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Design Guarantees for Resilient Robot Formations
on Lattices

Luis Guerrero-Bonilla, David Saldaña, and Vijay Kumar

Abstract—This paper presents guarantees to satisfy resilience
on the communication network of robot formations. In these
resilient networks, cooperative robots can achieve consensus
in the presence of faulty or malicious robots. We propose a
design framework on triangular and square lattices, providing
an underlying structure for proximity-based robot networks. We
present sufficient conditions on the robot communication range to
guarantee resilient consensus. Our results can be used to design
robot formations considering obstacles, number of robots, and
energy usage. Additionally, robot networks with homogeneous
and heterogeneous communication range are studied. We support
our theoretical analysis with simulations on selected scenarios.

Index Terms—Distributed Robot Systems, Networked Robots,
Multi-Robot Systems.

I. INTRODUCTION

ONE of the most relevant techniques in distributed robotic
systems is consensus, where each robot only needs to

communicate with its nearest neighbors to agree on a global
variable for coordination [1]–[8]. Most of the approaches in
distributed robotic systems assume that all the robots are coop-
erative and their sensors do not fail. However, real applications
are very susceptible to failures or external attackers who want
to control the whole robot network [9]–[11].

The work in [9], [12], [13] presents the Weighted Mean-
Subsequence-Reduced (W-MSR) algorithm, which provides an
update rule for a networked system to achieve asymptotic
convergence to a value in the convex hull of the initial
values of non-misbehaving nodes. The algorithm is effective
if the communication graph satisfies a property known as r-
robustness, which provides sufficient conditions for the W-
MSR algorithm to work. Although there are algorithms to
check and determine the robustness of a graph, they are
computationally inefficient [14], as the work in [13] provides
an analysis of the complexity of determining the extent of r-
robustness of any given network, concluding that it is NP-hard.

In order to provide the sufficient conditions for the W-
MSR algorithm to provide resilience against misbehaving
agents in a robot formation, it is required to ensure that the
communication network of such formation satisfies the desired
r-robustness. Our previous work [15] provides a systematic
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Fig. 1. Examples of robot formations: a) connected formation, b) triangular
formation, c) square formation, d) formation with heterogeneous communica-
tion radii. The robots with large and small communication range are depicted
in black and light blue, respectively.

method to construct r-robust graphs. However, the work in
[16] shows that not all graphs are realizable on the plane under
euclidean distance constraints, and therefore a well designed
robust communication graph might not correspond to a feasi-
ble planar arrangement of robots, making the construction of
robust robot formations a challenge.

Some approaches in the literature aim to increase the
robustness of the robot network by increasing the network
connectivity. The use of the algebraic connectivity of the
communication network can directly increase the network
robustness [11], [17], but it also conglomerates the robots
when the communication radius is fixed. Taking advantage
of their motion capabilities, robots can coordinate to generate
periodic connections [18]. However, this method requires a
previous coordination of the robots to identify the way the
robots can periodically meet up. Our recent work [15] sug-
gests an underlying lattice structure in the robot formation to
design and extend robust formations. These properties in well-
structured formations can generate modular configurations that
can be extended to large networks. In [19], we presented
a triangular formation for robot networks that can achieve
resilient consensus in the presence of a single non-cooperative
robot. The work in [20] introduces the use of a lattice structure
for hexagonal robot formations in relation to r-robustness.
Such structure allows to calculate a communication range for
all robots that guarantees the maximum r-robustness possible
given the number of robots. However, it requires a large
number of robots to be distributed in a very specific pattern,
which may hinder the use or viability of such formations in
the presence of obstacles, narrow areas, or limited number of
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robots.
In this paper, we address the problem of designing the

communication network of a group of robots distributed in
the plane on triangular and square lattices, in order to ensure
r-robustness. We look for spare formations that allow to
have guarantees on robustness, but do not demand a highly
structured pattern as in [20], allowing flexibility to arrange
robots in the plane and deal with obstacles or limited number
of robots. In Figure 1, we illustrate some of the configurations
that can be analyzed using our methodology. In contrast to the
methods in the literature, we can have complex environments
or small number of robots to generate robust networks. The
main contribution of this paper is offering a systematic method
to determine the sufficient communication range to ensure re-
silient consensus in a robot formation. We propose a sufficient
conditions to design complex formations that can be deployed
in environments with obstacles, or narrow regions. Addition-
ally, we propose a method to use of heterogeneous robots in
their communication range, allowing for some optimization in
energy usage.

