors and edges are connections between adjacent
modules. A structure is formed when two individual modules
or structures horizontally dock to one another. Similarly, a
structure can be disassembled through an undocking action,
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Fig. 3: A structure with two self-reconfiguration sequences.
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in which two sides of the structure magnetically disconnect
from one another [15]. For ease of discussion, we can describe
the structure as being m modules long and n modules wide,
though it is not necessary that every position in this m× n
rectangular space is filled with a physical module.

We refer to a module by its index and denote the set of N
available modules byM= {1, ...,N}. Each module i has four
vertical rotors in a square configuration that generates vertical
forces and moments

fik = kF ω
2
ik, Mik =±kM ω

2
ik, for k = 1, ...,4,

where ωik is the angular speed of the rotor, and kF and kM

are motor constants that can be obtained experimentally. The
inertial, or world, coordinate frame is denoted by W , the
structure coordinate frame by S, and the module coordinate
frame for the ith module position in S by Ri. We assume all
modules are identically oriented, i.e. the x-axis of the structure
coordinate frame is parallel to the x-axis of each individual
module (as with the other axes).

The location of the center of mass of the ith module in
the desired structure is xS

i = [xi,yi,zi]
>. The location of the

kth rotor of the ith module is xS
i,k = [xi,k,yi,k,zi,k]

>. The total
thrust F and total moments M = [Mx,My,Mz]

> are a function
of all individual rotor forces in the structure:

F
Mx

My

Mz

= ∑
i


1 1 1 1

yi,1 yi,2 yi,3 yi,4
−xi,1 −xi,2 −xi,3 −xi,4

kM
kF

− kM
kF

kM
kF

− kM
kF




fi,1
fi,2
fi,3
fi,4

 .
The resultant force and moments generate translational and
rotational accelerations for the entire structure, denoted ẍS and
Ω̇, respectively (see [13] for more details). Additional notation
we use is provided in Table I.

III. FINDING OPTIMAL ALLOCATION

The optimality of module-to-position allocation in a structure
is related to the planned trajectory. Given a set of modules
M, a desired structure S, and a rotor state matrix Γ, we use
a mixed integer linear program (MILP) to find an optimal
module placement.

A. MILP Constraints

Our MILP formulation aims to find an optimal allocation Π∗

that assigns modules to positions in the structure such that
faulty-rotor impact on performance is minimized. Towards
this, it makes use of the following constraints.

1) Each location can only contain a single module and each
module can only be placed in a single location:

Π1 = 1 and Π
>1 = 1.

TABLE I: Symbols used in our approach.

Symbol Description
` The side length of a cuboid module.
R The set of rotors in a single module. R =

{1,2,3,4} for quadrotors, where 1 indicates the
top-right rotor and indices increase in a clockwise
manner.

mi Mass of module i.
mS Mass of the structure computed as ∑

N
i mi.

Γ Γ ∈ [0,1]N×4 represents the state of each rotor of
each module in M. Each individual value Γ j,k
indicates the functional degree of the kth rotor of
module j in M with 1 for fully-functional and 0
for non-functional. Values strictly between 0 and
1 indicate partially functional rotors.

Π The allocation matrix Π∈{0,1}N×N . Πi, j ∈{0,1}
defines whether the physical module j is assigned
to the ith module position.

P P ∈ {0,1}N×N×2 indicates adjacencies between
positions in the structure, where Pi,i′,d = 1 indi-
cates that the position xS

i is adjacent to xSi′ in the
direction d. A rightward adjacency is d = 0, and
a downward adjacency is d = 1 (the other two
directions are redundant).

A A ∈ {0,1}N×N×2 indicates adjacencies between
physical modules. We can write the adjacency for
two modules j, j′ as A j, j′,d , where the direction
d is the same as for P. Unlike P, this matrix
establishes if a pair of physical modules (e.g.,
Module 1 and Module 2) are adjacent in direction
d; it is agnostic to the actual positions the two
modules are assigned to.

2) The values of the adjacency matrix A must satisfy the
condition that A j, j′,d = 1 if and only if j and j′ are
actually adjacent in the generated allocation:

A j, j′,d = max
i,i′∈S

{
Pi,i′,d

(
Πi, j +Πi′, j′ −1

)
,0
}

∀ j, j′ ∈M,d ∈ {0,1}.

