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Predicting Environmental Boundary Behaviors with
a Mobile Robot

David Saldaña1, Renato Assunção1, and Mario F. M. Campos1

Abstract—Predicting the behavior of dangerous environmental
boundaries, like spreading fire or oil spill, provides relevant in-
formation to mitigate the problem or even to support evacuation
actions in order to save human or animal lives. In this paper,
we present a model that uses a single robot moving around
an environmental boundary in order to predict its shape by an
analytical continuous function, which is based on the combination
of polynomial approximation and Fourier Series. We show that
the method converges to the exact boundary when we increase the
sample frequency and the robot velocity. In order to evaluate the
estimation quality, we performed experiments with simulated and
actual robots. We applied our model in some dynamic boundaries
presented in the literature, as in the application of plume-front
estimation, showing that it accomplish accurate results.

Index Terms—Environment-aware Automation, Surveillance
Systems, Probability and Statistical Methods

I. INTRODUCTION

ESTIMATING the shape of environmental boundaries has
been a highlighted topic in robotics since the last decade.

There is a variety of applications where robotic sensors have
a relevant impact, specially when monitoring phenomena such
as oil spills [1], [2], [3], forest fires [4], chemical leaks [5],
and harmful algae blooms [6]. In these environments, where
anomalies may grow and progressively move, being able to
possess the ability to forecast the affected areas is a very
desirable feature of an autonomous monitoring system.

In the robotics literature, the concept of estimating bound-
aries is directly related to estimating environmental sets, level
curves, and perimeters. Preliminary works focused only on the
identification of shapes with static boundaries [7], [1]. In [8]
the authors propose a method to track dynamic level curves
by means of the gradient information required to minimize
the square error between the robot location and the level
curve. In [9], approximation theory of convex bodies is used
to estimate a given boundary with a polygon with a fixed
number of vertices. This approach converges by increasing the
interpolation points, but it requires many robots to check and
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Figure 1: Dynamic boundary and the robot trajectory. The
desired shape to be predicted is represented by the dashed
line.

update the vertices. Some methods such as [10], [11], [12], and
[13] have the advantage of integrating the detection, tracking
and estimation processes, but the boundary is projected by
interpolating the robot localization and the sampled points. It
also requires a large number of robots, because the boundary
evolves making the older sampled points less relevant to the
estimation of the current shape. In [2] the authors present
an efficient estimation method for liquid pollutants in marine
environments. However, this method is specific for boundaries
with dynamics satisfying the advection-diffusion behavior. The
work of Duttagupta et al. [14] introduces the concept of
prediction for non-closed curves by using robots with range
sensors. However, this kind of method cannot be directly
applied to any of the aforementioned contexts.

In a previous work [13], we proposed a hybrid approach to
detect and to track multiple boundaries. In this paper, we focus
on the problem of predicting the boundary behavior using a
single robot. As an illustration of the problem, Figure 1 shows
the evolution of a dynamic boundary at times t = 0, 100, 200.
This boundary has simultaneous transformations like trans-
lation, shrinking and expansion. Starting at time t = 0 as
a circle, it is deformed successively to assume a flower like
shape at t = 200. The robot moves along the boundary from
time t = 0 to t = 100 sampling its location. At each time t, the
robot can track only one point in the curve. The sampled points
are represented by small dots connected by the smooth spiral-
shaped curve representing the robot’s trajectory up to t = 100.
The objective is to use the sampled collected positions to learn
the entire boundary at all time points, including its forecasting
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in future moments. For instance, at time t = 100, we want to
estimate its present entire red-line shape as well as to predict
that, at time t = 200, it will become the star-shaped dashed
curve.

