Detecting Latent Variables of Interest in Geo-localized Environments Using
an Aerial Robot

David Saldafia!, Ramon Melo', Erickson R. Nascimento!, and Mario F. M. Campos1

Abstract—1In general, monitoring applications require hu-
man intervention whenever there is no physical sensors for the
variables of interest (e.g. people in danger after a catastrophe).
In this paper we describe an inference engine which is used
to estimate latent variables that can not be perceived by
sampling the physical phenomena directly. Our approach uses
information from different types of sensors, and fuses them
along with knowledge of experts. The inference engine works
with probabilistic first order logic rules based on geo-located
sensed data as evidences in order to dynamically create the
structure of a Bayesian network. Our experiments, performed
by using an aerial robot with a mounted RGB-Camera, show the
capability of our method to detect people in danger situations,
where the physical variables to being sensed are humans and
fire.

Index Terms— Inference engine, Information Fusion,
Bayesian Networks, Predictive Situation Awareness.

I. INTRODUCTION

There are a variety of environments where monitoring
actively is a priority, since most catastrophes begin with
small events without early identification. Examples of these
kind of environments are: minefields, forests, and devastated
cities. In those scenarios, most of the actions must be
executed by humans, since some variables are not easy to
identify in an autonomous way. However the state of the art
methods points towards to create autonomous systems with
capabilities to detect events of interest, that cannot be sensed
directly, such as: flaming objects, broken pipes, spilled water,
trapped animals, source of hazardous chemical leaks or lying
people on the floor.

While conventional static sensor networks have difficulties
in this context, since covering the full environment requires
to spread a number of sensors everywhere. Sensors like
RGB Cameras are widely used because they have a good
cost/benefit, provide a wide visual angle, high resolution and
excellent quality. By the same way, some sensors can be
very accurate, but they are not light enough to be carry on
a small aerial vehicle. In the aforementioned cases, some
situations cannot be recognized only using the data acquired
by sensors, the available technologies do not offer sensors
with full certainty and most of the times a sensor fusion is
required.
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Under the stated premises, the use of mobile sensors
offers a promising solution in those contexts, on account
of using multiple mobile sensors equipped with different
kind of sensor can be more efficient than a single sensor.
Additionally, the distributed information can be fused to
improve estimations about interested objects and events in
the environment.

In this work we present a method for inference and infor-
mation fusion in partially observable environments, where
there is only information about the map boundaries and
sensed data. It is focus on fuse sensed data and the expert’s
knowledge in order to identify regions of interest, based on
evidences and a set of rules defined by an expert. We present
a generic framework that can be applied to scenarios where
variables of interest cannot be sensed directly. In this work,
a situational awareness after a catastrophe is modeled, where
there are people lying on the floor and objects on fire, and
then, we detect, and classify them by type, and severity.

The remaining of this article is presented as follows:
section II present a summary of related works in the research
area; our problem model, and all information needed to
perform the inference evaluation is described in section III;
section IV describes the inference engine for information
fusion and inference. Section VI describes the experiments
executed in order to validate the engine; finally, conclusions
on section VIIL

II. RELATED WORKS

An earlier work deploying mobile sensors in the environ-
ment is shown in [1]. It describes the basic requirements for
a robotic system being capable to locate a chemical leak. The
use of a system like this can perform detection on extreme
conditions of radiation and/or toxic chemical concentration,
that would be impossible the accomplishment by humans.

The work of Drews et al. [2] integrates multiple visual
static sensor information with probabilistic graphical mod-
els. This integration allows to infer crowd behaviors with
a probabilistic method based on provided information by
multiple RGB and IR cameras looking at the same scene
but from different points of view. The fusion technique uses
Hidden Markov Networks (HMM) [3] and Bayesian Networks
[4] with different results for each one, but both were able
to detect abnormal crowd behaviors. However the fusion
method requires multiple and redundant sensors looking for
the same place at the same time, which is a hard constrain
for large environments.

The work [5] applies Partially Observable Markov De-
cision Process (POMDS) for cooperative active perception.



