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Abstract— Environmental boundaries, such as the borderline
of a forest fire or an oil spill, pose a significant threat for living
organisms. Anticipating the dynamics of these phenomena is a
potentially life-saving indicator to support efficient and effective
evacuations or to dispel the hazard. We propose a decentralized
coordination method that allows multiple robots to efficiently
sample and predict the behavior of environmental boundaries.
Our method does not require a priori information about the
boundary dynamics. We validate our proposal through experi-
ments with actual robots. We demonstrate experimentally that
our method can estimate and predict non-convex boundaries
even with noisy measurements and inaccurate motion actuators.

I. INTRODUCTION

Natural and urban environments with living organisms are
susceptible to catastrophes due to external phenomena that
generate hazardous contaminants. We can mention a couple
of casualties such as oil spills [1], [2], forest fires [3], [4],
harmful algae blooms [5], and radiation leaks [6]. These and
other such elements possess a common characteristic, which
is that the affected region in the environment is hemmed in by
a perimeter. Anticipating the dynamics of these phenomena
is a potentially life-saving indicator to support evacuations
or to dispel the hazard.

When a team of robots robots starts exploring the en-
vironment looking for contaminated regions. These robots
can execute different boundary searching algorithms such as
random walk [6], spiral search [1], cooperative exploration
[7], following an environmental function [8], or following
a gradient [9]. A hybrid approach to search and track the
boundary with multiple robots is presented in [1], [10]. A
simplified hybrid hierarchical control technique is proposed
in [11]. In a previous work [7], we proposed a coordination
method to detect and to track multiple dynamic boundaries.

When the robots are already on the boundary, their main
task is to accurately follow a static or time-varying boundary.
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Fig. 1. Enclosing a boundary with four robots. The dashed red curve
represents the recent shape of the boundary. The blue disks and their
associated doted lines represent the robots on the curve and their paths
respectively. The green points represent the point-wise samples. The arrows
represent the velocity vector żi.

In most of the tracking approaches, the robots are driven to
circumnavigate the boundary in a counterclockwise manner
[12], [13], [14]. We illustrate an environmental boundary
tracked by four robots in Figure 1. Some works use gradient
information to control the tracking action [12], [13], [15],
while other works use gradient-free approaches. Especially
in the gradient-free case, each robot can only sense if it is
inside or outside the contaminated area [16], [3], [17]. The
most common and straightforward approach is implemented
by the bang-bang algorithm [12], [18], [13], [17] in which a
robot keeps persistently switching steering angles to change
directions while circulating around the perimeter.

Once the robots are sampling the boundary using a track-
ing algorithm, an important task is to estimate the shape
of the boundary by using the collected point-wise measure-
ments. Usually, these point-wise measurements come from
the location of the robot, for instance, using a GPS sensor.
A preliminary work was presented by Kemp et al. [12].
They represent the boundary curve by n points (where n
is the number of robots) and use a snake-based algorithm
(a well-known technique in computer vision) to drive the
robots towards the perimeter in a distributed manner. In
[19], [20], approximation theory of convex bodies is used
to estimate slow-moving boundaries with a polygon with
a fixed number of vertices. The work of [21] predicts the
behavior of non-closed curves by using robots with range
sensors. The method by Valli et al. [22], [23] takes into
account the communication issues for reporting the boundary
estimation as a sink. In a recent work [24], we proposed a
method to predict the behavior of environmental boundaries
without previous knowledge of the dynamics of the boundary



using a single robot. Extending this centralized approach to
multiple robots brings challenging issues such as: design
a coordination method to distribute the robots along the
dynamic curve; integrate the sampled information from all
robots without a central approach; parameterize the curve
without a global view of the boundary and the samples.
Figure 1 illustrates the sampled points during the robot
motion, denoted by the green dotted line. We can see that
each robot only has an updated point of the boundary (the
point where it is located) the the rest of the sampled points
are outdated and some of them unuseful to predict the
boundary shape. In a centralized approach, all robots might
send all their measurements to a central server. However, this
would saturate the communication network and constrain the
scalability of the multi-robot system.