Our contributions are two fold. (1) Most of the related
approaches relies on linear interpolation of the robot’s po-
sitions in order to approximate the boundary by a polygon.
Without knowledge of the boundary evolution dynamics, we
approached the problem differently. We modeled the evolving
boundary by a position-specific parametric analytical continu-
ous function, where the parameters can be estimated using
the sampled punctual locations. (2) Our proposal not only
estimates the current closed-curve state, but it can also predict
the future boundary behavior without previous knowledge of
the phenomena.

II. PROBLEM STATEMENT

We are interested in a region within the environment where
there is a phenomenon delimited by a perimeter. This region
of interest Ωt ⊂ R2 is a connected set with finite area, indexed
by time t ∈ R, and enclosed by a boundary defined as

Definition 1 (dynamic boundary): A dynamic boundary is
a set of planar points ∂Ωt such that for each point p ∈ ∂Ωt,
and for any arbitrarily specified ξ > 0, the open disc centered
at p with radius ξ contains points of Ωt and its complement
Ω′t.

We assume that the boundary ∂Ωt is a simple closed curve
(also called Jordan curve), parameterized as

∂Ωt = {γ(t, s) | s ∈ [0, 1]},
where the image of the function γ : R≥t0 × [0, 1] → R2 is
a curve in R2, mapped by the parameter s ∈ [0, 1], such that
γ(t, 0) = γ(t, 1) and the restriction that γ(t, s) is an injective
function of s ∈ [0, 1) for a fixed time t. Hence, ∂Ωt is a
continuous loop with no self-intersecting points. Additionally,
we assume that the function γ changes smoothly in time t.

To sample the dynamic boundary ∂Ωt, we use a robot whose
configuration is represented by the vector x = [x, y, θ]T ,
where x, y define the coordinates in the Euclidean space and
θ is the robot’s orientation.

At each time step t, the robot can observe its location (x, y),
and estimate the curve parameter s (more details about the s-
estimation in Section III). Therefore, the robot data, in a finite
time interval, is the set of k samples

D = {(ti, xi, yi, si)|i = 1, ..., k}.
We wish to predict the shape of the boundary based on the
data D:

Problem 1: Given a set of samples D = {(ti, xi, yi, si)|i =
1, ..., k} by a robot moving along a dynamic boundary in
counterclockwise manner, how to estimate the past boundary
state ∂Ωt for t0 ≤ t ≤ tk and to predict the future ∂Ωt for
t > tk.

We assume that the angular speed of the robot θ̇ is large
enough to allow the robot to circulate the boundary, ∂Ωt, while
moving with linear velocity v.

To solve this problem, we first propose in Section III an
algorithm to estimate the arc-length parameter s and then, in
Section IV, we propose a model to solve Problem 1.

line
robot trajectory

Figure 2: A trajectory for a robot with constant velocity v =
2.6 along the boundary γ(t, s) = [0.1 t cos(s), sin(s)]T . The
dots represent the sampled points.

III. ESTIMATING THE CURVE PARAMETER

During its trajectory, the robot takes m observations of
its location (x, y) and sampling time t, producing the set
S = {(xi, yi, ti)|i = 1, 2, ...,m}. Figure 2 illustrates a
trajectory for a robot moving with constant velocity along the
boundary function γ(t, s) = [0.1 t cos(πs), sin(πs)]T . The arc-
length parameter s must be estimated for each sampled time in
order to complete the robot data D, which is used to analyze
the behavior of the anomaly boundary ∂Ωt (as described in
Section IV).

The work described in [9] presents a technique to estimate
the s parameter for slowly-varying boundaries with multiple
robots and assuming that, at the initial time t = 0, the robots
have an estimate of the boundary. In our approach, we avoid
this assumption and use only the sampled points in the robot’s
trajectory.

A. Identifying cycles

As a requirement for estimating the s parameter, we need
to identify the completed cycles in the robot trajectory. We
assume that the boundary ∂Ωt changes smoothly. If the robot
leaves a mark in the boundary at its departure point, it can
move along the boundary fast enough to reach the marked
point in the evolving boundary at least once. Each of these
laps will be called a cycle. The following algorithm identifies
the completed cycles in the robot sampling data

1) Initially, we trace a line `, which is perpendicular to
the last line segment {(xm−1, ym−1), (xm, ym)} of S,
and pass over the last point (xm, ym) (as exemplified in
Figure 2 by the dashed line).

