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Abstract— We present a method that enables resilient for-
mation control for mobile robot teams in the presence of
non-cooperative (defective or malicious) robots. Recent results
in network science define graph topological properties that
guarantee resilience against faults and attacks on individual
nodes in static networks. We build on these results to propose
a control policy that allows a team of mobile robots to achieve
resilient consensus on the direction of motion. Our strategy
relies on dynamic connectivity management that makes use of
a metric that characterizes the robustness of the communication
network topology. Our method distinguishes itself from prior
work in that our connectivity management strategy ensures
that the network lies above a critical resilience threshold,
guaranteeing that the consensus algorithm always converges
to a value within the range of the cooperative agents’ initial
values. We demonstrate the use of our framework for resilient
flocking, and show simulation results with groups of holonomic
mobile robots.

I. INTRODUCTION

Consensus algorithms allow multiple robots to achieve

agreement on estimates of variables in a distributed manner.

This allows robots to coordinate as a cohesive team, enabling

applications such as formation control [1], [2], [3]. The prob-

lem with distributed consensus, however, is that it assumes

that all robots are cooperative. A single non-cooperative

(defective or malicious) robot can potentially manipulate the

whole network and prevent the team of cooperative robots

from achieving their goal. As a consequence, the systems

are susceptible to failure when one or several robots are

non-cooperative and share wrong information. This situation

can be due to malicious attacks (e.g., a malicious outsider

trying to manipulate the whole network) or due to platform-

level faults (e.g., a robot sharing an incorrect location due to

a defective GPS sensor). As a consequence, the resilience of

the communication network is of utmost importance [4]. We

note that we distinguish between robustness — the ability to

cope with errors that can be modeled — and resilience —

the ability to adapt to tasks in the face of unknown attacks

or failures that cannot be modeled.

In this work, we focus on the problem of resilient co-

ordinated motion control of a team of mobile robots. Our

coordination strategy builds on the distributed consensus

algorithm. In order to provide resilience, we use an alternate

version of the linear consensus protocol, termed Weighted-

Mean Subsequence-Reduced (W-MSR) algorithm [5], which
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guarantees that the consensus is achieved and that the con-

sensus value lies within the range of the cooperative robots’

initial values if certain network topological criteria are sat-

isfied. While the authors of the former work focus on static

networks, in this work we consider time-varying networks

formed by mobile robot teams. The key element of our

approach is a control policy that maintains the connectivity

of a mobile robot team above a given critical threshold, thus

ensuring that the necessary topological requirements are met

at all times. Since tests for network resilience are known to

be co-NP complete [6], we instead resort to the computation

of the algebraic connectivity of the network, which we use

to construct a lower-bound measure. We then proceed to

show how our control law achieves resilient coordinated

motion control. As a specific application, we consider the

flocking of a swarm of robots. Individual robots follow

control policies that guarantee resilience, and use the W-

MSR (resilient) consensus algorithm to ensure the correct

behavior even in the presence of non-cooperative robots.

Though we demonstrate the utility of our framework on

flocking, the same concepts may be applied to more concrete

applications such as vehicle platooning, a problem that has

gained much attention with the onset of intelligent vehicle

systems [7].

A. Background

The topic of robustness has received considerable atten-

tion, particularly in the domain of complex networks [8], [9].

A main result of this body of work states that resilience can

be achieved through sufficiently high connectivity: if the con-

nectivity of the network is 2F or less, a subset of F or more

malicious or otherwise misbehaving nodes can prevent some

of the correctly functioning nodes from receiving legitimate

information from other nodes in the network. Conversely,

when the network connectivity is 2F + 1 or higher, there

are various algorithms that enable a reliable diffusion of

information [10], [11]. This value F defines the maximum

number of non-cooperative agents that can be supported by

the network. As long the actual number of non-cooperative

nodes remains below F the performance of the algorithms is

guaranteed. Unfortunately, these algorithms not only depend

on high connectivity, but also require non-local information

in order to compute updates. As a consequence, Zhang et

al., and later LeBlanc et al. [5], [12] introduced an alter-

native definition of network resilience, termed r-robustness,

and the W-MSR algorithm which together provide resilient

asymptotic consensus using purely local update rules. In this

context, the identities and actual number of non-cooperative

nodes remain unknown. In order to build the required topolo-

gies, state-of-the art attachment algorithms assume that any

node can be connected to any other node in the network [12]



(i.e., in absence of sophisticated node placement algorithms,

the networks must provide full connectivity). This problem

is compounded by dynamic networks and moving nodes.