II. FUNDAMENTALS OF r-ROBUSTNESS

Based on the nomenclature in [12] and [13], let an
undirected graph be described by the pair G = (V, E), where
V is the set of nodes, and E is the set of edges of the graph,
so that an edge (i, j) ∈ E indicates that nodes i, j ∈ V
are connected. The set of neighbors of node i is denoted by
Vi = {j ∈ V| (i, j) ∈ E}, and the degree of a node i is denoted
by |Vi|, where the operator |·| denotes the cardinality of a set.
Suppose the ith node shares a value ηi with its neighbors in
the network, and updates its value over time according to a
nominal rule of the form

ηi [t+ 1] = wii [t] ηi [t] +
∑

j∈Vi

wij [t] ηj [t] , (1)

where ηj [t] is the shared value from the neighbor j to i at
time t, wij > 0,

∑
j wij [t] = 1.

Definition 1 (Malicious node). A node i ∈ V is said to be
malicious if it sends ηi [t] to all of its neighbors at each time-
step, but does not follow the nominal rule (1) at some time-
step.

Note that the definition of a malicious agent can be ex-
tended to include intentionally non-cooperative or manipu-
lative robots, as well as defective or unintentionally non-
cooperative robots. The W-MSR algorithm [9], [12], [13]
involves three steps: First, node i creates a sorted list of the
received values. Secondly, the list is compared to ηi[t], and
the F larger and smaller values are removed. The remaining
values in the list are denoted by Ri [t]. Third, node i updates
its value with the following rule:

ηi [t+ 1] = wii [t] ηi [t] +
∑

j∈Ri[t]

wij [t] ηj [t] , (2)

Sufficient conditions for the W-MSR to ensure asymptotic
convergence of the consensus are given by the graph property
known as r-robustness, stated in the following terms.

Definition 2 (F -local set). A set S ⊂ V is F -local if it con-
tains at most F nodes in the neighborhood of all other nodes
for all t, i.e., |Vi [t]

⋂S| ≤ F ,∀i ∈ V\S, ∀t ∈ Z≥0, F ∈ Z≥0.

Definition 3 (r-reachable subset). The subset S ⊂ V is said
to be r-reachable if there exists i ∈ S such that |Vi \ S| ≥ r,
where r ∈ Z≥0, that is, if it contains a node that has at least
r neighbors outside that set.

Definition 4 (r-robust graph). A graph G is said to be r-
robust if for every pair of nonempty disjoint subsets of V , at
least one of the subsets is r-reachable.

The work in [12] relates the asymptotic convergence of the
consensus to the W-MSR algorithm and r-robustness:

Theorem 1 ([12]). Consider a time-invariant network modeled
by a digraph G = (V, E) where each normal node updates
its value according to the W-MSR algorithm with parameter
F . Under the F -local malicious model, resilient asymptotic
consensus is achieved if the topology of the network is
(2F + 1)-robust. Furthermore, a necessary condition is for
the topology of the network to be (F + 1)-robust.

The work in [13] provides an analysis of the complexity of
determining the extent of r-robustness of any given network,
concluding that it is coNP-complete. The work in [9] presents
a method to increase the number of nodes in a r-robust graph
by continually adding nodes with incoming edges from at least
r nodes in the existing graph:

Theorem 2 ([9]). Let G = (V, E) be an r-robust graph. Then
the graph G′ = (V ∪ {v′}, E ∪ E ′) where v′ is a new vertex
added to G and E ′ is the edge set related to v′, is r-robust if
|Vv′ | ≥ r.

The work in [15] introduced the concept of F -elemental
graphs and proposed a method to build them as follows:

Definition 5 (F -elemental graph). An F -elemental graph is a
graph with n = 4F +1 nodes that is r-robust with r = 2F +1
for some positive integer value of F .