2) The line ` divides the space R2 into two sets, the set
A = {p ∈ R2| p is above `} and its complement A′.

3) We iterate along the samples S backwards to find the
first line segment {(xk−1, yk−1), (xk, yk)} that satisfies
one of following two conditions:

(xm−1, ym−1) ∈ A′ ⇒ (xk, yk) ∈ A ∧
(xk−1, yk−1) ∈ A′),

or
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(xm−1, ym−1) ∈ A⇒ (xk, yk) ∈ A′ ∧
((xk−1, yk−1) ∈ A ∨ (xk−1, yk−1) ∈ `).

4) As the segment {(xk−1, yk−1), (xk, yk)} crosses from
A to A′, from A′ to A or from A′ to `, then there must
be an intersecting point (xq, yq) ∈ l, which we use to
represent the final point in the cycle.

5) We create a cycle o1 = {(xq, yq, t̂q)} ∪ {(xi, yi, ti)|i =
k, k + 1, ...,m}, where t̂q is interpolated.

6) We iteratively repeat the first five steps with the subset
S ′ = {(xi, yi, ti)| i = 1, 2, ..., k} until no more cycles
are identified. In this way, we obtain the set of cycles
O.

In this algorithm, we discard the oldest points because they
cannot complete a cycle. An important underline is that this
algorithm works for boundaries changing slowly with respect
to the robot’s velocity. If the shape deforms too fast, it is
possible that no cycle will be identified.

B. Estimating s
We use the set of cycles O to estimate the curvature

parameter s for each sampled point. For each cycle o ∈ O with
an arc-length L and n points, we estimate the curve parameter
as

ŝi =
arc-length({(xj , yj , tj)| j = 1, 2, ..., i})

L
, ∀i = 1, ..., n.

Then, we can extend the cycle information by including
the estimated ŝ, as ô = {(xj , yj , tj , ŝi)| j = 1, 2, ..., n}.
The trajectory data D is formed by the union of all cycles
information (removing the repeated elements when s = 0 and
s = 1). Hence, the complete dataset D with k samples is given
by D = {(ti, xi, yi, ŝi)|i = 1, ..., k}.

IV. PREDICTING THE BOUNDARY BEHAVIOR

In this section, we propose an approach to solve Problem 1.
We need to estimate the boundary ∂Ωt for any t > t0, using
the robot’s data D.

A. Estimating the trajectory of point in the boundary

We analyze the trajectory of a single arbitrary point of the
boundary during the time interval t = [t0, tf ]. If we fix the
curve parameter to an arbitrary value s0 ∈ [0, 1], the trajectory
of this point can be represented by γ(t, s0), for t ∈ [t0, tf ].
Figure 3 illustrates a trajectory γ(t, s0) in a time interval t ∈
[t0, tf ]. The form of the trajectory depends on the dynamics of
the boundary function. As we assume that it changes smoothly,
we can approximate γ by a n-degree polynomial γ̂:

γ̂(t, s0) =

[
β0,0 β0,1 . . . β0,n
β1,0 β1,1 . . . β1,n

]
1
t
...
tn

 .
Letting β(s0) be the 2 × (n + 1) constant matrix for s0, and
F = [t0, t1, ..., tn]T the exponents of the variable t, we may
represent the trajectory of the boundary point as

γ̂(t, s0) = β(s0) F. (1)

Figure 3: Trajectory of an arbitrary point in the boundary, that
starts in γ(t0, s0) and finishes in γ(tf , s0).

The general case for every s, not only s0, is described in the
following subsection.