If modules j, j′ are assigned to positions i, i′, respectively,
then A j, j′,d acquires value 1 if and only if the ith position
in the structure is adjacent in direction d to the i′th

position in the structure.
3) Optionally, we can also constrain specific modules to be

placed next to one another. This is useful when a module
has a faulty rotor and thus cannot be undocked from
all other modules (c.f. Fig. 3). For each tuple (S p,Πp)

passed as an input to the MILP, where S p represents
a structure and Π

p is the module-to-position allocation
matrix of S p, we constrain the adjacency matrix of the
MILP, A, to contain all the adjacencies between modules
in in (S p,Πp). That is, we require A j, j′,d = 1 if, for any
tuple (S p,Πp) passed in, adj((S p,Πp), j, j′,d) = 1. Here,
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the function adj specifies whether the modules j, j′ are
adjacent to each other in direction d in (S p,Πp).

B. Objective Function

We plan minimum snap trajectories for structures to follow
as described in [7]. To optimize the allocation of rotors to
positions, we need a metric for optimality. We maximize the
moment produced about a weighted average of the x and y
axes based on the trajectory.

We can directly control angular acceleration in our system
model, which is proportional to the linear snap (forth derivative
of position). The trajectory planner gives us several parame-
ters, among which are the snap in the x and y dimensions,
denoted x(4) and y(4). We find the constants

bx =
∫ t f

0
|x(4)(t)|dt and by =

∫ t f

0
|y(4)(t)|dt,

where t f is the planned time to complete the trajectory.
Next, we define the moments about the x and y axes of the

structure as a function of the allocation of modules to positions
Π:

Mx(Π,Γ) = fmax ∑
i∈S, j∈M,

k∈K

Πi, jΓ j,k
∣∣xSi,k∣∣ , and

My(Π,Γ) = fmax ∑
i∈S, j∈M,

k∈K

Πi, jΓ j,k
∣∣ySi,k∣∣ .

We multiply the rotor positions by Πi, j to ensure that the
moment is nonzero only when the module j is actually
assigned to the ith module position, and we also multiply by
Γ j,k to ensure that the maximum moment is capped based
on how faulty each rotor is. Finally, we multiply the entire
expression by fmax to compute the moment as a function of
the module-to-position allocation.

The two moments are combined to produce an objective
function that uses the module allocation Π to maximize the
average moment in the x– and y–axes of the trajectory

φ = max
Π

bx

bx +by
Mx +

by

bx +by
My.

The MILP returns an optimal allocation Π
∗ for a given struc-

ture. If the structure is already in some arbitrary configuration
Π, the system must know the sequence of steps to self-
reconfigure from Π to Π

∗ such that reconfiguring is physically
feasible.

IV. SELF-RECONFIGURATION

This section examines the problem of determining the interme-
diate configuration(s) a structure must acquire to reach its new
formation. We need to determine a) whether the migration is
feasible, and b) the steps the system needs to take to migrate
from one configuration to another. A step for a single structure
consists of disassembly along a straight line. From the set of
all possible disassembly (or “break”) lines, we need to decide
which one is the best option. This is illustrated in Fig. 4, which
shows all possible disassembly lines for a doughnut structure
(in dotted red lines) and two examples of splitting.

A. Self-disassembly

We know that if a module has a faulty rotor, then it cannot
control its attitude properly [9] and will be unable to perform
docking actions. The minimum number of co-planar rotors
needed for a quadrotor to fly without undesired rotations is
four. Each rotor must be in a different quadrant of the xy–
plane of the structure frame. Thus, we must ensure that when
we break a structure to rearrange the quadrotors, no module
with failed rotors becomes isolated.

1) Method 1: Full self-disassembly: One solution is to com-
pletely disassemble the structure into as many substructures
as possible, to the point of individual modules if possible.
This approach was studied in [15] for structures without faulty
rotors. The fault-tolerant version of this approach would need
to account for the fact that modules with faulty rotors cannot
be isolated at any point during the process.