Theorem 3 ([15]). A graph G = {V, E} with |V| = 4F +1 is
2F + 1-robust if:

1) There is a set V ′ ⊂ V of 2F nodes that are connected to
all nodes in the graph.

2) The set of nodes V\V ′ forms a connected subgraph.

The link between the r-robustness theory and formations
of robots is given by the communication network among the
robots, which gives rise to a graph. Let us denote xi ∈ R2 as
the position of robot i on the plane. In the following, we use
a very simplistic disk model to describe the communication
network among robots, where the operator ‖ · ‖ denotes the
2-norm.

Definition 6 (Communication graph). Given a set of robots
V with communication radius R, a graph GR (V, ER) with
node set V and edge set defined by

ER = {(i, j) |‖xi − xj‖ ≤ R}, (3)

is called the communication graph of the set V .
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III. r-ROBUST FORMATIONS ON LATTICES

In this section, we explore the design of the communication
network of a formation of robots with an underlying lattice
structure. A lattice is a set of linear combinations with integer
coefficients of the elements of a basis of R2. The elements of
the set are lattice points. Let v1 and v2, be such basis, and
let ‖v1‖ = ‖v2‖ = `, where we call ` the lattice length. A
lattice in the plane is given by

L = {aiv1 + biv2 : span{v1,v2} = R2; ai, bi ∈ Z}. (4)

The work in this paper is mainly focused on two types of
lattices. The first one is the triangular lattice L4 with basis

B4 =
{
v14 =

`

2

[
1√
3

]
,v24 = `

[
1
0

]}
. (5)

The second one is the square lattice L�, with basis

B� =
{
v1� = `

[
1
0

]
,v2� = `

[
0
1

]}
. (6)

A robot is part of the lattice L if its position is equal to a lattice
point, such that xi ∈ L. A lattice point that is not occupied by
a robot is referred to as a available. Given a lattice length `,
we now define a graph capturing the proximity of the robots
in a set.

Definition 7 (Proximity graph). Given a set of robots V and
a distance `, the graph G` (V, E`) with node set V and edge
set defined by

E` = {(i, j) |‖xi − xj‖ ≤ `}. (7)

is called the proximity graph of the set V .

While the lattice provides some underlying structure to
the robot formation by predefining the allowed positions of
the robots, it allows for different formations to be realized.
The particular structure of each formation can be exploited
to ensure the desired robustness. We build our mathematical
framework based on the sufficient communication ranges to
satisfy the requirements for the creation of F -elemental graphs
in the communication network of a robot formation, as well
as to preserve the robustness by appending new robots to
the formation. We describe the communication range by a
function R∗ : Z≥1 → R that maps the number of robots
m to a distance where m robots are ensured to be reached.
In particular, we study three main communication ranges R−,
R4, R�, corresponding to formations of robots satisfying the
constraints of a connected formation, triangular formation and
square formation respectively. Examples of these formations
are shown in Figure 1.

A. Connected formations

We begin our study by only imposing the connectivity
constraint in the associated proximity graph of a formation of
robots, with no additional constraints regarding the placement
of the robots in the plane.

Definition 8 (Connected formation). A formation of n robots
is said to be connected if its associated proximity graph G` is
connected.

A connected formation on a lattice allows to easily calculate
the minimum number of robots within a given distance around
a single robot in the formation.

Lemma 1. In a connected formation of n robots, every robot
has at least 1 ≤ m ≤ n− 1 robots within a distance

R− (m) = m`. (8)

Proof. Consider robot 0 at position x0. Since the formation is
connected, there is at least one more robot within a distance `.
Let us denote the distance between robots i and j by di,j =
‖xj − xi‖, and consider the sparsest case where there is only
one robot, denoted by 1, at the maximum distance such that
d0,1 = `.

