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Abstract— Robot networks are susceptible to fail under the
presence of malicious or defective robots. Resilient networks
in the literature require high connectivity and large commu-
nication ranges, leading to high energy consumption in the
communication network. This paper presents robot formations
with guaranteed resiliency that use smaller communication
ranges than previous results in the literature. The formations
can be built on triangular and square lattices in the plane, and
cubic lattices in the three-dimensional space. We support our
theoretical framework with simulations.

I. INTRODUCTION

Sharing information among robots in a group is an es-
sential mechanism for distributed decision making through
coordination. Nearest neighbor rules have been developed to
achieve consensus among the robots [1]–[3], but those rules
rely on all the robots being cooperative. As a consequence,
large networks are susceptible to failure when at least one
robot is non-cooperative, sharing incorrect information [4].
The algorithm known as the Weighted Mean-Subsequence-
Reduced (W-MSR) algorithm [5]–[8] provides an update rule
that can achieve asymptotic consensus in the presence of
malicious agents, mitigating the effect of these agents on the
final value of the consensus. The W-MSR algorithm requires
the communication graph of the robot network to satisfy a
property known as r-robustness. While there are approaches
on how to determine the r-robustness of graphs [9] and
how to create graphs that satisfy a desired r-robustness [10],
algorithms to drive a group of robots into a formation that
satisfies such property are limited. It has been shown that
r-robustness can be met by ensuring a minimum algebraic
connectivity [11], [12], allowing for the use of known control
laws for formation control [13], [14]. However, this approach
conglomerates the robots, making it challenging for the
group of robots to cover a desired area. A body of work
to achieve robust formations of robots has been developed
based on the W-MSR algorithm [10], [15]–[17].

Resilient networks in the literature require high con-
nectivity and large communication ranges, leading to high
energy consumption in the communication network. The
main contribution of this paper is the design of resilient
robot formations in the plane and the three-dimensional space
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with guaranteed r-robustness, using smaller communication
ranges than previous results in the literature. We extend the
methods in [17] to create dense formations, sacrificing the
sparsity and flexibility of the formation studied in [16] in
exchange for structural conditions on the formations. We use
the word dense as an antonym of sparse to emphasize the
difference between the highly structured formations studied
in this paper, and the less constrained sparse formations
studied previously in the literature, which require a larger
communication range.

II. FUNDAMENTALS

In this section, we summarize the main concepts of
resilient networks and lattices.

A. Resilient consensus and r-robustness

We model the communication network among robots as
a graph. Let an undirected graph be described by the pair
G = {V, E}, where V = {1, ..., n} is the set of n nodes, and
E is the set of edges of the graph, so that an edge (i, j) ∈
E indicates that nodes i, j ∈ V are connected. The set of
neighbors of node i is denoted by Vi = {j ∈ V| (i, j) ∈ E},
and the degree of a node i is denoted by |Vi|. At every time-
step, each node i ∈ V shares a value ηi with its neighbors
in the network, and it updates its value over time according
to some nominal rule of the form

ηi [t+ 1] = wii [t] ηi [t] +
∑
j∈Vi

wij [t] ηji [t] , (1)

where ηji [t] is the shared value from the neighbor j to
i at time t. Conditions on the weights wij and the graph
properties to ensure consensus have been thoroughly studied
in the literature [18], [19].

Definition 1 (Malicious node). A node i ∈ V is said to be
malicious if it sends ηi [t] to all of its neighbors at each
time-step, but does not follow the nominal rule (1) at all
time-steps.

Note that the definition of a malicious agent covers inten-
tionally non-cooperative robots, such as robots hacked by an
outsider attempting to manipulate the network, as well as
defective and unintentionally non-cooperative robots, such
as robot with a malfunctioning location sensor. The W-MSR
algorithm provides an update rule which ensures asymptotic
consensus and mitigates the effect of the malicious agents.
We refer the reader to [5], [7], [8] for details on the
algorithm. A required condition for the algorithm to ensure
asymptotic consensus is that the graph satisfies a property
known as r-robustness.