B. Estimating the boundary behavior

As the matrix β changes continuously with respect to the
parameter s (Definition 1), we define β(s) as a general function
that returns a matrix 2 × (n + 1), with values depending on
the parameter s. Therefore, we can generalize Equation 1 for
every s ∈ [0, 1] as

γ̂(t, s) = β(s) F. (2)

Each value of the function β(s) must satisfy the following
properties.

Properties 1: The function β(s) satisfies:

1) The function β(s) is a closed loop with β(0) = β(1).
2) The function β(s) is continuous and differentiable.
3) The function β(s) is injective for every s ∈ [0, 1).

We approximate the function β with a periodic function β̂
represented by a linear combination of sines and cosines. This
approach satisfies the three mandatory properties for β(s). We
take the first 2m+ 1 terms of the Fourier series for each βij ,

β̂ij(s) = a
(ij)
0 +

m∑
k=1

a
(ij)
k sin(2πks)+

m∑
k=1

b
(ij)
k cos(2πks). (3)

Separating the coordinates of γ into two independent func-
tions, we can rewrite the γ as

γ(t, s) =

[
x(t, s)
y(t, s)

]
,

we rewrite (2) with β̂,

ˆ̂γ(t, s) =

[
x̂(t, s)
ŷ(t, s)

]
=

[
β̂x(s)F
β̂y(s)F

]
, (4)

where βx(s) and βy(s) are the first and sec-
ond rows of β(s), respectively. Taking G =
[1, sin(s), . . . , sin(ms), cos(s), . . . , cos(ms)]T , and Cx and
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Cy as constant matrices of dimensions (2m + 1) × (n + 1),
we have

βx = GT Cx. (5)
βy = GT Cy. (6)

Substituting the Equations (5) and (6) in (4),

ˆ̂γ(t, s) =

[
GT Cx F
GT Cy F

]
, (7)

and multiplying the matrices, we have

ˆ̂γ(t, s) =

∑n+1
i

∑2m+1
j cij Fi Gj∑n+1

i

∑2m+1
j dij Fi Gj

 ,
where cij , and dij are the elements of the matrices Cx and
Cy respectively. Finally, making C as the matrix of constants
with dimension (n+ 1)(2m+ 1)× 2 and H as the Kronecker
product H = F ⊗ G = [F1G1, F1G2, . . . , Fn+1 G2m+1]T ,
we obtain

ˆ̂γ(t, s) = CT H. (8)

Based on this model, we can frame this problem as a linear
regression system, where we have to analyze the number of
terms that should be used in the function vector H and attempt
to infer the matrix of weights C.

It is important to highlight the influence of the parameters
n and m. The parameter n determines the polynomial degree
to approximate the trajectory of a single point in the closed
curve. It can be chosen based on the number of identified
cycles or depending on the order of the phenomena, e.g.
in the plume experiment (Sec. VI-B), we used n = 2 as
the Eq. 13 is a second order differential equation. As the
parameter m, normally m > 6, determines the maximum
frequency along the closed curve. For example, the simplest
case m = 1 approximates the boundary by a circle. A large
number for m can generate over-fitting in the presence of noisy
measurements.

C. Modeling as a linear system

We use the time t and the curve parameter s as input
variables, and the spatially located variables (x, y) as the
output. For these reasons, we use the trajectory information
D = {(ti, xi, yi, si)|i = 0, 1, ..., k} to predict the anomaly
behavior by attempting to estimate the parameter matrix C of
Equation (8).

We model the problem as a linear system with the form

A C = Y, (9)

where Y is a matrix with dimension k× 2 that contains each
output location (xi, yi), i = 1, ..., k in the robot’s trajectory D;
C is the weighted matrix (of Eq. 8) that we want to estimate;
and A is the design matrix created using the input (ti, si), i =
1, ..., k and the functions of H , defined as

A =


f1(t1, s1) g1(t1, s1) . . . fn+1(t1, s1)g2m+1(t1, s1)
f1(t2, s2) g1(t2, s2) . . . fn+1(t2, s2)g2m+1(t2, s2)

...
...