Considering again the sparsest case, the next robot in the
connected formation, identified as 2, will be located at the
maximum distance from x0. Then, d0,2 can be expressed
using the cosine law d20,2 = d20,1 + d21,2 − 2d0,1d1,2 cos θ =
2`2 (1− cos θ), where θ is the angle between the line segments
x0x1 and x1x2. The angle θ = π maximizes d0,2, arranging
the robots in a collinear fashion. Assuming the sparsest case,
the maximum distance from robot 0 to the mth robot can be
expressed as

d20,m = d20,m−1 + d2m−1,m − 2d0,m−1dm−1,m cos θ

= d20,m−1 + `2 − 2d0,m−1` cos θ, (9)

which is maximized at θ = π, where all robots are arranged
in a collinear formation. This simplifies the equation to

d0,m = d0,m−1 + `. (10)

Therefore, the maximum distance from robot 0 to the mth
robot can be expressed as a recursive function R− (m) =
R− (m− 1)+` with initial condition R− (0) = 0. Its solution
is given by R− (m) = (1)

n
R− (0) +

∑m
k=0 ` = m`.

Considering the sparsest arrangement of robots in a con-
nected formation, we now compute a minimum communi-
cation range for the robots to guarantee resilience in the
communication network.

Lemma 2. Given a set V of 4F + 1 robots in a connected
formation, if the communication range of every robot is
R ≥ R− (3F ), the associated communication graph of the
formation is (2F + 1)-robust.

Proof. Let C0 ⊂ V be a connected subset with 3F + 1
robots. Since each robot has a communication radius of at
least R = R− (3F ), each of them has at least 3F neighbors
(by Lemma 1). Thus the associated communication graph of
C0 is complete. Let us define the set N0 = C0, which contains
the robots that are communicated with every other robot in
C0.

Consider the subsets Ci = Ci−1∪{i}, where i ∈ {1, . . . , F}
represents one of the remaining robots in V/Ci−1 such that the
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associated proximity graph of Ci is connected. This ensures
that i can communicate with at least 3F robots in Ci. Let the
set of robots that can communicate with every robot in Ci be
denoted by Ni.

Suppose that i is adjacent to a robot in N0. Then, at most
one robot ki may not be communicated with i. On the other
hand, suppose i is adjacent to a robot j ∈ V\C0. Then, i
can communicate with at least 3F − 1 robots in Nj , so that
at most one robot ki may not communicate with i. In either
case, suppose the one robot ki belongs to the set

⋂i−1
j=0Nj .

Then, Ni =
⋂i−1

j=0Nj\{ki}, removing at most one robot from
the set that can communicate with every other robot.

Once robot i = F is considered, the set NF contains the
robots that can communicate with every robot in CF = V .
At most F robots are removed from N0, so that |NF | =
|N0| − F = 2F + 1. Thus, the conditions to create an
F -elemental graph are satisfied: i) there is a subset of 2F
robots in NF that are connect to every robot in V , and ii)
the additional robot that is connected to every robot in V
generates a star-subgraph connecting the rest of the robots.
Therefore, the communication network of V is (2F + 1)-
robust by Theorem 3.

We can guarantee r-robustness of a connected formation by
selecting the proper communication radius for the robots as
stated in the following theorem.

Theorem 4. A group of n ≥ 4F + 1 robots in a connected
formation is ensured to be 2F+1-robust, if the communication
radius of each robot satisfies R ≥ R− (3F ).

Proof. The communication graph of a set of 4F + 1 robots
in a connected formation with R ≥ R− (3F ) is (2F + 1)-
robust by Theorem 2. From Lemma 1, we know that we can
connect a new robot to the connected formation and it will be
within the communication range of at least 3F robots. Since
3F ≥ 2F + 1, the communication graph of the initial 4F + 1
robots and the new robot preserves the (2F + 1)-robustness
by Theorem 2. We can add the rest of the robots one by
one, using a communication rage of R ≥ R− (3F ) for each
robot, satisfying the minimum number of neighbors to preserve
the robustness (by Lemma 1). Following this procedure, it is
possible to construct any connected formation with the desired
number of robots.

B. Triangular formations

The connectivity constraint on the proximity graph of the
formations is simple and allows a great flexibility to distribute
the robots on the plane, but it does not take advantage
of the particular structure of the lattice. We now define a
formation that exploits the triangular lattice, and calculate
the corresponding required communication range to have m
reachable robots.