Also, it is worth noting that the prior approach mainly deals

with the problem of distributed estimation, and it remains to

be explored how it applies to problems that require robust

control of shapes and distributions, such as for cooperative

exploration and coordination tasks [13], [14].

B. Related Work

The problem of resilience has also been considered in

mobile robot systems literature [15], [16], [17], with a partic-

ular focus on rendez-vous (i.e., the application of consensus

algorithms to induce a gathering of robots in d-dimensional

space). Similar to our work, [16] considers the presence of

non-cooperative robots and develops a solution that controls

a team of robots so that the goal is achieved without

the influence of the non-cooperative robots. The proposed

approach exploits concepts from combinatorial geometry to

obtain intersecting d-dimensional convex hulls, consequently

providing ‘safe’ rendez-vous points. Since the complexity

of the method is exponential in d, the authors propose an

approximate variant that scales linearly with the number of

robots. Although this work provides an effective solution, it

is not easily adapted to more general settings.

In this work, we are interested in achieving resilient

flocking behavior. Flocking is a mechanism for achieving

velocity synchronization and regulation of relative distances

within a group of mobile robots [18]. A number of works

derive decentralized controllers for achieving the flocking

phenomenon based on the distributed consensus algorithm

(see [19] and the references therein). These results critically

rely on the assumption that the underlying communication

network is either connected throughout time [20], [21], or is

jointly connected over infinite sequences of bounded time

intervals [1]. The idea of controlling the connectivity of

a network of mobile robots is not new. Indeed, Zavlanos

et al. [22] propose a control law that ensures flocking is

achieved, while preserving connectivity. Also, Gennaro et

al. [23] and Stump et al. [24] have proposed controllers that

allow robots to move in the direction of increasing algebraic

connectivity. Although these methods address the problem

of communication quality, they do not address the problem

of network resilience and non-cooperating robots. Hsieh et

al. [25] address the problem of decentralized shape gener-

ation while simultaneously maintaining connectivity. Simi-

larly, the authors address the problem of maintaining suf-

ficient communication quality during motion; however, the

method is not able to accommodate non-cooperative robots.

Our method distinguishes itself from these approaches in that

our connectivity management strategy ensures that the net-

work lies above a critical resilience threshold. In particular,

we differentiate between states where it is safe to compute

consensus updates, and states where it is not. Overall, our

switching controller guarantees that our consensus algorithm

always converges to a value within the range of the cooper-

ative agents’ initial values.
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Fig. 1: The effect of design parameter γ on communication function
fij . The x-axis is the distance between agents, ‖xi − xj‖.

II. PROBLEM STATEMENT

Consider a robotic network modeled as a undirected graph

G = (V, E), where the vertices V = {1, 2, ..., n} represent

the robots, and the edges E ⊆ V×V represent the communi-

cation links. The location of the robots in the d-dimensional

Euclidean space, R
d, is denoted by X = {x1, ...,xn},

xi ∈ R
d. Based on the communication disk model, a function

f : Rd × R
d → [0, 1] is used to model the quality of the link

between every pair of nodes (i, j) based on their locations. In

the rest of this paper, we use the following exponential-based

function [24],

fij =











1 ‖xi − xj‖< ρ
0 ‖xi − xj‖≥ R

exp
(

−γ(‖xi−xj‖−ρ)
R−ρ

)

otherwise.

, (1)

where ρ > 0 is a threshold up to which the communication

quality is considered optimal, and R > ρ is the maximum

communication radius. The design parameter γ trades off the

smoothness of fij and the magnitude of its derivative. This

effect can be seen in Fig. 1 where the function fij is plotted

for various γ values. Alternative communication functions

are proposed in [26].