Definition 2 (r-robust graph). A graph G is said to be
r-robust if for every pair of nonempty disjoint subsets of
V , at least one of the subsets contains a node that has at
least r neighbors outside that subset.

A set S ⊂ V is F -local if it contains at most F nodes in the
neighborhood of the other nodes for every time step t, i.e.,
|Vi [t]

⋂
S| ≤ F ,∀i ∈ V \ S, ∀t ∈ Z≥0, F ∈ Z≥0. The

following theorem establishes r-robustness as a sufficient
and necessary condition for the W-MSR algorithm to ensure
asymptotic convergence of the consensus:

Theorem 1 ([5]). Consider a time-invariant network mod-
eled by a digraph G = (V, E) where each normal node
updates its value according to the W-MSR algorithm with
parameter F . Under the F -local malicious model, resilient
asymptotic consensus is achieved if the topology of the net-
work is (2F + 1)-robust. Furthermore, a necessary condition
is for the topology of the network to be (F + 1)-robust.

The work in [7] presents a method to increase the number
of nodes in a r-robust graph:

Theorem 2 ([7]). Let G = {V, E} be an r-robust graph.
Then the graph G′ = {{V, vnew}, {E , Enew}} where vnew is
a new vertex added to G and Enew is the edge set related to
vnew, is r-robust if |Vnew| ≥ r.

The work in [10] introduced the concept of F -elemental
graphs and proposed a method to build them as follows:

Definition 3 (F -elemental graph). An F -elemental graph
is a graph with n = 4F + 1 nodes that is r-robust with
r = 2F + 1 for some positive integer value of F .

Theorem 3 ([10]). A graph G = {V, E} with |V| = 4F + 1
is (2F + 1)-robust if:

1) There is a set V ′ ⊂ V of 2F nodes that are connected
to all nodes in the graph.

2) The set of nodes V\V ′ forms a connected subgraph.

If the subset of nodes with full connectivity has at least
2F + 1 elements, then the robustness can be immediately
ensured, as shown in the following corollary.

Corollary 1. A graph G = {V, E} with |V| = 4F + 1 is
(2F + 1)-robust if there is a subset V ′ ⊂ V of at least 2F+1
nodes that are connected to all nodes in the graph.

Proof. Since V ′ has at least 2F+1 nodes connected to every
other node in V , there is a subset V ′′ ⊂ V ′ of 2F nodes
connected to every other node, and at least one more node
ensuring that the rest of the nodes in V\V ′′ form a connected
subgraph. By Theorem 3, the graph is (2F + 1)-robust.

B. Robot Networks and Formations on Lattices

Given a set of n robots, let xi ∈ R2 be the position of
robot i ∈ {1, ..., n} on the plane. We use the disk model to
describe the communication network.

Definition 4 (Communication graph). Given a set of
robots, V , with communication range R, the graph GR =

(V, ER) with edge set defined by

ER = {(i, j) |‖xi − xj‖ ≤ R}, (2)

is called the communication graph of the set V .

To build a communication network, we will use an under-
lying lattice structure for the formation of robots. A lattice
on the plane is a set of linear combinations with integer
coefficients of the elements of a basis of a R2. The elements
of the set are lattice points. Let {v1,v2} be such a basis,
and let ‖v1‖ = ‖v2‖ = `, where ` is the lattice length. A
lattice on the plane is given by

L = {av1 + bv2 : span{v1,v2} = R2; a, b ∈ Z}. (3)

The work in this paper studies formations on two types of
lattices on the plane. First, the triangular lattice L4 with
basis

B4 = {v14 =
`

2

[
1√
3

]
,v24 = `

[
1
0

]
}. (4)

Second, the square lattice L� with basis

B� = {v1� = `

[
1
0

]
,v2� = `

[
0
1

]
}. (5)

Formations on a lattice in the space are also studied. Let
{v1,v2,v3 be a basis for R3, and let ‖v1‖ = ‖v2‖ =
‖v3‖ = `. A lattice in the three-dimensional space is given
by

Lr = {aiv1 + biv2 + civ3 :

span{v1,v2,v3} = R3; ai, bi, ci ∈ Z}. (6)

We will consider formations on a cubic lattice, which has a
basis given by

Br =
{
v1r = `

10
0

 ,v2r = `

01
0

 ,v3r = `

00
1

}. (7)

In the robot formations discussed in this paper, each robot is
located at a lattice point, i.e., xi ∈ L. Given a lattice length
`, we now define a graph that describes the proximity of the
robots on the lattice.