Definition 9 (Triangular formation). A connected formation
of n ≥ 3 robots with positions xi ∈ L4 is said to be triangular
if:

(i) Every robot in the formation is the vertex of an equilat-
eral triangle with edge length equal to `.

Fig. 2. The construction of a triangular formation that maximizes the distance
from the first allocated robot. This shows how every subsequent robot in the
formation is selected as to maximize the distance from robot 0 to the next
robot. The blue lines denote the lattice locations where the next robot can be
placed.

(ii) Adjacent triangles share two vertexes and an edge.

An example of a triangular formation is shown in Fig-
ure 1 c). These constraint is stronger than just maintaining
connectivity, and straight line formations are no longer al-
lowed. Every time a new robot is added to the formation, a
new triangle must be created.

Lemma 3. If a group of n ≥ 3 robots are in a triangular
formation, every robot has at least 1 ≤ m ≤ n − 1 robots
within a distance

R4 (m) =
1

2
`

√√√√m2 + 3

(
1 + (−1)m+1

2

)
. (11)

Proof. Similarly to Lemma 1, the proof consists on construct-
ing the triangular formation in which each subsequent robot
is as far away as possible from the initial one, so that the
maximum distance to the mth robots is considered. Satisfying
the constraints of the triangular formation, let robots 0, 1 and
2 be located at x0, x1 = x0 + v14, x2 = x0 + v24, all
of them lattice points in L4 (refer to Figure 2). Keeping up
with the triangular formation constraints, the position x3 of
robot 3 can be chosen among three lattice locations, given by
x0 +v14−v24, x0−v14+v24, and x0 +v14+v24. We
can directly verify that the third option maximizes ‖x3−x0‖.
Robot 4 can be located on four lattice locations, but two of
them have already been verified to be closer to x0 than x3, so
only two locations need to be evaluated, namely x0+2v14 and
x0 +2v24. Since both are at the same distance from robot 0,
without loss of generality, let robot 4 be at x4 = x0 + 2v24.
This pattern repeats, having to check two new lattice positions
for the one that maximizes the distance to robot 0. For the
mth robot in the formation, these two positions are given by
{x0+v14+ m−1

2 v24,x0−v14+ m−1
2 v24} for m ≥ 3 odd,

and {x0 +
m
2 v24,x0 + 2v14 + m−4

2 v24} for m ≥ 4 even.
Evaluating ‖xm−x0‖, it is straight forward to verify that the
position for the mth robot that maximizes the distance from
x0 is given by

xm =

{
x0 + v14 + m−1

2 v24 if m is odd
x0 +

m
2 v24 otherwise.

(12)

Then, we can compute the maximum distance between the
initial robot 0 and the mth robot as
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‖xm − x0‖ =
{

1
2`
√
m2 + 3 if m is odd

1
2m` otherwise,

(13)

and can be rewritten as in (11).

Lemma 4. Given a set V of 4F + 1 robots in a triangular
formation, if the communication range of every robot is
R ≥ R4 (3F ), the associated communication graph of the
formation is (2F + 1)-robust.

Proof. The proof follows the same steps of Lemma 2 using
R = R4 (m).

Theorem 5. A group of n ≥ 4F+1 robots in a triangular for-
mation is ensured to be (2F + 1)-robust, if the communication
radius of each robot satisfies R ≥ R4 (3F ).

Proof. The proof follows the steps of Theorem 4 using R =
R4 (m).

C. r-robust formations on a square lattice

The work in [21] suggests that studying formations on
square lattices is highly relevant for practical applications.
Consider the square lattice with basis given by (6). We define
a squared formation and describe our framework for robust
networks as follows.

Definition 10 (Square formation). A connected formation of
n ≥ 4 robots with positions xi ∈ L� is said to be square, if
every robot in the formation is the vertex of square of edge
length equal to the lattice length `, or adjacent to a robot
which is a vertex of a square of edge length `.

An example of a square formation is shown in Figure 1.d).