Our main contribution is a method that allows multiple
robots to estimate the dynamics of a environmental boundary
using only point-wise measurements. We propose a mathe-
matical framework to represent and estimate dynamic curves
in the planar space. Our curve representation is based on
the combination of polynomials and Fourier series and it
naturally incorporates the variation in time. We highlight
that our method does not require the dynamic model of the
phenomenon.

II. PROBLEM STATEMENT

We are interested in estimating the behavior of a time-
varying region in a planar environment, which is bounded
by a well-delineated perimeter. This region of interest is a
connected set Ωt ⊂ R2 with finite area, indexed by time
t ∈ R≥0, and enclosed by a boundary defined as

Definition 1. — A dynamic boundary is a set of planar
points ∂Ωt such that for all point z ∈ ∂Ωt, and for any
arbitrarily specified ξ > 0, the open disc centered at point z
with radius ξ contains points of Ωt and its complement Ω{

t .

The boundary ∂Ωt can be modeled by an unknown bound-
ary function such that

∂Ωt = {γ(t, s) | s ∈ [0, 1]}.
Definition 2. — A boundary function γ : R≥t0×[0, 1]→ R2

describes a simple closed curve, mapped by the parameter
s ∈ [0, 1], such that γ(t, 0) = γ(t, 1) and the restriction
that γ(t, s) is an injective function of s ∈ [0, 1) for a fixed
time t. Hence, γ describes a continuous curve with no self-
intersection points.

The unitarian tangent vector, at any point, is given by

T(t, s) =
∂γ(t, s)/∂s

‖∂γ(t, s)/∂s‖
. (1)

where ‖.‖ denotes the Euclidean norm of the vector. We
develop our tracking and estimation method based on the
following assumptions about the boundary.

Assumption 1 (Smooth boundary). — The boundary func-
tion γ changes smoothly with respect to the curve param-
eter s and time t, i.e., its first and second derivatives exist
and are continuous.

Since actual robots have speed limitations, tracking a com-
pletely arbitrary boundary dynamics is not always feasible.
For example, the robot is not able to track a boundary that
moves with an ever increasing speed. Therefore, we assume
the following.

Assumption 2 (Bounded motion). — The magnitude of the
velocity of any point p ∈ ∂Ωt in the boundary is upper
bounded by ∥∥∥∂γ(t, s0)

∂t

∥∥∥ ≤ εv.
The robot team is composed by n robots that are initially

distributed along the boundary. Their motion is constrained
along the perimeter of the dynamic boundary ∂Ωt. Given
a curve function γ(t, s), the location of robot i along the
curve at time t can be described by an ever increasing curve
parameter si(t).

In our robot configuration, all robots have a cyclic coun-
terclockwise identification order along the curve. It means
that the i-th robot is behind its successor (robot i + 1)
and after its predecessor (robot i − 1) of the robot, i.e.,
si−1(t) < si(t) < si+1(t).

As it was aforementioned, tracking controllers for dynamic
boundaries have been widely studied in the literature [12],
[3], [17]. By using one of these tracking controllers, we can
assume that the robots always move on the curve. In this
way, the robot location in the Euclidean space R2 and its
first order dynamic are given by

xi(t) = γ(t, si(t))

ẋi(t) =
dγ(t, si(t))

dt
. (2)

Each robot is always circulating around the boundary in a
counterclockwise manner, i.e., ṡi(t) > 0, and we can control
its speed

‖ẋi(t)‖ = ui(t). (3)

We say that a boundary is slow-moving if we count on
sufficiently rapid robots. This leads us to the following
assumption.

Assumption 3 (Relative slow-moving boundary). — The
robots move much faster than the boundary, i.e.,

‖ẋi(t)‖ �
∥∥∥∂γ(t, s)

∂t

∥∥∥.
We can also relax this assumption taking into account the

number of robots as

‖ẋi(t)‖ �
1

n

∥∥∥∂γ(t, s)

∂t

∥∥∥.
Each robot i is equipped with sensors to obtain local

information in discrete time. At each sampling step tk,
k ∈ N, the robot can observe a point in the curve as its
own location, the velocity of a point in the boundary

zi(tk) = xi(tk)

żi(tk) =
∂γ(t, si(tk))

∂t
,



and the unitarian tangent vector Ti := T(t, si(t)) of the
curve at the robot location. We illustrate a scenario with
four robots and their sampled vectors in Figure 1. The
vector Ti is not always perpendicular to żi because Ti

depends on the shape of the curve and żi depends on the
motion of the curve. However, in relative slow-moving
boundaries (Assumption 3), it is also possible to use the
vector perpendicular to the robot velocity vector ẋi(tk), for
cases where the vector żi(tk) is not measurable. In a previous
work [24], we presented this approximation with satisfactory
results.