We assume that the robots are holonomic and move in the

environment based on the control input

ẋi = ui.

This work addresses the problem of ensuring resilient

coordinated motion control in the presence of internal threats,

i.e., non-cooperative robots that can influence the coordina-

tion (and motion) of the whole team. In particular, we address

the problem of generating a control law that guarantees

resilient flocking. Our approach to flocking is based on

the distributed consensus algorithm [19]. When performing

consensus, each robot i aims at estimating a global variable

of interest yi (in the case of flocking, we consider the

direction of motion as the variable of interest). This goal

is achieved through local interaction, where each robot i
updates its own value at time-step t based on a consensus

update rule:

yi[t+ 1] = g(yi[t], {yj [t]|j ∈ Ni}), (2)

where Ni is the set of neighbors of robot i.
In [1], the authors show that, given a connected, undirected

graph G, every node i ∈ V reaches consensus on the average

of the initial values, yi[t] → ȳ[0] = 1
n

∑

i∈V yi[0], when

t → ∞ by exchanging messages with the local neighborhood



and applying an averaging function yi[t+1] = 1
|Ni|+1 (yi[t]+

∑

j∈Ni
yj [t]). Clearly, this strategy only works when all

nodes in the network cooperate by executing the update

function reliably and communicating truthful values. This

insight leads us to the definition of the following threat

model.

Definition 1 (Non-Cooperative Robot). A robot is coopera-

tive if it applies the consensus update rule (Eq. (2)) at every

time-step t and shares the result with its neighbors. It is

called non-cooperative otherwise.

Definition 2 (Resilient consensus). A group of mobile robots

is said to reach resilient consensus if the cooperative robots

achieve consensus to a value that lies between the maximum

and minimum initial values of the cooperative robots, even

in the presence of up to F non-cooperative robots.

Non-cooperative robots can be either (i) defective (un-

intentionally non-cooperative, e.g., due to a faulty sensor

or actuator), or (ii) malicious (intentionally non-cooperative,

e.g., an external attacker gains access to a node’s communi-

cation module, with the goal of manipulating the system).

We note that our threat model considers non-cooperation

in communication only (i.e., non-cooperative robots will

execute the agreed upon motion commands, even though they

do not necessarily communicate truthful values). Despite

this assumption, our threat model is sufficiently powerful,

since devious motion can be easily detected and ignored

with prior methods [27], whereas devious communication

can be executed in such a way that it is hard to detect

and ignore. Importantly, our method does not require that

non-cooperative nodes send the same (incorrect) value to all

their neighbors. Thus, our results also apply to the Byzantine

model of adversaries (cf. results in [5]).
We consider a team of mobile robots that coordinate their

direction of motion by applying the consensus protocol;

in other words, they achieve global agreement upon their

direction of motion. The challenge, then, consists of ensuring

that the consensus is safely achieved in the presence of non-

cooperative robots.

Problem 1 (Resilient Flocking). Given a networked system

of N mobile robots, design a control law that guarantees

resilient consensus on the direction of motion.

In Section III, we introduce the fundamental concepts

of network resilience which underpin our methodology. In

Section IV, we develop a control policy that manages the

connectivity of the mobile robot team in order to meet the

necessary topological robustness requirements. In Section V,

we develop a solution to the above-mentioned problem.

Finally, in Section VI we present simulations illustrating our

approach.

III. CONDITIONS FOR RESILIENT CONSENSUS

A resilient communication network is defined as a network

that is guaranteed to reach resilient consensus. The identity

and the strategy of the non-cooperative nodes are assumed

to remain unknown. Recent work in the domain of network

science introduces the W-MSR algorithm [12], [5], which

is a method that achieves consensus to a weighted average

of cooperative nodes’ values. Yet, for convergence to be as-

sured the network must satisfy certain topological conditions,

which we detail below. If these conditions are not satisfied

the network may fail to converge even in the presence of

fewer than F non-cooperative nodes.