One way to disassemble the structure is to enumerate all
possible links to break and then choose the “path of breaking
links” that is best for disassembly. However, this strategy
is highly inefficient. For an m× n rectangular structure S ,
there will be (m−1)+ (n−1) possible undocking actions to
consider when we perform the first disassembly. For each sub-
structure generated, we have O(m+n) disassembly options to
consider. A naı̈ve approach would be checking all the possi-
ble combinations to find the best self-disassembly sequence.
However, this would result in exponential complexity.

We observe that self-disassembly will generate many non-
unique substructures that we do not need to find disassembly
steps for more than once (given a unique fault configuration).
This optimal sub-problem structure makes it appropriate to
use dynamic programming, thereby reducing the exponential
complexity to polynomial complexity. We present our dynamic
programming approach in Algorithm 1.

In Algorithm 1, C maps a structure and known faults to
a particular disassembly (“break”) location and its associated
cost. GENSPLITS(S,Γ,C) is the main recursive call. It takes
a structure, the states of rotors in that structure, and the cost
map as an input. It will recursively find the best disassembly

Algorithm 1 Dynamic programming algorithm to find disas-
sembly sequence for a structure S.
Require: S,Γ
1: C←{} . Path : map〈(S,Γ),(breakline,cost)〉
2: GENSPLITS(S,Γ,C)
3: function GENSPLITS(S,Γ,C)
4: if SIZE(S) = 1 then
5: return 1
6: if exists(C[(S,Γ)]) then
7: return C[(S,Γ)].cost
8: B← GETBREAKLINES(S)
9: β ← ∞ . cost of breakline of min cost

10: for b ∈B do
11: if SPLITTABLE(S,Γ,b) then
12: [S1,Γ1,S2,Γ2] ← SPLIT(S,b)
13: σ ← GENSPLITS(S1,Γ1,C) + GENSPLITS(S2,Γ2,C)
14: if σ < β then
15: β ← σ

16: C[(S,Γ)]← (b,σ)

17: else . Unsplittable due to faults
18: return 1 . Splitting here would cause a crash
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sequence and store the results in the map C. The function
SPLITTABLE(S,Γ,b) checks whether the structure S can be
split along the break line b such that both generated sub-
structures can stay aloft on their own given the current Γ.
The function GETBREAKLINES(S) returns a list of all possible
lines of the structure S along which we can break it in two.
This function does not take the feasibility of performing such
a disassembly into account. The base case returns value 1
because we wish to find the recursive depth, and the minimum
recursive depth is 1 for a structure that can never be disassem-
bled; the algorithm at minimum, still needs to determine that
the given structure cannot be disassembled in the first call to
GENSPLITS.

Given an m× n structure, there are at most mn sizes of
sub-structures. For instance, a 4× 3 structure breaks down
into sub-structures of sizes: {1×1,1×2,1×3,2×1,2×2,2×
3,3× 1,3× 2,3× 3,4× 1,4× 2,4× 3}. If we do not have to
consider faults, then the final complexity of the problem would
be O((m+n)mn), where the (m+n) factor is because it takes
linear time to find the best disassembly location for a given
structure. However, structures with the same S and different
Γ are not equal. A 3× 1 sub-structure with a fault in the
top does not have the same disassembly options as a 3× 1
sub-structure with a fault in the bottom. The complexity thus
depends on how many unique 3× 1 sub-structures might be
generated over the course of the algorithm. It similarly depends
on this computation for each sub-structure size possible given
the original structure.

There is only one possible m×n sub-structure that can be
generated for the original m×n structure (i.e., the root of the
recursion). There are two ways to generate a m×(n−1), three
ways to generate a m× (n−2), and so on. If we fix the value
m, there are ∑

n
j=1 j sub-structures that can be generated. Since

the number of rows in a sub-structure can be any number in
the set {1,2, . . . ,m}, the worst-case number of sub-structures
to consider is

m

∑
i=1

n

∑
j=1

i j =
m(m+1)n(n+1)

4
= O(m2n2).

a

b

c d e

a

b

c e

a'

b'b

c d e

c' d' e'

Fig. 4: Self-disassembly options. Undocking can be performed
along multiple break-lines. For instance, break-line a (bottom
left) and break-line d (bottom right).

For each sub-structure, it takes linear time to find the most
optimal disassembly location, since we need to examine each
disassembly operation once to see if it is the one that incurs
the least cost. Thus, the time complexity of the algorithm is
O((m+n)m2n2).