Mobile robots and static sensors work autonomously together
to identify flames or persons who need of assistance such as:
waving, running, or lying on the floor. It is implemented on
a group of static cameras along with a mobile robot to work
autonomously and cooperatively. The main drawback of this
approach is the lack of scalability because the number of
states increases exponentially with the number of agents, that
makes computationally intractable for approximated methods
and infeasible for exactly solutions. For that reason, test-
ing environments in experiments is very limited. Moreover,
mobile robots can only move on a topological map where
only a few interesting points can be defined and a fully
exploration would be computationally expensive as well.
Another approach in this direction is given by [6], which
presents a people classifier intended to be implemented to
surveillance. Based on a system of classification states and
uncertainties, it uses Dynamic Bayesian Networks [7] to
determine the current belief state and consequently verify
the characteristics of the involved goals.

In [8] and [9] are used aerial and ground vehicles to work
cooperatively based on different sensed information. In [8] is
proposed a probabilistic framework to cooperatively detect
and track a target using a team composed by Unmanned
Aerial Vehicles (UAV) and Unmanned Ground Vehicles
(UGV).

The work presented by [10] shows a methodology for
selection of regions of interest in images in order to ex-
tract the maximum of useful information about a scenario
observed by a group of agents, the objective is to share
only really important data. For this, the authors demonstrate
the technique called Semantic Stability, that describes how
to use the relationship between objects to differentiate with
low or high quality of information, where objects with high
semantic level represents information gain.

III. PROBLEM STATEMENT

Let be W C R? a region bounded by a convex polygon,
where the robot can sample and we define as the robot
workspace.

In this environment, some kind of objects/entities can be
identified by sampling (eg. trees, people, animals), or recog-
nized by an expert (eg. people in danger, scared animals).
Then, the n types of entities are defined as the set T = {¢1,
to, oo tn e

The aerial robot is able to capture multiple pictures in the
workspace to identify objects, which we refer as evidences
(a picture can contain multiple evidences). Those evidences
are geo-localized using a localization system like a Global
Positioning System device (GPS). Hence, at the detection
stage, when the robot is sensing the environment, the set £ =
{e1, €2, ..., & } of m evidences are sampled. Each evidence
is composed of a tuple e; = (z;,t;) where z; is the position
of the evidence in the workspace x; € YV and the tuple ¢; €
T which identifies the object. Additionally, the knowledge of
experts is also introduced as a a-priori knowledge in order to
allow the system to infer about the latent entities that cannot
be sampled by the robot. The association is made by a set

of | rules R = {r1, ro, ..., 7}, where each rule represents
the association of types with the form

& Tm (D)

where f is a function which creates a relationship between
existent evidences and the possibility of new ones. In other
words, we take a subset of the evidences £ C &, apply an
association function f to obtain a new evidence e: for each
fired rule. The modeling of association functions and the
relationship definition take us to the Problem 1.

Problem 1 (geo-localized rule definitions): How to define
a way to create relationships based on evidence type and
location in order to recognize latent variables by using the
detections of the robot.

Then, designing a method to identify latent variables by
combining robot data and knowledge experts, take us to the
problem 2.

Problem 2 (information fusion): How to combine the
robot data and the experts’ knowledge in order to infer about
latent variables.

Section IV proposes the rule definitions for Problem 1,
and section V describes our proposal for Problem 2.

I'V. RULE DEFINITIONS FOR GEO-LOCALIZED
ENVIRONMENTS

An efficient way for representing the experts’ knowledge
has been a challenge in the scientific community since the
beginnings of the Artificial Intelligence field. One approach
to define this kind of rules has been tackled by combin-
ing Conditional Probability Tables (CPT) and First Order
logic [11], [12], [13], [14]. In [14] is presented a set of
rules focused on inference for relational databases. In our
approach, we want to extend these types of rules in order to
work in geo-localized environments, where the association
between two variables is made by the evidence type and
Euclidean distance. Hence, the function f of the expression
1 is represented by the Conditional Probability Table - CPT,
and we define € as the set of all the inferred and detected
evidences.

Each rule r; € R is defined as the relationship between
entities of any type t; € T . In the following, we present
some type of rules to represent knowledge where the distance
is an important factor to associate correlation between vari-
ables. These rules will be used to infer the hidden variables
on the environment; using the inference engine described in
section V.