...
f1(tk, sk) g1(tk, sk) . . . fn+1(tk, sk)g2m+1(tk, sk)



Therefore, the independent regressors in matrix A are func-
tions of t and s and the coordinates (x, y) are the dependent
variables for the regression problem. The polynomial degree
is associated with the number of cycles as |O|≥ n and the m
terms in the finite Fourier series depends on the number of
sample points k, because it must satisfy k ≥ (2m+1)(n+1).

D. Estimating by least-squares

The objective consists of adjusting the parameter matrix C
(from Equation 9) of the model function γ̂ to best fit the data
set D = {(ti, xi, yi, si)|i = 0, 1, ..., k}. Thus, we try to find
the matrix C that minimizes the Euclidean norm

||Y −A C||2.

The least squares method [15] finds its optimum by assuming
that the errors εi = Yi − Ai Ci are independent random
variables for all i = 1, 2, ..., k. Assuming that A is a full-rank
matrix, we can estimate C̃ by solving

C̃ = (ATA)−1ATY. (10)

Therefore, γ(s, t) is approximated by γ̃(s, t) = C̃TH . We
present some experiments of the implementation of this
method in Section VI.

V. CONVERGENCE ANALYSES

In this section, we show that our method produces accurate
estimate γ̃(s, t) of γ(s, t) if the number k of sampling points
is large enough and the parameters n and m are large enough
to describe de phenomenon. By the repeated use of the triangle
inequality, we have

|γ̃(s, t)− γ(s, t)| ≤ |γ̃(s, t)− ˆ̂γ(s, t)| +
|ˆ̂γ(s, t)− γ̂(s, t)| + |γ̂(s, t)− γ(s, t)|. (11)

The Weierstrass approximation theorem [16] guarantees that
the last term on the right hand side can be made arbitrarily
small by taking the polynomial degree n to be large enough.
The second term can also be made arbitrarily small. The reason
is that, by the Fourier approximation theorem, there is an
integer m such that, for m > mij , we have

|β̂ij(s)− βij(s)|<
ε

2(n+ 1)tnf
.

Taking m > maxmij we have the inequality valid for all i, j
and for all s. Therefore,

|ˆ̂x(t, s)− x̂(t, s)|≤
n∑

j=0

|β̂0j − β0j ||tj |≤ ε/2.

A similar calculation for y(t, s) provides an arbitrarily small
upper bound for the the second term in (11). That is, |ˆ̂γ(s, t)−
γ̂(s, t)|≤ ε. Finally, the first term in (11) can also be made
arbitrarily small assuming the classic linear regression model.
Indeed, usual least squares regression asymptotic theory gives
us that γ̃(s, t) is a consistent estimator of γ̂(s, t). That is,
|γ̃(s, t)− γ̂(s, t)|< ε if k is large enough. Putting these three
bounds together, we find that |γ̃(s, t)− γ(s, t)| ≤ 3ε.
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VI. EXPERIMENTS

In our experiments, we initially work with a boundary based
on an analytic function and subsequently with a simulated
substance based on the advection-diffusion model. In order to
quantify the difference between the real anomaly Ωt and a
prediction Ω̂t, we use the Lebesgue measure of the symmetric
difference between the two sets as a metric:

δ(Ωt, Ω̂t) := µ(Ωt \ Ω̂t) µ(Ω̂t \ Ωt), (12)

where µ is the Lebesgue measure, which computes the area
of a set in R2. The symmetric difference computes the error
between the prediction and the real anomaly. It takes into
account the union of the wrong covered area (Ωt \Ω̂t) and the
uncovered area (Ω̂t \ Ωt). This metric is used in the related
works [9] and [13].