The W-MSR algorithm consists of three steps, executed at

each time step t by each node. First, node i creates a sorted

list, from smallest to largest, with the values yj [t] received

from its neighbors j ∈ Ni. Second, node i compares the list

to its own value yi[t]. If there are F or more values that

are larger than yi[t], the F largest values are removed. If

there are fewer than F larger values then all larger values are

removed. The same removal process is applied to the smaller

values. After this process is completed, the neighbors whose

values remain in the list are denoted by Ri[t]. Finally, node

i updates its value with the following rule:

yi[t+ 1] = wii[t]yi[t] +
∑

j∈Ri[t]

wij [t]yj [t], (3)

where wij > 0, and
∑

j wij [t] = 1. In the remainder of

this paper, we consider all weights wij = 1/(|Ri[t]|+1). An

extended explanation of this algorithm is given in [12]. Using

this algorithm, resilient asymptotic consensus is assured as

long as the communication graph G is (2F + 1)-robust,

a topological requirement we outline in the following two

definitions.

Definition 3 (r-reachable). A nonempty vertex set A ∈ V
is said to be r-reachable if ∃vi ∈ A such that |δAvi

|≥ r,

r ∈ Z≥0, where for vertex vi ∈ A,

δAvi
= {(vi, vj) ∈ E : vj ∈ V \ A} . (4)

is the number of edges leaving subgraph A from vi.

Definition 4 (r-robust). A non-trivial graph G is said to be

r-robust if for each pair of disjoint sets A1,A2 ⊂ V at least

one is r-reachable.

Based on these definitions, Zhang et al. [5] obtained the

following property of r-robust graphs:

Theorem 1 (Th. 1, [5]). Consider a network modeled by

a graph G = (V, E) where each cooperative node updates

its value based on the W-MSR algorithm with parameter

F . Then, resilient asymptotic consensus is guaranteed if the

graph G is (2F + 1)-robust.

IV. MAINTAINING A RESILIENT NETWORK

Resilient consensus is guaranteed by the W-MSR algo-

rithm in networks that are (2F + 1)-robust. However, for a

given network, computing the level of r-robustness is co-

NP complete [6]. For the static networks considered in prior

works, the level of r-robustness of a network must only be

computed once. However, in the case of large networks or

time-varying networks where the level of r-robustness must

be repeatedly computed, the problem becomes intractable.

For this reason, we resort to the computation of an alternate

metric that lower-bounds the value r. Subsequently, we use

this metric to control the resilience of the network.



A. A Lower-Bound on r-Robustness

In the following, we derive a lower bound measure of

r-robustness based on the Cheeger constant, also called

isoperimetric constant which for a graph G is defined as

h(G) = min

{

|δA|

|A|
: A ⊆ V, 0 < |A|≤

1

2
|V|

}

,

where δA is defined as

δA = {(vi, vj) ∈ E : vi ∈ A, vj ∈ V \ A} .

Lemma 1 (Lemma 1, [28]). For a given graph G, the

Cheeger constant, h(G), of the graph lower bounds the value

r for which the graph is r-robust.

This lower bound is not very useful however, since finding

h(G) for a given graph is NP-Hard [29]. Instead, we resort

to another lower bound which is easy to compute.

Theorem 2. For a given graph G=(V , E),
⌈

λ2

2

⌉

, where λ2

is the algebraic connectivity of G, lower bounds the r for

which the graph is r-robust.

Proof. From Lemma 1, we know that r ≥ h(G). The

Cheeger constant is itself lower-bounded by λ2/2 [30], where

λ2 is the second smallest eigenvalue of the Laplacian matrix

of graph G. Thus,

r ≥ h(G) ≥
λ2

2
,

and since r may take only integer values

r ≥

⌈

λ2

2

⌉

.

From this conclusion, and the conditions of convergence

of W-MSR, resilient convergence can be guaranteed as long

as

λ2 > 4F, (5)

since for any λ2 = 4F + ǫ, with ǫ > 0,
⌈

λ2

2

⌉

=
⌈

2F + ǫ
2

⌉

≥
2F +1. For the remainder of this work we will refer to this

threshold as the resilience threshold.