The robots use a ring communication topology to send
and receive messages. This communication topology offers
a natural way to maintain network connectivity and to reduce
the number of hops when the robots are distributed along a
closed curve. In this topology, each robot i can interchange
messages with a successor i+ 1 and a predecessor i− 1,
where n+ 1 = 1.

Our objective is to use a team of robots to predict the
behavior of a time-varying boundary. In Section III, we
control the robot motion ui to move along the boundary
and to parametrize the unknown time-varying curve γ(t,s)
in a decentralized way. Using this method, we can as-
sociate a curve parameter sj to each sample (tj , żi(tj)).
In this manner, each robot i has its own dataset Di =
{(tj , sj , zi(tj))|j = 1, ..., k}. Then, the main problem of
this paper can be stated as follows.

Problem. — Given a team of n robots, where each robot i
has its own dataset Di, estimate the function γ(t, s), which
describes the dynamics of the environmental boundary.

III. COOPERATIVE PARAMETRIZATION OF THE
BOUNDARY

In order to track the motion of every point on the closed-
curve, we propose a method to parametrize the curve by
using the measured information and local communication. In
the initial stage, the robot with identification number equal to
n is a temporary leader in charge of identifying if the bound-
ary is enclosed, and creating the initial parametrization of the
curve. After the initial parametrization, the robots continue
working without a leader and estimating the boundary by
only using local information and communication with their
neighbors in the ring topology.

A. Enclosing the boundary

In the beginning, the robots start at different arbitrary
locations on the curve. Since, the robots do not know
their locations on the curve and they do not have enough
information to estimate it, they move with constant speed
until the boundary is cooperatively enclosed. The robots
move in the counterclockwise direction along the curve by

ui = Υ,

where Υ > 0 is a desired constant speed. During this stage,
the local task of each robot i is to look for the initial point
of the robot i + 1 by projecting the vector zi(t). The local
task is completed if the projection of the vector zi(t) crosses

the path of the robot i + 1. We illustrate a case where all
robots complete their task in Figure 1. We can see four
robots projecting their vector zi(t) to enclose a boundary.

Following the ring communication topology, each robot i
shares its sample (t, zi(t)) to the robot i − 1 at each time
step t. The robot i − 1 is able to identify the trajectory of
the robot i only using the received values. The global task of
enclosing the boundary is completed when all the local tasks
are completed. The robot team can check the achievement
of the global task by periodically interchanging messages.
Each robot shares to its neighbors a boolean flag representing
whether its local task was completed or not. When it receives
the flags from its neighbors, it applies a logic and comparator
to its flag and the received flags. Then it shares the new
resultant flag. After exchanges n messages, all robots will
know whether the task was completed or not. This checking
process is periodically repeated until all the robots complete
their own local tasks, and as a consequence, all flags will be
true.

B. Initial parametrization of the curve

Once the boundary is enclosed, we proceed to assign
a parameter value to each sampled point. If a previous
estimation has not been computed yet, an initial way to
enclose a boundary, is by using polylines [7]. A polyline
defines a continuous line based on straight line segments, and
it is composed by a set of sorted points. The path of robot
i is modeled as a polyline Pi(tk) = {zi(t)|t = t1, ..., tk}
with sorted points by decreasing time values. Figure 2(a)
illustrates three different robot paths after enclosing the
boundary.

In this task, robot n sends a set {Pn(tk)}, containing
its own path, to the robot n − 1. When robot n − 1
receives this message, it computes the intersecting point
p between the projection of its vector żn−1(tk) and the
polyline Pn(tk). It removes the points after the intersecting
point p to get a shorter path P ′n(tk). Then, it sends the
set {P ′n(tk),Pn−1(tk)}. The same process is repeated n
times through the network until the temporal leader receives
and computes the set {P ′n(tk), ...,P ′1(tk)}.