A. Simulating a boundary function

We initially simulate an anomaly which simultaneously
translates, expands and shrinks its shape. The boundary satis-
fies the following equation,

γ1 =
1

100

[
4t+ (t sin (4πs) + 2t cos (10πs) + 800) cos (2πs)
2t+ (t sin (4πs) + 2t cos (10πs) + 800) sin (2πs)

]
,

which is a variation of the boundary function in [9], but
including a translation factor. In Figure 4a, it can be seen that
the boundary γ1 transforms its shape from a circle at t = 0 to
a star at t = 200. Additionally, we can see that the boundary is
also translating with constant velocity. The robot moves with
velocity v = 0.79 and its trajectory is shown in Figure 4b.
Another way to present the estimated trajectory is shown in
Figure 1, where the z-axes represents the time variable. We
can see the boundary at different times and how the robot
trajectory has only one point in the boundary for each time.

Our objective is to predict the boundary state at time t =
200 by using the sampled data D of the robot trajectory from
time t = 0 to t = 100. We estimate the curve parameter ŝ
as described in Section III. The estimation of the s parameter
introduces an additional error that is minimized after applying
the least-squares. The identified cycles are shown in Figure
5a and the resultant linear approximation for ŝ in contrast to
the ground truth s is shown in Figure 5b. The model that we
approximate is based on Equation 9. We use n = 1 for the
polynomial and m = 10 for the Fourier series. Therefore, we
estimated the 42 terms of the matrix A by using Equation
10. Using the exact points in the trajectory (represented by
the continuous line in Figure 4b), the prediction error is δ =
4.27e− 12 for all t ∈ R≥0, i.e. the approximation fits almost
exactly to the real boundary.

In order to show that our method also works with noisy
measurements, we introduced a Gaussian error for each mea-
surement along the trajectory (small dots around the continu-
ous line in Figure 4b). The prediction is illustrated in Figure 4c
by the continuous line, where the resultant error is δ = 1.53.
We can observe that in this kind of analytical boundaries, the
extrapolation for prediction fits very close to the real one,
even for long future predictions and with the presence of noisy
measurements.
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(a) Evolution of the boundary γ1 at three different
times t = 0, 100, 200.
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Figure 4: Dynamic boundary γ1, the robot trajectory and the
resultant prediction.

In [9], the boundary is approximated by a polygon, where
each vertex is updated as the robot moves close to it. Good
approximations can be achieved when many robots are dis-
tributed along the boundary. In this case, every vertex is
updated quickly by differnet robots. However, when a single
robot is used, each vertex is only updated after a lap and there-
fore, in the case of time-varying boundaries, the error in this
method will not converge to zero. Our technique is innovative
in that, when the boundary shape is changing, our method is
able to predict this motion for all the boundary points along the
approximated closed-curve. However, our prediction method
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Figure 5: Estimation of the curve parameter s.

works with phenomena that change smooth in time. Other
behaviors that contain oscillations or random movements are
difficult to estimate by the polynomial approximation.

B. Estimating a plume-front behavior

The propagation of a polluting substance in a non-static
liquid is widely studied in physics and engineering. This
physical phenomena is governed by two processes: diffusion
and advection. Diffusion is a smooth behavior that expands
the concentration of the substance in the liquid and advection
is the movement of the substance due to the dynamics of the
liquid. The Navier-Stokes equations [17] describe the motion
of viscous fluid substances and the equation for the advection-
diffusion behavior is given by

∂u

∂t
+ vx

∂u

∂x
+ vy

∂u

∂y
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
, (13)

where the variable u ∈ R≥0 is the substance concentration;
vx and vy are the advection velocities in x and y respectively;
and k ∈ R≥0 is a diffusion coefficient. The estimation and
tracking of plumes with multiple robots is studied in [2], [3].
We apply our proposed model to show that a single robot also
gives an accurate estimation and prediction of the behavior of
a plume.