Finally, we note that for a given F , the minimum required

nodes for resilient consensus is 4F + 1 [31]. Likewise, the

minimum number of nodes required by a connectivity con-

troller based on Eq. (5) is 4F +1 (since N ≥ λ2). Therefore

using the lower bound measure to guarantee resilience does

not require an increase in the number of robots, but may

require more connections between them.

Remark 1. The bound r ≥
⌈

λ2

2

⌉

is tight. This can be seen in

the case of the complete graph on N nodes. Here, λ2 = N
and r = ⌈N/2⌉ and, thus, r =

⌈

λ2

2

⌉

.

B. Control of Algebraic Connectivity

To create a controller for the algebraic connectivity, λ2, we

first note that λ2 is a concave function of the graph Laplacian

L. Although the function λ2(L) is non-smooth, its derivative

where λ2 is unique (i.e. λ2 6= λ3) can be shown to be [24]

∂λ2(L)

∂L
=

v2v
T
2

vT
2 v2

.

vulnerable

∇iλ2

marginal

α∇iλ2 + vi

resilient

vi

λ2 > 4F

λ2 > η1(4F )

λ2 < η2(4F )

Fig. 2: Proposed three-state hybrid controller for resilient flocking.
The switching signal is based on the algebraic connectivity of the
network.

It is shown in [23] that even when λ2 is not unique this

derivative serves as a supergradient and can be used for

the purpose of gradient climbing. Using a weighted graph

Laplacian

[L]ij =

{

−fij i 6= j
∑

j fij i = j
,

where the function fij is defined as in Eq. (1), allows us

to take the derivative ∂L
∂xα

for each dimension, α, of the

position. Linearizing and using the chain rule we arrive at

∂λ2(L(x))

∂L(x)

∂L(x)

∂xi,α

= Trace

{

[

v2v
T
2

vT
2 v2

]T [

∂L(x)

∂xi,α

]

}

. (6)

The expression for
∂L(x)
∂xi,α

can be easily computed from

Eq.(1). This gradient indicates to each robot the directional

derivative which will increase the algebraic connectivity of

the graph.

V. RESILIENT FLOCKING

As summarized in Section I-B, none of the existing

approaches address the question of resilient flocking, in the

presence of non-cooperative communication from anony-

mous robot team members. Similar to the approach in [22],

we propose a controller that maintains a critical level of

connectivity, hereby ensuring a resilient network topology,

and allowing us to apply the W-MSR algorithm to compute

consensus updates that lead to resilient asymptotic consen-

sus.

A. Robot Controller

For the purpose of resilient flocking we propose a three-

state controller similar to the one proposed in [32]. In our

proposed controller, robots switch from one state to another

as a function of the current algebraic connectivity of the

network. A diagram of the controller can be seen in Fig. 2.

The three states are termed the vulnerable state, the marginal

state, and the resilient state, and are elaborated below.

In the vulnerable state, the system is not guaranteed to

achieve resilient consensus. In this state, the robots apply a

control law which increases the algebraic connectivity of the

system

ui = ∇iλ2, (7)

where ∇λ2 ∈ R
dN , determined from Eq. (6), and ∇iλ2 is

a d-dimensional gradient that steers robot i to a resilient

formation. Once λ2 reaches the resilience threshold, the

system switches over to the marginal state.



In the marginal state, the system is guaranteed to be 2F+
1-robust and can safely run consensus dynamics. The system

is still close to the resilience threshold, so in this state we

consider a control law which includes the team’s objective

while also ensuring the system remains connected

ui = β∇iλ2 + vi, (8)

where vi represents a navigation function indicating a goal

direction for each robot, i, and β is chosen such that dλ2

dt > 0
at each time step. In the case of flocking, vi = yi is agreed

upon by the robots via the resilient consensus dynamics

shown in Eq. (3). Since our control law guarantees an r-

robust network topology, each robot i can compute Ri

locally and apply the resilient consensus update safely.

When the system is beyond the resilience threshold as

specified by a parameter η1 > 1 so that λ2 > η1(4F ), the

system switches to the resilient state with control

ui = vi (9)

The robots continue to run the consensus dynamics, Eq. (3),

since the system is guaranteed to be 2F + 1-robust.