Definition 3. — A piecewise boundary B(tk) :=
{P ′n(tk), ...,P ′1} is a set of n polylines that surrounds a
boundary. Each of these polylines comes from a robot path,
and they can be connected by projecting the velocity vector
ż of the first point of each polyline.

Figure 2(b) illustrates the resultant piecewise boundary
after processing the paths that were presented in Figure 2(a).
It is important to highlight that the piecewise boundary is the
base of our method. In the next sections, we will describe
our proposal to control the robots in order to improve its
quality and increase the updating frequency of every point
in the curve.

Now, we proceed to parametrize the piecewise boundary
B(tk). The length of the polyline, associated to robot i, is
denoted by `i := length(P ′i(tk)). The total length of the
piecewise boundary is

∑n
i=1 `i. The number of points in



(a) Initial paths after completing a cycle. The
actual boundary and polylines are represented by
the dashed line and dotted line respectively.

(b) Piecewise boundary, represented by the dotted
line. The boundary at time tk is represented by
the dashed line.

(c) Parametrization of the sampled points (blue
dots) by using the piecewise boundary.

Fig. 2. Distributed parametrization of the closed-curve. It is computed in three steps: (i) enclosing the boundary as presented in Panel (a), (ii) computing
a piecewise boundary as presented in Panel (b), and (iii) the paramatrization of the piecewise boundary based on the arc-lenght is illustrated in Panel (c).

a polyline is denoted by |P ′i(tk))|. In this way, the curve
parameter for a given point zi(tj) ∈ P ′i(tk) is computed by

sij =
1∑n

i=1 `i

( n∑
j=i+1

`j +

j−1∑
k=1

‖zi(tk+1)− zi(tk)‖
)
.

Figure 2(c) exemplifies the parametrization of the piecewise
boundary for the aforementioned example.

C. Online parametrization of the curve

Once the robots parametrize the curve for the first time,
we map the new sampled points to the old ones in order to
maintain an updated parametrization. At each time step tk,
robot i updates the piecewise boundary B(tk−1) using the
samples zi(tk) and żi(tk). It projects the vector żi(tk) until
it intersects the path of the robot i + 1. Assume that the
point of intersection is zi+1(tj). Since the new point zi(tk)
is associated to the old parametrized point zi+1(tj), we
reassign the parameter sij from the old point to the new
point. In this way, we use the initial parametrization and try
to track every point on the curve.

D. Distributing the robots along the curve

In this stage, our objective is to control the robots in order
to visit every point in the curve as frequently as possible.
By design, the robots move in counterclockwise manner
and we control the speed of the robots (from (3)). If the
robots circulate with speed Υ around a relative slow-moving
boundary, our problem becomes a distribution problem. It is
possible to show that the best way to distribute the robots in
the curve is to update every point as frequently as possible
by distributing them equidistantly by arc-length. In this way,
we minimize the update time of the least visited point and
try to visit all the points with a constant frequency.

Franchi et al. [25] designed a control law to move and
distribute a robot team around a circular shape. Sabattini et
al. [26], [27] designed a distributed algorithm to make a team
of robots circulate around arbitrary closed curves. However,

they do not take into account the arc-length to distribute
the robots along the curve. Then, our approach is modeled
according to [25].

In order to maintain the robots evenly distributed along
the curve, we apply the following control law for the i-th
robot,

ui = Υ +K(`i+1 − `i), (4)

where K > 0 is a gain constant. It means that we want each
length of the updated paths to be the same, `i → ¯̀

i, where
¯̀
i = (`i+1 + `i−1)/2. We highlight that using (4), the ith

robot only requires the length of the polyline of the robot
i + 1 and the length of its own polyline. Those polylines
are computed by simply connecting the sampled points. A
prediction of the boundary shape is not required at this stage.
This behavior will homogeneously distribute the robots as
long as they move on relative slow-changing boundaries (see
Assumption 3).

IV. COOPERATIVE PREDICTION

In this section, we extend the single-robot model [24] for
distributed on-line prediction with multiple robots.