Definition 5 (Proximity graph). Given a set of robots V and
a distance `, the graph G` = (V, E`) with edge set defined
by

E` = {(i, j) |‖xi − xj‖ ≤ `}, (8)

is called the proximity graph of the set V .

III. GENERAL RESULTS FOR ROBOT FORMATIONS WITH
r-ROBUST COMMUNICATION NETWORKS

Given a set of robots V distributed in a finite region,
we look into selecting a sufficient communication range to
ensure r-robustness. Let ρ ∈ R≥0 and xc ∈ Rm be the radius
and center of a ball in the corresponding space, with m = 2
for robots on a plane, or m = 3 for three-dimensional space.
The set of robots within such a ball is given by

B = {i ∈ V : ‖xi − xc‖ ≤ ρ}. (9)



The next lemma allows us to communicate between robots
in concentric balls.

Lemma 1. Let B1 be the set of robots within a ball of radius
ρ1, and B2 ⊆ B1 be the subset of robots in a concentric ball
of radius ρ2 ≤ ρ1. If the communication range of every robot
in B1 satisfies

R ≥ ρ1 + ρ2, (10)

then every robot in B2 is communicated with every robot in
B1.

Proof. Let xc denote the center of the ball. Let x1 and x2

be the positions of robots in B1 and B2 respectively, so that
they satisfy 0 ≤ ‖x1 − xc‖ ≤ ρ1 and 0 ≤ ‖x2 − xc‖ ≤ ρ2.
Then,

‖x1 − x2‖ = ‖ (x1 − xc)− (x2 − xc) ‖
≤ ‖x1 − xc‖+ ‖x2 − xc‖ ≤ ρ1 + ρ2. (11)

Since ρ1+ρ2 ≥ ‖x1−x2‖, a communication range R ≥ ρ1+
ρ2 ensures that each robot in B2 is within the communication
range of each robot in B1.

With enough robots, the r-robustness of the robot com-
munication network can be ensured as follows.

Lemma 2. Let B1 be the set of robots within a ball of radius
ρ1 with |B1| ≥ 4F +1, and B2 ⊆ B1 be the subset of robots
within a concentric ball of radius ρ2 ≤ ρ1 with |B2| ≥
2F + 1. If the communication range of every robot is

R ≥ ρ1 + ρ2, (12)

then the communication graph of the robots in B1 is
(2F + 1)-robust.

Proof. By Lemma 1, each robot in B1 is within the com-
munication range of each robot in B2. Let V be a subset
of 4F + 1 robots such that B2 ⊂ V ⊆ B1. If V = B1,
then by Corollary 1 the communication graph of B1 is
(2F + 1)-robust. Otherwise, if V ⊂ B1, then by Corollary
1, the communication graph corresponding to the robots in
V is (2F + 1)-robust. However, each robot in B1 \ V has
at least 2F + 1 neighbors in V , and by Theorem 2, each of
these robots can be added to the (2F + 1)-robust network of
4F + 1 robots preserving the robustness, and therefore, the
communication graph of B1 is (2F + 1)-robust. Then, for
|B1| ≥ 4F +1, the communication graph of B1 is (2F + 1)-
robust.

We can extend a formation and preserve the r-robustness
by placing new robots in the vicinity of a group of robots
that already belong to an r-robust formation, as shown in the
following lemma.

Lemma 3. Consider a set of robots V with an r-robust
communication graph, each robot with a communication
range R. Let xc and ρ be the center and radius of a ball such
that the subset of robots B = {i ∈ V : ‖xi − xc‖ ≤ ρ} ⊆ V
satisfies |B| ≥ r. If R ≥ 2ρ, then a robot that does not
belong to V located within the ball of center xc and radius

Fig. 1. a) The subset of robots {1, 2, 3, 4, 5}, all of which have a
communication range equal to R = ρ1 + ρ2 denoted with a thick black
line, form a 2F + 1-robust communication graph with F = 1, according
to Lemma 2. b) Robot 6 can be added to the formation using Lemma 3
preserving the 3-robustness, since it is within the communication range of
the Robots 3,4, and 5.