1) Sensor rule: This rule describes the two variables
of the Bayesian theorem (cause and effect). It is triggered
when there is an evidence about the effect variable. The
requirements are:

e Cause variable: hidden variable that a sensor tries to
estimate, e. g. temperature.

e Probability of the cause: the possible states and its
probabilities, e.g.: hot = 0.7, and cold = 0.3.
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Fig. 1. Example for community rule. It groups three human evidences,
located in positions [x1,y1], [z2,y2] and [z3,ys3], in order to create a
community in the average location [Z, 7).

o Effect: the generated variable based on the evidence or
sensed value. e.g. for temperature: sensor measure =
hot.

o Probability distribution function of the cause: in the
discrete case, it is the CPT. That is the sensor credibility
based on previous data. It is fulfilled by the true posi-
tives, false positives, true negatives and false negatives.
Table I shows an example for a temperature sensor.

Hot | Cold
Sensor: hot 0.9 0.1
Sensor: cold | 0.2 0.8

TABLE I
AN EXAMPLE OF A CPT FOR A TEMPERATURE SENSOR. IT REPRESENTS

THE RELATIONSHIP BETWEEN THE REAL VALUES AND THE NOISY
MEASUREMENTS.

2) Community rule: This rule is defined to group a
variable in a point with its neighbors. Figure 1 illustrates
an example, where multiple humans inside a circular area
are grouped to create a community. The representation point
of the community is the mean of the grouped points [Z, 7].
It requires to define:

o Query variable: variable in map to be grouped.

o Community variable: resultant variable.

e Joint function: to summarize the marginal probabilities
of each point in the community. A joint function can be
the mean, maximum, minimum, etc.

o Maximum distance: maximum distance between the
points of the community.

e Minimum number: minimum number of elements to
create a new community.

3) Query rule: For each trigger variable, a new query
is made to search for evidences of a query variable around
a distance (e.g find fire detections near to a human, where
human is the trigger variable). All of the detections are mixed
by a joint function. Figure 2 shows an example scenario of
detecting a human in danger based on the presence of fire.
The requirements to be defined by the expert are:

e Cause variable: this variable triggers the rule. When
there is a new evidence about the cause variable, the
rule will create a new inferred evidence based on the
rule definition.

0 [@3,s]

Fig. 2. An example of a query for a human in danger. It searches evidences
of fire in a circular vicinity of radius r around the humans to infer the
relationship between human and fire.
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Fig. 3. Grouping multiple evidences that have similar locations in order
to combine them for only one evidence.

e Inferred variable: variable to be inferred after the query.

o Inferred CPT: conditional probability table for inferred
variable.

e Query variable: variable to query before inference.

e Joint function: is used to summarize the marginal proba-
bilities of each point in the community. A joint function
applies over a set of locations and can be the mean,
maximum, minimum, etc.

4) Affinity rule: when there are detection uncertainty in
the detection, the sensor rule cannot be applied directly,
because many points of the same variable are spread around.
Then applying the sensor rule would create multiple wrong
beliefs of an unique evidence.

The Affinity rule groups similar points to infer about
the same variable. It helps when the detector or the geo-
localization system returns inexact position, and the mea-
surements are located in very close places. The affinity rule
applies a clustering method among all the points of the
trigger variable.

Figure 3 shows an example of the affinity rule. Multiple
humans were detected, but many detections in very close
positions corresponding to the same human. Then, after clus-
tering with the affinity propagation method [15], every point
in a cluster infer about the same variable. The requirements
for this rule are:

e Minimum number of points: minimum number to trigger
an inference.

o Cause: cause variable or parent (hidden variable).

o Effect: effect variable or trigger variable.

o Cause probabilities: probability of the cause appears in
the environment.

e Effect CPT: Conditional Probability Table for the effect
variable.
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Fig. 4.

Overview of our methodology for detection of latent variables by inference using geolocalized sensed data. We use the geolocalized images to

detect variables of interest (e.g. fire and human detection). This information prorvides the evidences that the inference engine receives as input. The output
represents the fusion between the experts’ knowledge (defined by the probabilistic rules) and the evidences.