A. Modeling the curve function

Since we are tracking every single point in the curve, we
start computing the trajectory of an arbitrary point. Assume
that we want to approximate the trajectory of a single point
with a parameter s0 ∈ [0, 1]. Then, the trajectory of this point
can be approximated by an n-degree polynomial,

γ̂(t, s0) =

[
β00 β01 . . . β0n
β10 β11 . . . β1n

]
1
t
...
tn

 . (5)

Letting β(s0) be the 2× (n+ 1) constant matrix for s0, and
f(t) = [t0, t1, ..., tn]T the exponents of the variable t, we



represent the trajectory of the boundary point as γ̂(t, s0) =
β(s0) f(t). Since the curvature changes smoothly, we can
generalize this for every point in the curve s ∈ [0, 1], by
generalizing the matrix β as,

γ̂(t, s) = β(s) f(t). (6)

Each entry of β can be described by a periodic function
with β(0) = β(1), which is continuous, differentiable, and
injective for every s ∈ [0, 1]. Therefore, we can approximate
every entry of β with the truncated Fourier series as

β̂ij(s) = a
(ij)
0 +

m∑
k=1

a
(ij)
k sin(2πks) +

m∑
k=1

b
(ij)
k cos(2πks).

We arrange the terms of the Fourier series in a
vector g(s) = [1, sin(2πs), . . . , sin(2πms), cos(2πs), . . . ,
cos(2πms)]T . We join the Fourier vector g(s) and the
polynomial vector f(t) by using the Kronecker product as

h(t, s) = f(t)⊗ g(s) = [f1g1, f1g2, . . . , fn+1 g2m+1]T .

With some algebraic manipulation (details in [24]), we can
separate the curve function (6) into two parts: a matrix of
weights C with dimension (n+1)(2m+1)×2, and a vector
h(t, s) as

γ̂(t, s) = CT h(t, s). (7)

Based on this model, we can frame this problem as a linear
regression system, where we have to analyze the number
of terms that should be used in the function vector h and
attempt to infer the matrix of weights C.

B. Estimating the curve function

We use the time t and the curve parameter s as input
variables, and the sampled locations zi(tj) = [xj , yj ]

T as
the output. In this way, we use the trajectory information
D = {(tj , xj , yj , sj)|j = 0, 1, ..., k} to predict the anomaly
behavior by attempting to estimate the parameter matrix C
of (7). We model the problem as a linear system with the
form

XC = Y, (8)

where Y is a matrix with dimension k×2 that contains each
output location (xi, yi), i = 1, ..., k in the robot’s trajectory
D; C is the weighted matrix that we want to estimate; and
X is the design matrix created using the input (ti, si), i =
1, ..., k and the functions of h(ti, si), defined as

X =

h(t1, s1)T

...
h(tk, sk)T

 .
Our objective consists of adjusting the parameters ma-

trix C, from (8), of the model function γ̂ to best fit the
data set D. Assuming that X is a full-rank matrix, we can
estimate C̃ by solving

C̃ = (XTX)−1XTY. (9)

Therefore, the curve function γ̂(s, t) is approximated by

γ̂(s, t) = C̃
T
h(t, s).

The matrix X can be estimated if a robot has the full
data set D and requires computational power to com-
pute (XTX)−1. Then, in the next section, we extend this
method to allow the team of robots to estimate the curve
in a distributed collaborative way, where the samples are
distributed among all robots.

C. Online prediction

For each time step, the dataset D with k samples can be
used to estimate the boundary behavior. However, when the
robot takes a new sample (tk+1, xk+1, yk+1, sk+1), we must
carry out the the expensive computation (XT

k+1Xk+1)−1,
which has a time complexity exponential on the number of
points. In order to make it faster, we extend our method using
Recursive Least Squares to obtain the updated prediction by
taking advantage of the already computed (XT

kXk)−1 and
avoiding to invert the whole matrix in every time step.