The system returns to the marginal state from the resilient

state if λ2 < η2(4F ) for a parameter 1 < η2 < η1
which provides some hysteresis for the switching between

the marginal and resilient states.

B. Convergence Properties

To show convergence, we initially show that using the

controller in Eq. (7) the system goes from the vulnerable

state to the marginal state. From there, it must be shown

that the system never reenters the vulnerable state. Once the

robots are in the marginal state, it is guaranteed that they

will agree on a direction of motion v̄ through the consensus

dynamics even in the presence of up to F non-cooperative

robots. In finite time, switching between the marginal and

resilient states will end and the robots will remain in the

resilient state.

Proposition 1. If the robots are in the vulnerable state, the

controller in Eq. (7) will drive the system to the marginal

state.

Proof. As long as the value of λ2 is below the resilience

threshold, we apply the control in Eq. (7), hence the marginal

state will be reached in finite time.

Proposition 2. If the robots are in the marginal state,

following the controller in Eq. (8), they will never reenter

the vulnerable state. Furthermore, if there are no more

than F non-cooperative robots, the robots’ orientation will

asymptotically converge to the same value.

Proof. The condition to reenter the vulnerable state is that

λ2 drops below the resilience threshold. Therefore, it suffices

to show that
dλ2

dt
≥ 0, ∀t

in the marginal state. The derivative can be rewritten as

dλ2

dt
=

N
∑

i=1

∂λ2

∂xi

∂xi

∂t
=

N
∑

i=1

∂λ2

∂xi

ui. (10)

using the chain rule. Therefore, as long as

∂λ2

∂xi

ui ≥ 0, ∀i, ∀t, (11)

the system will never leave the marginal state to the vulner-

able state. The value β is chosen to ensure that this is the

case. Using the controller from Eq. (8) and solving for β in

Eq. (11) we arrive at the the following condition:

β ≥ −∇iλ
T
2
vi

‖∇iλ2‖2 .

Using Eq. (6), the value of β can be computed at each time

step by each robot, thus ensuring that the system does not

return to the vulnerable state for any time step t. If β is

chosen such that dλ2

dt > 0 the system will eventually reach

the resilient state.

The system switches out of the vulnerable state when

λ2 > 4F which guarantees 2F + 1-robustness. Thus, in the

marginal and resilient states, each robot i will converge to

a common navigation vector, vi → v̄ as long are there are

no more than F non-cooperative robots.

Proposition 3. Once in the marginal state, the system will

switch between marginal and resilient states. If there are no

more than F non-cooperative robots, switching will stop with

the system in the resilient state after a finite time interval.

Proof. By design, once the system is in the marginal state

it will move to the resilient state since we choose β such

that dλ2

dt > 0. To show that the system will remain in the

resilient state, we show that the derivative dλ2

dt converges

exponentially to zero in the resilient state as consensus on the

heading direction converges. From Eq. (10) and the controller

in Eq. (9), in the resilient state we have

dλ2

dt
=

∑

i

∂λ2

∂xi

vi. (12)

The derivatives of fij are such that the off-diagonal entries

of
[

∂L
∂xk,α

]

ij
can only be non-zero for k ∈ {i, j}. Since

∂fij
∂xi,α

= − ∂fij
∂xj,α

, the off diagonal entries of
∑

k
∂L

∂xk,α
for

each spatial dimension α ∈ 1 . . . d are

∑

k

−
∂fij
∂xk,α

vk,α = − ∂fij
∂xi,α

vi,α − ∂fij
∂xj,α

vj,α

=
∂fij
∂xi,α

(vj,α − vi,α)

Furthermore, the diagonal entries are

∑

k

∑

j

∂fij
∂xk,α

vk,α =
∑

j

∑

k
∂fij
∂xk,α

vk,α

=
∑

j
∂fij
∂xi,α

vi,α +
∂fij
∂xj,α

vj,α

=
∑

j
∂fij
∂xi,α

(vi,α − vj,α) .

The quantity |vi,α−vj,α| approaches zero asymptotically due

to the agents running consensus on their heading direction.