V. INFERENCE ENGINE

The proposed approach is focused on fusing information
from different sensors and a-priori expert’s knowledge in
order to infer about latent variables that can not be directly
detected. There is no physical sensor to identify if a person
is in danger, but an expert can give the key information to
create inferences based on sensed data. Therefore, we use the
knowledge representation of section IV to extract the users’
expertise and combine it with sensed data.

The use of Bayesian Networks gives a way to create rela-
tionships about different variables. Some approaches create
a strong assumption about a fixed structure for the Bayesian
network [2] and others do not work on continuous space
or geo-localized environments [6]. Our proposal is aimed to
avoid those restrictions, we define a method to dynamically
create the structure of the Bayesian network based on geo-
localized information.

Figure 4 shows an illustration describing how our method
works in the context of detecting people in danger after a
catastrophe. The inference engine has as input the experts’
knowledge defined by the set of rules R and the sensors’
detections as a set of evidences £. In this case, our sensors
receive aerial photos with GPS coordinates and orientation.
For visual sensors, each image must be processed to detect
objects of interest. In the context of detecting humans in
danger, we detect the entities people and fire.

The inference engine works in environments that can be
defined in the Euclidean space R2. There is a set of classes
or type of elements 7 that can be detected by physical
sensors. Then, the punctual evidences e; € £ are points in
the environment, which were captured by a sensor.

After the rule definition stage, and new evidences appear,
the algorithm 1 is executed in order to create the structure
of the Bayesian network, represented as a directed graph,
based on the rules in R and the evidences £. This algorithm
initially create a new vertex for each evidence (line 1), and
a empty set for the edges (line 2). The loop from line 3
to 13 is repeated while no vertex or no edges appear after
triggering a rule. In other words, when the set of vertices
V is not empty, and the vertices as the edges are different

from the computed in the last iteration. The set of rules R is
applied for the new and old vertices V/UV (line 7) in oder to
obtain new ones. Lines 8 and 9 apply the union for vertices
V and edges E (it is important to remark that the sets do
not contain duplicated elements). This process is repeated
cyclically until no new nodes are created and finally return
the bayesian network with the graph structure (V, E).

Algorithm 1: InferenceEngine(Evidences £, Rules R)

1 V&

2 E+ 0

swhile VAOA(V=V'NV)A(E=ENE)do
4 E 0

5 V=0

6 foreach r; € R do

7 Vi, B, + r.infer(V' U V)
8 V' VUV,

9 E «— F'UE,

10 end

1 E'«+ EFEUFE

12 V'« V'uVv

13 end

—

4 return BN(V, E)

We would like to aware that this algorithm has a hazard;
when a cyclic rule is defined, the algorithm will fall in a
infinite loop. Hence, a rule definition must be validated a
priori in order to avoid possible cycles.

VI. EXPERIMENTS

In our experiments, we simulated a catastrophe in an
outdoor environment, where there are some lied people and
fire. The fire is represented by circular red cardboards. We
used an aerial robot (Asctec Quadcopter Hummingbird),
Figure 5, equipped with cellphone (Samsung Galaxy S4) to
capture video at 30 FPS and resolution of 1280x720. The
angle of view is perpendicular to the ground. The objective
is to detect people in danger based on fire and human
detections. In this context, a person is in danger when there
is fire close to it.



Fig. 5. Quadcopter used to collect the visual data used in the experiments.
It’s used a cellphone camera to take pictures of the studied environment.

The quadcopter flies taking video of the environment at
height of approximately 5m. The ground-truth was created
by taking an aerial image at 30m that covers the hole
environment. The experts’ knowledge representation, used
detectors, and the process to take the samples are described
as following.

A. Expert’s Knowledge

We defined five rules to represent the experts’ knowledge.
The experts defined the relationship between the variables
and the CPT for each one.

1) Fire detection rule: a sensor rule with a trained sensor
with the mentioned probabilities.

2) Human detection rule: an affinity rule with the men-
tioned probabilities for human detection.

3) Human in danger: a query rule to identify when there
are fire and human in a range of 2.0m with a joint
Jfunction maximum probability of having fire.