2) Method 2: Partial self-disassembly: Our partial self-
disassembly method adapts ideas from Algorithm 1 but im-
proves efficiency by eliminating unnecessary disassembly op-
erations.

Observe that Algorithm 1 always fully disassembles the
structure except for cases in which the disassembly would
cause a structure with faulty rotors to become isolated. How-
ever, there are scenarios in which it is unnecessary to further
break down a structure (even if it is possible). For instance,
if a particular 2×1 sub-structure appears in both the original
configuration and the new configuration, then it does not need
to be broken down further, even if neither module contains a
faulty rotor. Avoiding such unnecessary disassembly actions is
useful in two ways: i) It saves energy and time in performing
the reconfiguration, and ii) it reduces the computation the
algorithm must perform to find the best possible intermediate
stages for reconfiguration. This technique can also result in
fewer intermediate stages than the full disassembly algorithm
does.

Algorithm 2 Find disassembly sequence for a structure S.
Input: Q,Q∗ . The input Q denotes a triple (S,Π,Γ).
Output: C . C maps a unique Q to optimum (disassembly line, cost)

1: C←{} . Pass by reference–Path : map〈Q,(breakline,cost)〉
2: β ←RECONFIGURE(Q,Q∗,C)
3: function RECONFIGURE(Q,Q∗,C)
4: if SIZE(Q.Π) = 1 then return 1
5: if EXISTS(C[Q]) then return C[Q].cost
6: β ← ∞ . cost of breakline of min cost
7: for each possible splitting location do
8: for each substructure pair generated by split: Q1,Q2 do
9: if at least one substructure is invalid then

10: continue
11: Perform checks in CHECK PAIR(Q1,Q2,b,β )
12: return β

13: function CHECK PAIR(Q1,Q2,breakline,β )
14: σ ← max{C[Q1].cost,C[Q2].cost}
15: T ←Q∀Q ∈ {Q1,Q2} if Q /∈ C
16: if RECONFIGURABLE(T ,Q∗) then
17: if σ +1 < β then
18: β ← σ +1
19: C[Q]← (breakline,β )
20: else
21: ψi← RECONFIGURE(Qi,Q∗,C) ∀Qi ∈ T
22: if maxi∈{1,2,...|T |}ψi then σ ←maxi∈{1,2,...|T |}ψi +1

23: if σ < β then
24: β ← σ

25: C[Q]← (breakline,β )
26: return β

27: function RECONFIGURABLE(T ,Q∗)
28: for Q ∈ T do
29: if not all modules in Q can be placed in correct spot in Q∗ then
30: return False
31: return True

Algorithm 2 presents our partial-disassembly method that
optimizes Algorithm 1 based on this insight. The base cases
in this algorithm are the same as in Algorithm 1. As before,
we generate all possible splitting locations. For each possible
splitting location, the algorithm must consider the split and
determine whether the generated sub-structures would be valid
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(i.e., stay aloft on their own). If so, that pair of sub-structures
is passed to CHECK PAIR(Q1,Q2,breakline,β ). CHECK PAIR

determines whether the two sub-structures Q1 and Q2 can be
directly placed into the new desired structure. That is, each
module in S1 would be able to achieve its desired position in
the final structure without losing its relative position in Q1.
We require each module to be placed in the exact position
that the MILP returns; future work will relax this constraint.
Further, the sub-structure cannot “enclose” another, i.e., we
cannot force another substructure to dock to two or more
locations on the current sub-structure simultaneously.

If both conditions are met, then no further recursion is
needed on such a structure. If not, then the structure will
be broken down further in recursion. The migration cost is
computed in the same manner as Algorithm 1, i.e., it is the
maximum depth of recursion needed such that each module
from the original configuration can be feasibly placed in its
new position in the new configuration.

It is important to consider the case where the presence of
faulty rotors prevents the dynamic programming algorithm
from generating sufficiently small substructures that can be
placed in the exact positions the MILP computed. For instance,
let’s say that we have a structure [1,2,3,4] in a line config-
uration and we desire the structure [4,3,2,1]. If a rotor of
module 1 is faulty, then we cannot disconnect module 1 from
module 2, making it impossible to exactly create the structure
[4,3,2,1].