Therefore

lim
t→∞

∑

i

∂L(x)

∂xi,α

vi,α = 0N×N ,
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Fig. 3: Initial configuration of the team of robots for the simulations.
The red disk represents the non-cooperative robot (19) for all
simulations. The orange disk (18) represents the non-cooperative
robot for simulations with more than one non-cooperative robot.
The dashed lines represent the communication links.

and the rate of convergence is proportional to the rate of

convergence to consensus. Since, it is shown in [33] that the

convergence rate of W-MSR is exponential, the difference

|vi,α − vj,α| decreases exponentially. It can be concluded

that since
∂fij
∂xi,α

are bounded, all elements of
∑

i
∂L(x)
∂xi,α

vi,α
go to zero exponentially. From Eq. (6), we have

∑

i

∂λ2

∂xi,α

vi,α =
∑

i Trace

{

[

v2v
T
2

v
T
2
v2

]T [

∂L(x)
∂xi,α

]

}

vi,α

= Trace

{

[

v2v
T
2

v
T
2
v2

]T
∑

i

[

∂L(x)
∂xi,α

]

vi,α

}

.

Thus

lim
t→∞

∑

i

∂λ2

∂xi

vi = 0,

and from Eq. (12)

lim
t→∞

dλ2

dt
= 0,

and the convergence rate is exponential. The exponential

convergence of dλ2

dt to zero means that for any ǫ > 0 there

exists a finite T > 0 such that ∀t > T , |λ2(T )− λ2(t)|≤ ǫ.
Choosing ǫ smaller than the hysteresis allows us to conclude

that after a finite time the system will stop switching and

remain in the resilient state forever.

VI. SIMULATION RESULTS

In our simulations we consider four different scenarios

in which the team of robots strive to achieve resilient

flocking under a variety of conditions. For each simulation,

N = 20 robots were initialized in a circular pattern with

a non-cooperative node in the center as depicted in Fig. 3.

This configuration was chosen to give the non-cooperative

robot the most potential to influence the cooperative robots.

The switching parameters were chosen as η1 = 8/6 and

η2 = 7/6. The parameter γ in Eq. (1) was chosen to be

0.5 which allowed the robots to maintain λ2 close to the

boundary of the resilient state. Larger values of γ tend to

cause the robots to reach a final λ2 that is much larger than

the threshold due to the larger gradients from fij (See Fig. 1).

Since this initial configuration is 4-robust, the conditions are

not met to guarantee resilient consensus using the W-MSR

algorithm with parameter F ≥ 2. Simple collision avoidance

was included for more realistic simulations. The collision

avoidance was implemented to only influence nodes when

‖xi − xj‖≪ ρ. In this range fij = 1 and therefore the

collision avoidance does not affect dλ2

dt .

In the fist scenario, we use our proposed method for

resilient flocking with F = 2. Since the initial graph starts off

with r = 4, W-MSR does not guarantee resilient convergence

until the robustness is increased. Fig. 4 shows the results

when there are two non-cooperative robots, shown in red and

orange in Fig. 3. The robots initially start in the vulnerable

state, shown in red in Fig. 4c. The vulnerable state controller

quickly increases the value of λ2, as depicted in Fig. 4c,

until it enters the marginal state shown in blue. Every robot

updates its velocity, vi, based on its current consensus value

yi; however, during the update step the non-cooperative

robots share a constant value with their neighbors instead of

the actual yi. Fig. 4b shows the nodes reaching consensus on

the components of yi, which for clarity is shown as a heading

value θi = atan2(yi,y, yi,x). The constant values shared

by the non-cooperative robots are shown in bold black. As

expected, resilient consensus is achieved.

In the second scenario, a non-cooperative robot shares a

time-varying heading, θi = θi,0 + cos(t), with its neighbors.

The simulation shown in Fig. 5 shows that robots will still

achieve resilient consensus. In this case and in the remaining

simulations the controller was designed with F = 1. It can

be seen in Fig. 5b that the cooperative nodes are still able

to quickly achieve resilient consensus.