4) People community: a community rule to identify more
than 2 humans in a radio of 2.5m.

5) Community in danger: similar to the human in danger
rule but using a radius of 3m.

B. Detectors

In this work, we try infer if some person is in danger or
not. For that reason, we define humans and fire as entities
of interest. The entities in conjunction with the experts’
knowledge can achieve the objective.

1) Fire Detector: Fire is one of the natural phenomena
that can be considered dangerous in cases of burnings or
explosions. We have represented fire in map as a red circle. It
detects and highlights the position of red circles on a image,
using a color filter, in the RGB color image space, and a
Hough transformation [16] for detecting the circular shapes.

2) Human Detector: The people detector was based on a
pedestrian detector, but with some additional treatment. In
an aerial image, a person lied in the floor can be seen as
a pedestrian with a rotated angle 6. Normally a pedestrian
detector is trained to detect people totally perpendicular to
the floor, i.e. an angle approximately of § = 7/2 with respect
to the image. Therefore, we used the same detector but trying
with a set of angles © with the intuition that the optimal value

0 for the detector will be approximately in the set ©. As can
be seen in Figure 6 for a © of nine different angles. We
used the pedestrian detector latent-svm [17] with the trained
OpenCV implementation.

Fig. 6. Solution used to detect people lying on the ground using a pedestrian
detector. The image is rotated into predetermined angles trying to find the
closer angle where the person is in a pedestrian like position.

C. Sampling the environment

The images generated in the aerial capture are exemplified
in Figure 7, that demonstrate people in different positions
and rotations relative to the camera. It makes the simple
pedestrian detector useless, because in rare cases the taken
picture match with the optimal angle 6.

Figure 8 shows the raw sensed data. It has many false
positives and lacks of human detection. After creating the
Bayesian network and infering with it, the resultant processed
information is shown in Figure 9. The pie chart represents
the confidence of having a human in that position (green
for true). We can see that there are two humans that were
not detected. There were more false negatives than real
detections in that area, then the result of the Bayesian
network simply tries to create an estimation with the given
data and the a-priori information. It could be improved by
feeding the same points with a different detector in order to
complement the information.

All the red circles were detected simulating fire. The result
for humans in danger, and communities in danger is showed
in Figure 10. The person with the green t-shirt were partially
detected but it was not in danger because it did not have fire
around. Only one community in danger where detected based
on the given radio.

We studied an static scene where the robot were sampling
in small areas. At the end we combine them using the
inference engine and identify that: three people are in danger
(true-positives), a partially detected human, a not detected
person (false-negative) and a partially identified group of
people by the community rule (As may be seen in Figure
10). Those results are not very optimistic, taking into account



Fig. 7. People lying on the floor with different positions closer to the fire
marker (red circle). Images used as input for the detection algorithm.

Fig. 8.  Human detections. All the detections were geo-located and
combined for this image. The green human shapes represent a detection
and the black ones represent an area where no human was identified.

Fig. 9. Infered humans after the affinity rule. The pies represent the
confidence about the detections, where green is for positive belief and red
for negative.

Fig. 10. Humans in danger (pie charts in green) and Communities in
danger (pie charts in blue)

that a person was not identified, but if we see the very noisy
input of Figure 8, the output of the proposal offers a relevant
summary to act in a hazardous environment.

VII. CONCLUSIONS

We proposed an inference engine to detect latent variables
fusing experts’ knowledge and sampled data by physical

sensors in geo-localized environments. We analyzsed our
approach in a experiment that simulates a disaster and act as
a first response system. The physical experiments showed that
the information fusion improved the detections, not only to
reduce the false-positives (given a very bad human detector
with high probability for false-positives) but also to infer
about latent variables.

We experimentally showed that the use of different sensor
data and expert’s knowledge based on Probabilistic rules and
Bayesian Networks is a potential approach. It improves the
accuracy about the detected elements and infer about latent
variables that can not be sample directly with a physical
sensor, for example the variable “human in danger”.

This inference engine can be extended to more complex
shapes, such as polygons or lines. That increment can help
on detection of other types of cases, since it is based on rules
previously constructed, making it a generic tool.
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