Lemma 5. In a locally square formation of n ≥ 5 robots,
every robot has at least 1 ≤ m ≤ n − 1 robots within a
distance R� (m) given by

R� (m) =

{
2` if m = 3

`
√
bm2 c

2
+ 1 otherwise.

(14)

Proof. Satisfying the constraints of the square formation, let
robot 0 be located at x0 ∈ L�, and the robots 1 to 4 be located
according to

xm =

{
x0 +

(
m+1
2

)
v1� + v2� m ≥ 1 odd,

x0 +
(
m
2

)
v1� m ≥ 2 even,

(15)

for 1 ≤ m ≤ 4 (refer to Figure 3). There are seven lattice
positions suitable for robots 5 and 6. By direct evaluation,
it is straight forward to verify that the next two locations,
the farthest from x0, are the ones adjacent to the opposite
edge of the square, x0 + 3v1� + v2� and x0 + 3v1�. Let
robots five and six be placed in those locations. The next two
robots can be located in any of the ten available locations,
but six have already been verified to be closer to x0 than
the robots 5 and 6, therefore only four locations need to be
evaluated (refer to Figure 3 for an illustration of the pattern).
In general, the position of the mth odd robot that maximizes
the distance to x0 is then one of the four positions given by

Fig. 3. Sequential addition of robots in a square lattice. Each subsequent
robot in the formation is placed maximizing the distance from robot 0. The
pattern repeats for all the successive robots.

x0+(m− 1) /2v1�+2v2�, x0+(m− 1) /2v1�−v2�, and
the two positions given by (15). Evaluating these expressions,
we can verify that the positions given by (15) maximize ‖xm−
x0‖. Thus, a robot has at least m robots around it within a
distance given by

‖xm − x0‖ =




`

√(
m+1
2

)2
+ 1 if m is odd,

`

√(
m
2

)2
+ 1 otherwise,

(16)

for m ≥ 5. Adjusting for m = 0 to 4, the result can be stated
as in (14).

Figure 3 shows the construction of a square formation that
maximizes the distance from the first allocated robot.

Lemma 6. Given a set V of 4F + 1 robots in a square
formation, if the communication range of every robot is
R ≥ R� (3F ), the associated communication graph of the
formation is (2F + 1)-robust.

Proof. The proof follows the proof of Lemma 2 using R =
R� (m).

Theorem 6. A group of n ≥ 4F +1 robots in a square forma-
tion is ensured to be (2F + 1)-robust, if the communication
range of each robot satisfies R ≥ R� (3F )

Proof. The proof follows the proof of Theorem 4 using R =
R� (m).

IV. FORMATIONS AROUND OBSTACLES, AND
HETEROGENEOUS COMMUNICATION CAPABILITIES

In the previous section, we showed sufficient conditions to
build robot formations that ensure r-robust communication
networks (Theorems 5 and 6). Such formations can be de-
signed to cover an area around obstacles as shown in Figure 4.
Adjusting both the radius R and the lattice length `, the
formation can be tailored to the desired coverage as long as
there are enough robots to satisfy the r-robustness conditions.
Figure 5 shows a scenario where two sets of robots can
be connected through a narrow passage while maintaining
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Fig. 4. Robots on a triangular lattice surrounding obstacles. The robots and
the obstacles are depicted in black and blue respectively.

Fig. 5. Two sets of robots are connected through a narrow passage between
obstacles. a) A connected formation with R = R− (3F ) is used. b) A locally
triangular formation with R = R4 (3F + 1) is used, requiring more robots,
but smaller communication range.

the robustness. Depending on the number of robots and the
obstacle-free space available, a connected formation or a
triangular formation can be implemented. The latter uses more
robots, but requires a smaller communication range.

The scenarios above show the use of the same communica-
tion radius for each robot in the formation, however, a hetero-
geneous set of communication radii can also be used. Using
the results of the previous section, it is possible to combine
robots of different communication range to optimize energy
usage as in the following application example. Consider the
scenario of Figure 5.a, where two sets of robots are connected
through a narrow passage using the same communication
range, e.g. we can use R− (3) to ensure 3-robustness.