In the third scenario the connectivity controller is used,

but the classical linear consensus protocol is used instead of

W-MSR. The results are shown in Figure 6. Consensus is

achieved, but it is not resilient consensus as the cooperative

robots converge to the value of the single non-cooperative

robot. We can see that W-MSR is clearly required for resilient

consensus. However, if the algebraic connectivity is not kept

above the resilience threshold, resilient consensus is not

guaranteed. To illustrate this, we present the next scenario.

In the forth scenario, we show a version of the controller

where the switching threshold was decreased below the

resilience threshold to 2 < 4F = 4. This simulation can

be seen in Fig. 7. In this case, W-MSR is used to attempt

to achieve resilient consensus in the presence of a single

non-cooperative robot. Although the initial network is such

that r = 4 > 2F + 1 and is thus resilient to a single non-

cooperative robot, the network does not remain sufficiently

resilient as the robots move and so the robots fail to reach a

resilient consensus. Fig. 7b shows the heading values for each

robot showing that again the cooperative robots converge to

the value shared by the non-cooperative robot.

Overall, we observe that the switching controller, when

used with the W-MSR consensus algorithm, ensures that the

robots achieve resilient consensus. If the robots use linear

consensus protocol in place of W-MSR, or do not use the

correct resilience threshold, there is no guarantee of resilient

consensus.

VII. CONCLUSION & FUTURE WORK

We present a method that enables resilient flocking for mo-

bile robot teams in the presence of non-cooperative robots.

Our method builds on the concept of robust network topolo-

gies that guarantee resilient consensus. Since determining the
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Fig. 4: Simulation results using the proposed controller with two non-cooperative robots. The non-cooperative robots are shown in red
in (a) and in (b) the bold black lines show the values they are sharing with their neighbors. In (c) the vulnerable, marginal, and resilient
states are shown in red, blue, and green.
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Fig. 5: Simulation results using the proposed controller in which a non-cooperative robot shares a time-varying signal with its neighbors.
The bold black line in (b) shows the shared value of the non-cooperative robot. In (c) the vulnerable, marginal, and resilient states are
shown in red, blue, and green.
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Fig. 6: Simulation results using the proposed controller without W-MSR. The bold black lines in (b) show the shared values of the
non-cooperative robots. In (c) the vulnerable, marginal, and resilient states are shown in red, blue, and green.
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Fig. 7: Simulation results when robots maintain λ2 > 2 instead of the resilience threshold in the presence of one non-cooperative robot.
The bold black line in (b) shows the shared value of the non-cooperative robot.

exact robustness properties of the network is hard, we make

use of a lower bound metric that can be computed efficiently.

Combining these results, we propose a dynamic connectivity

management strategy that ensures that the communication

network topology remains above a critical resilience thresh-

old. We propose a switching control policy that allows a

team of mobile robots to achieve resilient consensus on the

direction of motion. Finally, we demonstrate the use of our

framework for resilient flocking, and show simulation results

with groups of holonomic mobile robots.

Our work has the limitation that we have to assume the

robots have access to the quantities λ2 and v2, which are

global properties of the communication graph. The commu-

nication graph is defined by the robots’ locations. This ob-

servation can be made centrally, via an ‘eye-in-the-sky’ (e.g.,

GPS) and communicated back to the team. Alternatively,

relative locations can be measured locally and in a distributed

manner (e.g., via range-and-bearing sensors [34]), allowing

the team to compute locations via network localization

strategies. This method requires cooperation among robots as

they agree on a common set of locations (and consequently,

common values for λ2 and v2). Similarly, decentralized



methods that allow λ2 and v2 to be computed directly also

rely on truthful, cooperative communication [35], [36]. In the

current work, we do not explore the resilient computation

of λ2 and v2 in a decentralized way. The methods used

here to arrive at consensus can be extended to provide other

estimates. Alternatively, if we can make the assumption that

the robot team starts in a resilient state, we believe that

the algorithm presented in [36] can be augmented with a

resilient consensus strategy, such as W-MSR, and hence used

in our work to provide reliable estimates of λ2 and v2 in a

decentralized manner. However, a detailed investigation of

such approaches is left for future work.

Another direction for future work is an extension of our

framework to non-holonomic vehicles, such as in [37], and

with higher order dynamics, such as in [20], [38].
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