In order to make (9) iterative, we rewrite it as the operation
with the rows of C̃,

C̃ =
( k∑

i=1

hih
T
i

)−1 k∑
i=1

hiy
T
i , (10)

where hi = h(ti, si) and yi = [xi, yi]
T . The left sum in the

right side of (10) defines the correlation matrix P, which can
be calculated in a recursive manner,

P(i) = P(i− 1) + hi h
T
i , (11)

with P(1) = h1h
T
1 , and the cross-correlation vector of right

sum in (10),

q(i) = q(i− 1) + hi y
T
i , (12)

with q(1) = h1 y1. Then, (9) is rewritten as the multiplica-
tion of two iterative terms,

C̃ = P(k)−1q(k). (13)

For every iteration, it is possible to compute the inverse
P(k)−1 using the last estimation P(k−1)−1. Assuming that
the matrices P = PT and (P+hhT ) are invertible, we apply
the Sherman-Morrison formula as,

P(k)−1 = (P(k − 1) + hkh
T
k )−1

= P(k − 1)−1 − (P(k−1)−1hk)(P(k−1)−1hk)
T

1+hT
k P(k−1)−1hk

.(14)

Based on this mathematical framework, we present two coor-
dination methods to integrate all the distributed information.

D. Using distributed information

We integrate distributed sampled point-wise measurements
with an sliding window approach. Our online prediction is
based on the latest k sampled points (window), and the robots
remove (slide) the older points. Then, each robot keeps in
memory its own dataset

Di = {(tj , sj , xj , yj)|j = 1, ..., k}.

We can ask any robot about the boundary prediction. Assum-
ing that we ask robot n, it computes the boundary prediction,
represented by the vector qn(tk) and the matrix P−1n (tk),



using (12) and (14) respectively. Robot n sends the matrix
and the vector to robot n−1. When robot i < n receives the
matrix P−1i+1(tk) and the vector qi+1(tk) from robot i + 1,
it proceeds to update the received matrix and vector with its
own k samples using the same equations. Next, robot i sends
P−1i (tk) and qi(tk) to robot i − 1. This iterative process
is finally completed when robot n receives the information
from robot 1. When this happens, robot n uses the received
information to compute the matrix of weights

C̃ = P1(k)−1q1(k).

Finally, we get the curve function

γ̂k(s, t) = C̃
T
h(t, s),

which integrates the information that is distributed among
the n robots. We want to to emphasize that the estimation
is obtained by exchanging n messages and the size of
the message package is fixed. The message package only
contains P−1i (tk) and qi(tk), and they are independent of
the size of the local dataset k and the number of robots n.

Using this method, every robot keeps its own updated
dataset with the latest k sampled points. When a robot
receives a request for a boundary estimation, it computes
the matrix P−1i (tk) and the vector qi(tk). Then it makes
them circulate around the ring topology in order to iteratively
collect the information of all robots.

V. EXPERIMENTS

We want to validate our method through experiments with
actual robots. Using the Lebesgue measure to quantify the
area of a set in R2, denoted by µ, we define a metric to
quantify the difference between the actual bounded area Ωt

and our estimation Ω̂t. Our error function

δ(Ωt, Ω̂t) =
µ(Ωt \ Ω̂t) + µ(Ω̂t \ Ωt)

µ(Ωt)
, (15)

takes into account the non-estimated area µ(Ωt \ Ω̂t) plus
the misestimated area µ(Ω̂t \ Ωt) (see Figure 3). In order
to have a proportion of the error with respect to the actual
area, we include the actual boundary area µ(Ωt) in the
denominator. Similar metrics to quantify the accuracy in
boundary estimation were presented in [19], [7], [24].

In a previous work [24], we show that our method can use
a fast single robot to get accurate estimations for analytic
boundaries, such as the one presented in [19]. The exper-
iments in the present paper validate our estimation method
for a non-linear changing analytic boundary and a real liquid
boundary on a flow.

We use a team of three robotic boats in a tank in order to
track and predict the shape of a liquid. In our testbed,
each robot is driven by two propellers in the back as
pictured in Figure 4. We can control these robots by using
the differential drive model. The location of the robots is
obtained using an external motion capture system around
the tank. Although we assumed holonomic motion in the
problem statement, we can relax this assumption by using

Ωt

Ω̂t

Ω̂t \ Ωt

Ωt \ Ω̂t

Ω̂t ∩ Ωt

Fig. 3. Illustration of the metric δ(Ωt, Ω̂t) for a bounded region Ωt (green
area) and its estimation Ω̂t (blue area). This metric quantifies the error in the
estimated bounded region, by taking into account the non-estimated region
Ωt \ Ω̂t and the erroneously estimated region Ω̂t \ Ωt.

these differential robots which are able to track the boundary
and to control their speed. We implemented the bang-bang
algorithm [13] to keep the robots moving on boundary.