R − ρ can be added to the robot network, preserving the
r-robustness.

Proof. By the lemma’s premise, R ≥ 2ρ, and therefore R−
ρ ≥ ρ. Let B1 be the set of robots within a ball of radius
ρ1 = R− ρ centered at xc, and B2 = B ⊆ B1 the subset of
robots in a concentric ball of radius ρ2 = ρ ≤ R − ρ = ρ1.
Since ρ1 + ρ2 = R − ρ + ρ = R, then by Lemma 1, every
robot in B is communicated with every robot in B1. Since
B contains at least r robots belonging to V , then each of the
robots in B1 will have at least r neighbors in V . Applying
Theorem 2 to each of the robots in B1 \ V , we conclude
that the addition of these robots to the network, which do
not belong to V and are within a distance R − ρ from xc,
preserves the robustness.

Lemmas 2 and 3 are general for arbitrary locations on the
two-dimensional and three-dimensional space, and can be
applied to a wide range of robot formations. Figure 1 shows
an example.

IV. DENSELY PACKED r-ROBUST FORMATIONS ON
LATTICES

In this section, we define and describe the construction of
a class of densely packed and highly structured formations,
for which we specialize Lemmas 2 and 3, and calculate lower
bounds on the communication range of each robot to ensure
a desired r-robustness.

A. p-formations

Given a lattice L and a distance d, the formations are built
in layers LL,d

k of lattice points, starting from layer LL,d
0 =

{x0}, which contains the lattice point at the center of the
formation with position x0. The layer LL,d

k for k ≥ 1 is
constructed with the lattice points at a distance d of the lattice
points in the layer LL,d

k−1, such that

LL,d
k = {xj ∈ L \

k−1⋃
l=0

LL,d
l :

‖xj − xi‖ ≤ d ∀ xi ∈ LL,d
k−1}. (13)

Using either d = ` or d =
√
2`, we can define the following

formations.

Definition 6 (p-hexagonal formation). A p-hexagonal for-
mation on a triangular lattice is the set of robots Hp located



Fig. 2. a) A p-hexagonal formation. b) A p-small square formation. c)
A p-large square formation. In all cases, p = 3. The corresponding circle
in purple and the hexagonal and square footprints in yellow are shown for
reference. d) A p-cubic formation with p = 2.

on the set of lattice points with center at x0 given by
FH,p =

⋃p
k=0 L

L4,`
k .

Definition 7 (p-small square formation). A p-small square
formation on a square lattice is the set of robots sp located
on the set of lattice points with center at x0 given by Fs,p =⋃p
k=0 L

L�,`
k .

Definition 8 (p-large square formation). A p-large square
formation on a square lattice is the set of robots Sp located
on the set of lattice points with center at x0 given by FS,p =⋃p
k=0 L

L�,
√
2`

k .

Definition 9 (p-cubic formation). A p-cubic formation on a
cubic lattice is the set of robots Cp located in the set of lattice
points with center at x0 given by FC,p =

⋃p
k=0 L

Lr,
√
2`

k .

Figure 2 shows examples of the p-formations. We refer to
the sets FH,p,Fs,p,FS,p and FC,p in Definitions 6-9 as the
footprint of the formation, and each LL,d

k for 0 ≤ k ≤ p
is a layer of the formation footprint. We refer to these
four formations as p-formations. These formations satisfy
the following condition.

Lemma 4. If a set of robots V is organized in a p-formation,
then all the robots in V are within a ball of radius ρβ (p),
where

ρβ (p) =


ρH (p) = p` for p-hexagonal,
ρs (p) = p` for p-small square,
ρS (p) = p

√
2` for p-large square,

ρC (p) = p
√
3` for p-cubic.