An alternative solution can be obtained by setting an initial
formation to the left of the passage made of robots with a range
of R4 (3), as shown at the top of Figure 6. Then, it is possible
to increase the range of the robots 1, 2 and 3 to R− (3) and
maintain the robustness, since we are only adding more edges
to the graph. However, thanks to the increased communication
range of those three robots, more robots can be deployed
through the narrow passage with the same range R− (3), so
that each new node has at least three incoming edges from
other three nodes with enlarged communication range. Finally,
once the passage has been cleared, a triangular configuration
can be continued with robots with the smaller communication
range of R4 (3). Using Lemmas 1 and 3, it can be verified
that there is a way to construct the formation ensuring three
incoming edges for every new node, thus ensuring the desired
r-robustness is maintained. It is worth mentioning that there

1 2 3

Fig. 6. Robots of different communication range can be used to deal with
obstacles in the environment and optimize energy usage in the communica-
tions. The dots in red represent robots with a communication radius R− (3),
while the ones in blue have R4 (3). The formation is 3-robust.

can be multiple solutions. For example, changing three robots
initially is necessary if the obstacles block the communication.
However, if the robots can communicate through the obstacles,
then fewer robots would need to be changed initially, since
some blue robots can contribute to the required incoming
edges for new robots. The development of a rigorous algorithm
for particular cases is left for future research.

We end this section by showing how a bounded region in a
triangular or square lattice can be filled with robots of smaller
communication range compared to the ones at the boundary.

Theorem 7. Suppose there is a region in a triangular lattice,
bounded by a connected formation of n ≥ 4F + 1 robots
satisfying (2F + 1)-robustness, and every robot has a com-
munication range R ≥ F`. If the lattice locations inside the
region are occupied by robots of communication range

R4int = F`, F ≥ 1, (17)

then the communication graph of the extended formation is
(2F + 1)-robust.

Proof. Consider the set B0 of robots at the boundary of the
empty region as the vertices of a polygon. Every polygon
has at least 3 inner corners with an interior angle between
0 and π radians. Consider the robot at an inner corner of the
polygon, as well as the two robots adjacent to it. Adjacent
to these two robots, there is an unoccupied lattice point. A
robot placed on such an unoccupied lattice point will have
three robots at a distance of `, and at least two more robots
at every distance increase of ` from it. Therefore, a robot
placed in a lattice point by an inner corner inside the empty
region will have 3 + 2 (m− 1) = 2m+ 1 neighbors within a
distance of m`. For such a robot to have a degree of at least
2F +1 to preserve the robustness according to Theorem 2, the
other robots must have a communication range R satisfying
2R/`+1 ≥ 2F +1, leading to R4int ≥ F`. Assigning R4int

to the robots inside the empty region, occupy the lattice points
by the inner corners of the polygon corresponding to the set
B0. Once there are no more inner corners of B0, consider
the new set of robots bounding the remaining empty space,
B1, and allocate robots in the corners of the corresponding
polygon. This process can be repeated until there are no more
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a)

b)

c)

d)

Fig. 7. A 3-robust formation of robots, depicted as black circles, surrounds an
empty region on a triangular lattice. New robots can be added while preserving
the robustness at the locations with blue circles. The sequence of images from
a) to d) show how the region can filled.

unoccupied internal lattice points. Hence, using Theorem 2, we
can construct a formation that combines the boundary robots
with communication range R ≥ F`, and the internal robots
with R = F`, so that the resulting formation has an associated
(2F + 1)-robust communication graph.

Figure 7 shows an example of the sequential filling of an
empty region to illustrate the proof of the theorem above. This
example allows to use either R− (3F ) or R4 (3F ) to satisfy
the robustness conditions of the boundary, since the minimum
of both radii is greater than F` for all values of F . This logic
procedure can also applied to squared lattices.

Corollary 1. Suppose there is a region in a square lattice,
bounded by a connected formation of n ≥ 4F + 1 robots
satisfying (2F + 1)-robustness, and every robot has a com-
munication range R ≥ max{

√
2`, F `}. If the lattice locations

inside the region are occupied by robots of communication
range R�int = max{

√
2`, F `}, then the communication

graph of the extended formation is (2F + 1)-robust.