A small tank (0.1 × 0.1 × 0.02m3) was used to generate
and record the a boundary. The boundary was created by
suspending two liquid dye droplets in a 1:1 glycerol-water
mix. The submerged rotating disks is driven such that two
adjacent 4 × 2 sets of disks are controlled by independent
stepper motors and controllers. The experimental setting is
shown in Figure 5. We track the boundary of the viscous
liquid using an RGB camera and image processing. Then,
we take the recorded boundary, remap it to the bigger tank
and command the robots to track the recording. This allows
us to reproduce the experiment with different conditions for
the same boundary1. The presented boundary is highly non-
convex and changes in all directions; it translates, expands,
shrinks, and all at the same time. The environment is
composed of a tank with a dimension of 3×3×0.5m3. The
tank is filled with still water, and we use a team of three
robotic boats as pictured in Figure 6. In the accompanying
video2, we show an experiment where the three actual robots
track and predict a dynamic non-convex boundary. We can
see that all boundary points change their locations at different
rates and directions. In the tracking process, the boats show

1The dataset: https://github.com/dsaldana/boundary-dataset
2The video is also available at: https://youtu.be/Zwc6vNuUFDw

Fig. 4. A robotic boat driven by two propellers in the back. The reflective
markers on the top are used for localization. A sealing system prevents
water from entering the boat



difficulties to follow the boundary because the inertia makes
the robots slide on the water making it difficult to compensate
with its small actuators. Figure 7 depicts two snapshots of
the experiment. We can see that the robots get outside the
boundary and present some oscillations before returning to
the proper tracking. Even though the boats were not able
to move exactly along the boundary during the tracking
process, we obtained estimations that match closely to the
real dynamic boundary. We can see on the left side that the
robots had difficulties moving through the sections with high
curvature (see around the point (1.2, 1.7) in Figure 7(b)).
Other cases with less curvature did not present a high error
in the estimation (see around the point (2.0, 2.3) in Figure
7(a)). As a result, the estimation is also affected and it
fits closer to the robot path than to the actual boundary. In
contrast, we can also see that the estimation is approximately
equal to the real boundary even after inaccurate samples. The
error in the estimation (from (15)) during the experiment
is presented in Figure 8. We can see that it presents some
fluctuations due to the oscillatory movements, but in general
the error is under 13%.

Our method offers better estimations as we increase the
number of sampled points. In Figure 9, we illustrate how the
metric δ is rapidly reduced as we increased the number of
sampled points. We can also observe that taking into account
a large number of points (> 400) does not considerably
reduce the accuracy. Depending on the dynamics of the
curve, like curves that present oscillatory behaviors, using
a large number of sampled points can be a problem if the
degree of the polynomial is not increased.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a cooperative prediction
method for dynamic boundaries using multiple robots. Our
method is based on maintaining the robots equidistantly
distributed along the curve in order to track the boundary.
We use point-wise measurements to fit a general boundary
function, which is the combination of a polynomial and a
truncated Fourier series. We validated our method through
multiple simulations and experiments with actual robots.

Fig. 5. Experimental setting to record the time-varying boundary. The tank
contains two liquid dye droplets in a 1:1 glycerol-water mix. The nonlinear
flow field is generated using a 4x4 lattice of submerged counter rotating
disks. This image and a video of the time-varying boundary were courtesy
of Prof. Peter Yecko.

In a previous work [24], we showed that a single fast robot
is able to predict the behavior of dynamic boundaries. In this
paper, we propose a method to coordinate a team of n robots
to predict cooperatively. We can say that given a phenomenon
surrounded by a boundary with maximum variation εv , one
or multiple robots can be used for the prediction, but there
is a trade-off between the number robots and the desired,
and also feasible, velocity Υ. We can use a large number of
slow-moving robots or a single high-speed robot.

As a future work, we want to study how to predict the
behavior of three dimensional boundaries such as lava after
a volcanic eruption, hurricanes, and whirlpools.
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