3) Infinite cost disassembly: The migration cost may be
infinite if there is no method by which it is feasible to migrate
from the current structure into the new one due to where the
modules containing faults exist. In this case, we introduce
additional constraints to bind modules with faulty rotors to
adjacent modules and rerun the MILP (this is what the final
constraint in Section III-A was for). Since we have bound all
modules that need extra support to other modules, we only
need to rerun the MILP once to obtain a solution we can
feasibly reconfigure to.

Algorithm 3 Find a self-assembly sequence for a set of
substructures L.

Input: A,L,Q∗ . The input Q denotes a triple (S,Π,Γ)
Output: A

1: A←{} . Pass by reference–Path : map〈L,assemble line〉
2: ASSEMBLE(A,L,Q∗)
3: function ASSEMBLE(A,L,Q∗)
4: cbest ← ∞ . cost to assemble partition
5: for b ∈ GET BREAKLINES(L) do . assembly lines same as breaklines
6: cb← 0
7: if ASSEMBLABLE(L,b) then
8: H←PARTITION(L,Q∗,b)
9: for h ∈H do

10: cb,h← ASSEMBLE(A,h,Q∗)
11: if cb,h > cb then
12: cb← cb,h

13: else
14: cb← ∞

15: if cb < cbest then
16: A[L]← b
17: cbest ← cb

18: return cbest

B. Self-assembly

Once the best feasible self-disassembly operation is completed,
the structure proceeds to re-assemble.

1) Finding the minimal-cost self-assembly sequence: Par-
allelizing the docking actions is desirable so as to minimize
assembly time. Our approach is summarized in Algorithm 3.
Here, L is used to denote a set of substructures and A denotes
a mapping of L to a dividing line that we will assemble the
two sides on. We then recurse over the lists of structures on
the two sides of this line to generate corresponding assembly
lines. The algorithm is designed to minimize the number of
assembly layers needed to construct the whole structure.

The function ASSEMBLE(A,L,Q∗) is the main recur-
sive call that generates the assembly sequence. As before,
GET BREAKLINES(L) is used to find lines along which struc-
tures can be assembled, though the argument passed in is
adapted for assembly. ASSEMBLABLE(L,b) checks that no
sub-structure in L crosses the assembly line b, as if it does b
is not a valid assembly location. Note that because of the way
the disassembly algorithm was designed, we are guaranteed
that there is at least one sequence of assembly lines such that
the full structure can be recreated in the desired configuration.

2) Path Planning for self-assembly: The path planning is
relatively straightforward. Once we have the mappings from
Algorithm 3, we move every pair of substructures that will be
combined in a particular assembly step to be on an isolated
z-height. Then, we keep one substructure stationary while
moving the other into position to dock in the correct position.
We do the same for the next layer of assembly, and again for
the following layer, until the entire structure is assembled.

V. EVALUATION

To evaluate the applicability and performance of our technique,
we performed a series of simulations. We evaluate the opti-
mality of computed configurations through simulations in ROS
(adapting the simulator available from https://github.com/dsaldana/

modquad-simulator) with several ModQuad structures and fault
scenarios. The simulator solves the Newton-Euler equations
for multiple flying structures, taking into account the impact
of the faulty rotors in their dynamical model. It also com-
bines/separates rigid bodies after docking/undocking actions.
Our main objective is to show i) how effective self-adaptation
is in minimizing the impact of failures on performance in
terms of staying true to task path and energy efficiency, ii)
the complexity and scalability of self-reconfiguration, and
iii) the end-to-end integration of the MILP solving and the
disassembly and assembly sequence at run time.

A. Benefits of self-reconfiguration

We compared structures traveling along trajectories with faulty
rotors under two settings: i) the default setting, where the
structures remain unchanged, and ii) the self-adaptation set-
ting, where the structures self-reconfigure using our proposed
technique. For this, we performed simulations in ROS using

https://github.com/dsaldana/modquad-simulator
https://github.com/dsaldana/modquad-simulator
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(a) Structures in evaluation.
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(c) Force applied by the structure.

Fig. 5: Effectiveness of self-adaptation. ‘-NR’ indicates not reconfigured and ‘-R’ indicates reconfigured.
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Fig. 6: Times to invert module allocations in structures. Representative structures showing each shape of a specific size are
shown below the corresponding plot.