In our experiment, we simulate a point-source pollution
by implementing Equation 13 in python. The evolution of
a substance is shown in Figure 6a, where the gray arrows
represent the vector field for the liquid’s velocity [vx, vy]T .
The robot’s trajectory around this substance with velocity
v = 0.09 is shown in Figure 6b. As a result, we can see in
Figure 6c that our approach can estimate the whole boundary
for an arbitrary time t ∈ [0, 110] or predict for t > 110,
even when the robot takes either only a sample or no samples
for each specific time. The metric δ for all the estimations
along the time t (based on the data of Figure 6b) is plotted
in Figure 7. If the robot’s velocity increases from v = 0.09
to v = 0.12 or v = 0.15, the number of identified cycles
increases from 3 to 4 and 5 respectively. Figure 7 also shows
how the error δ is reduced because the same 110 samples
are more evenly distributed in the rectangular (s, t) space.
As our function interpolates the sample values with old and
recent data, we can see that the estimated boundary in the
time interval t ∈ [20, 90] presents better accuracy. For the
time t = 110, the error increases because there is data before

(a) Substance evolution (at t = 0, 40, 80, 120) in a dynamic
liquid . The pollution source is represented by the dashed line.
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(b) Robot trajectory from t0 = 0 to tf = 110 with velocity
v = 0.09. The dashed line shows the boundary at time t =
120. The circle represents the last robot location and the dots
represent the k = 110 sampled points.
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(c) Liquid estimation for t = 0, 40, 80 and prediction for t =
120. The continuous lines represent the approximations and
dashed lines are the real boundaries.

Figure 6: Viscous substance in a liquid and the robot trajectory
around it.

but not after this moment. The method may predict the future
boundaries for t > 110, but the error increases proportionally
with time.

In real experiments, we used a differential robot with a
Motion Capture System for localization in order to track the
plume-front as in simulations. In the accompanying video
[https://www.youtube.com/watch?v=1bF9U3nbXJ8], it can
be seen how the robot moves around the boundary in order to
sample it. As the actual robot is nonholonomic, the maximum
curvature to be tracked is restricted by the steering capability
and the floor friction. We can see that the robot cannot always
track the boundary exactly because of the steering limitation
during the tracking process. The resultant sampled points along
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Figure 7: δ-error in time with different velocities.

Figure 8: Actual robot circulating around the dynamic bound-
ary. The dots represent the sampled points along the robot
trajectory.
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Figure 9: Liquid estimation by an actual robot. Continuous
lines represent the estimations and dashed lines are the real
boundaries.

the trajectory are presented in Figure 8. The error to move the
robot along the boundary slightly affects the method, but the
obtained prediction is very close to the real boundary as can
be seen in Figure 9.

As a result, we can use a single robot to estimate and predict
boundaries with an approximation accuracy δ < 0.15m2. The
requirements to obtain a good estimation are: to complete the
minimum number of cycles |O|≥ n; to sample a number of
points k ≥ (2m + 1)(n + 1); we also require that the robot
move with high enough linear velocity v to obtain a good
approximation ŝ of the curve parameter s. As we argued in
Section V, the method works even in the presence of noisy
location measurements, as the error δ → 0 when the number
of sampled points increases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a model that predicts the
behavior of environmental boundaries by the parameters of
an analytical function. We analyzed the convergence and
demonstrated by simulations the efficiency of the proposed
method. We showed how to estimate a boundary with high
accuracy using a single robot without previous knowledge of
the boundary dynamics.

The robot can predict the dynamics of the boundary by
completing cycles around it. The estimation can be improved
by increasing the sampling frequency and the velocity of
the robot. When the robot is moving fast, it can identify
more cycles with more accuracy and, as a consequence, the
estimation is also improved, as we showed in the simulations.

We plan to extend the proposed model to use multiple robots
in order to track fast-changing boundaries. We also desire to
validate this model in outdoor environments in order to analyze
its behavior in situations when the boundary is affected by
several external variables.
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