Proof. The proof follows the steps of the proof of Theorem 7,
but requires adjusting the distance to the first three robots at
the corners, since one of them is at a distance

√
2`. Hence,

every robot is required to have a range R ≥
√
2`.

V. SIMULATIONS AND RESULTS

In order to support our theoretical analyses, we simulate two
critical scenarios for robot formations and resilient consensus.
The first scenario is presented in Figure 1.a). It shows a forma-
tion that only satisfies the conditions of connected formation.
Figure 8 shows the consensus convergence in the presence of
four malicious agents, located in disjoint neighborhoods, using
a R− (3) for all robots, leading to a 3-robust formation resilient
against 1 malicious agent in the vicinity of every robot.

In our second scenario, we have a formation of 398 robots
in a complicated configuration due to a bottleneck, illustrated
in Figure 9. This scenario can satisfy the conditions of Theo-
rems 4, 5 or 7. So, we can ensure r-robustness using different
communication ranges. Considering the formation as just con-
nected, taking advantage of its triangular formation properties,

0 50 100 150 200 250 300 350 400
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60

80

100

120

η i

Fig. 8. Achieving consensus in a homogeneous network of 89 robots and the
4 malicious robots, at most 1 in the vicinity of every robot, for the formation
in Figure 1 a). The malicious robots share random values, with mean 100,
inside and outside of the convex hull of the initial values of all robots.

Fig. 9. A robot formation in a triangular lattice. This special configuration
can take advantage of the boundary properties to reduce the required com-
munication radii. The robustness of the formation shown can be guaranteed
by using the appropriate communication range of: a connected formation,
a triangular formation, or a heterogeneous communication radii. The lattice
length is ` = 1.

or using different communication ranges for different robots.
Figure 10 shows the sum of squares of the communication
range of each robot using the different strategies as a function
of F , in order to provide a measure of the power required
to ensure the robustness of the network. Since R− > R4,
the power required using R− is higher than with R4. Using a
heterogeneous strategy by having the outer robots be triangular
formation boundary with R4 (3F ) and assigning the inner
robots a range of R4int helps decrease the required power
while guaranteeing the same robustness. Figure 11 shows the
consensus convergence in the presence of malicious agents
with the heterogeneous communication range, which is the
case that requires less power.

VI. CONCLUSIONS

We present sufficient conditions on the robot communi-
cation range to ensure r-robust communication networks in
formations over triangular and square lattices. The main idea
throughout the results of this paper is the exploitation of the
underlying structure in the formation that is provided by the
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Fig. 10. The sum of the squares of the communication ranges of the robots
in a formation is presented as a measure proportional to the power required to
satisfy the desired robustness. For the scenario of Figure 9, the shown graphs
correspond to the strategies with all the robots having a communication range
of R− (3F ), R4 (3F ), and the heterogeneous strategy. For the last one, out
of the 398 robots, the 150 robots making the triangular boundary are assigned
a range of R4 (3F ), while the 248 robots inside the boundary are assigned
a range of F .

0 50 100 150 200

t

0

20

40

60

80

100

120

η i

Fig. 11. Achieving consensus in a heterogeneous network of 398 robots and
4 malicious robots for the formation in Figure 9. The malicious robots share
random values with mean 100, both inside and outside of the convex hull of
the initial values.

lattices. Compared to the results in the literature, our analysis
allows to select formations with great flexibility, enabling the
adjustment of the formation and its communication network
based on challenging environmental obstacles, number of
robots and energy constraints.

It is important to emphasize that the results in this paper are
only sufficient. They are based on the sparsest-case scenarios
in the formations, where the maximum distance between a
robot and its mth neighbor is considered. Making such a
conservative assumption provides the guarantees of robustness
for any formation satisfying the constraints, in exchange of an
increase in the communication range of each robot. However,
by exploiting the lattice constraints and using different com-
munication ranges in the formation, we are able to balance
the increased cost in the communication range size with the
great flexibility to select the formation as needed or desired.
Studying the optimization of of the communication range

assignment to the robots in a particular formation is an area
left for future research.
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