(a) (b) (c) (d) (e)
Fig. 7: Simulation snapshots of self-reconfiguration. (a) Initial configuration (b) Disassembling (c) Reaching max disassembly
needed and not isolating faulty modules (d) Enter assembly process (e) New configuration.

the structures shown in Fig. 5a, with 1− 4 faults. For each
structure and each desirable trajectory, we measured the root-
mean-square-error (RMSE) in position and the integral of
force expended over the course of the trajectory. The measured
RMSE values provide an estimate of how effect of reconfigu-
ration on ensuring task completion in the presence of failures.
The measured force expended gives us an estimate of how
much more (or less) efficient reconfiguring the structure is in
utilizing available resources compared to the default case.

Fig. 5b shows the RMSE averaged across the three di-
mensions. The errors shown are for both non-reconfigured
structures (‘-NR’) and reconfigured structures (‘-R’). The
results show that, across all structures, the position error under
the self-adaptation setting is much smaller than that under the
default setting. For the 4× 4 Donut-NR case, the structure
was unable to follow the trajectory with 4 faults in the default
setting. This demonstrates that our self-adaptation technique
can effectively minimize the impact of faults on the system’s
performance and mission completion.

Fig. 5c shows the force expended by structure in traveling
trajectory. We observe that self-adaptation leads to a smaller

force expended across all structures, and thus is more efficient
in optimizing resources compared to the default setting.

B. Algorithm efficiency

We evaluate the time the dynamic programming algorithm
takes to compute the disassembly and reassembly sequence
for migrating from a current configuration to the desired
one, as the number of modules in the structures increases.
Since the disassembly algorithm is more complex than the
assembly algorithm, we focus our evaluation on the former
(i.e., Algorithm 2).

For our evaluation, we used three different structure types
to assess how the performance scales as a function of both
the number of modules and the structure type. We considered
structures for which we can define “inversion”; that is, a
module k modules away from the last module of the structure
is moved to be k modules away from the first module in
the structure. For example, suppose the original configuration
was [1,2,3,4], then the desired inverted module-to-position
assignment would be [4,3,2,1]. This also allows us to compare
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scaled versions of the problem more easily since the self-
adaptation involves solving similar types of problems, whereas
in other structures we cannot say the same. We performed such
inversion tests for linear structures, U-shape structures, and for
spiral structures. Note that we used spiral structures purely for
stress-testing the self-disassembly algorithm. As per [13], such
a structure would be unable to fly because of the symmetry
assumptions the ModQuad controls rely on.

The results are shown in Fig. 6. We observe that a fitted
fifth-order polynomial curve closely matches the measured
time, confirming the validity of our analysis in practice.
Further, the time to find disassembly steps scales well with
the structure size, and it is able to solve complicated spiral
structures with more than fifty modules within reasonable time
(under two minutes).

C. End-to-end integration

We tested the integration of the MILP with the disassembly
and assembly algorithms in simulation. A video of reconfig-
uring a three-module line structure, five-module plus-shaped
structure, and nine-module square structure is available at
https://youtu.be/S1vK6crfwIg. Snapshots from a top-view
recording of the simulation are shown in Fig. 7. The structure
starts with the red module in a non-optimal location, breaks
apart into as many pieces as necessary while never isolating
the module with the faulty rotor, and re-assembles into a new
structure.

VI. CONCLUSION AND FUTURE WORK

We presented an effective fault-tolerance technique for mod-
ular aerial systems that increases their robustness against
rotor failures through self-reconfiguration. We designed a
mixed integer linear program to determine an optimal module
allocation in the structure based on rotor faults and desired
trajectories. We proposed an efficient dynamic programming
algorithm that minimizes the number of required steps for self-
reconfiguration. Our results show that our technique substan-
tially increases the robustness of the system while utilizing
resources efficiently.

As future work, we plan to explore refinements of our
algorithms to relax constraints imposed on the self-assembly,
as well as distributed approaches for self-reconfiguration.
Online fault-detection methods and custom controllers are
also interesting extensions that could considerably improve
the performance of the flying structure during a mission.
Other interesting directions include: changing the shape of the
structure, excluding modules with many faulty rotors from the
reconfigured structure, and handling failures that occur during
the self-reconfiguration process.
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