(14)

Proof. The robots in each layer can be at most at a distance `
from some robot in the previous layer in the hexagonal and
small square formations,

√
2` in the large square formation,

and
√
3` in the cubic formations. Since layer 0 is only one

robot at some position xc, then all the robots from layers 0
to layer p are within a radial distance p`, p

√
2 or
√
3` from

xc.

Note that ρβ (p) is a linear function of p. Let nβ (p) the
number of lattice points as a function of the number of
layers p. It is straight-forward to show that nβ (p) can be
calculated through the closed-form equations

nβ (p) =


nH (p) = 3p2 + 3p+ 1 for p-hexagonal,
ns (p) = 2p2 + 2p+ 1 for p-small square,
nS (p) = 4p2 + 4p+ 1 for p-large square,
nC (p) = (2p+ 1)

3 for p-cubic.
(15)

The smallest integer size pmin of a p-formation to have at
least nd robots is given by

pmin (nd) = min
{
p ∈ Z>0 : nβ (p)− nd ≥ 0

}
. (16)

Choosing nd = 4F + 1 gives the smallest number of
layers with enough robots for an F -elemental graph. Closed
form solutions to pmin (nd) can be obtained by solving
the quadratic or cubic polynomial corresponding to the p-
formations discussed in this paper. We can also compute the
maximum resiliency of a p-formation as a function of the
number of layers p. The maximum number F is given by

Fmax (p) = max
{
F ∈ Z>1 : nβ (p)− (4F + 1) ≥ 0

}
=
⌊nβ (p)− 1

4

⌋
, (17)

where b·c is the floor function.

B. p-formations and r-robustness

We use Lemmas 2 and 3 to calculate a sufficient commu-
nication range that ensures r-robustness in p-formations.

Theorem 4. If a p-formation satisfies that p =
pmin (4F + 1) and every robot has a communication
range

R ≥ ρβ (pmin (4F + 1) + pmin (2F + 1)) , (18)

then the communication graph of the p-formation is at least
(2F + 1)-robust.

Proof. Given that p = pmin (4F + 1), there are at least
4F + 1 robots within circle of radius ρβ (pmin (4F + 1)).
Since the function pmin is non decreasing, there is a
concentric p-formation with p = pmin (2F + 1) with at
least 2F + 1 robots. Since ρβ (p) is proportional to p,
ρβ (pmin (2F + 1)) ≤ ρβ (pmin (4F + 1)). By Lemma 2, if

R ≥ ρβ (pmin (4F + 1)) + ρβ (pmin (2F + 1))

= ρβ (pmin (4F + 1) + pmin (2F + 1)) , (19)

where the linearity of ρβ (p) was used, then the communica-
tion graph of the p-formation is at least (2F + 1)-robust.

Theorem 4 allows for the construction of at least (2F + 1)-
robust communication graphs in p-formations. However, the
resulting formation may have a higher robustness, since the
number of robots in each layer increases quadratically or
cubically while the demand of robots to satisfy a desired
resiliency F increases linearly. Given a p-formation, equa-
tion (17) allows us to calculate the maximum resiliency
Fmax (p) feasible with nβ (p) robots in the formation. We
now reformulate our result to satisfy the maximum resiliency
Fmax (p), given p.

Corollary 2. If the communication range of every robot in
a p-formation is given by

R ≥ ρβ (p+ pmin (2Fmax (p) + 1)) , (20)

then the associated communication graph is
(2Fmax (p) + 1)-robust.



Proof. Since Fmax (p) satisfies (17), then nβ (ρ) ≥
4Fmax (p) + 1, and by (16), we conclude that p ≥
pmin (4Fmax (p) + 1). Therefore,

R ≥ ρβ (p+ pmin (2Fmax (p) + 1)) (21)
≥ ρβ (pmin (4Fmax (p) + 1) + pmin (2Fmax (p) + 1)) ,

and, by Theorem 4, the communication graph of the p-
formation is at least (2Fmax (p) + 1)-robust.

C. Extending p-formations

If p = pmin (4F + 1) > pmin (2F + 1), then there are
enough robots in the internal layers of the p-formation to
communicate with every other robot, ensuring the (2F + 1)-
robustness following Theorem 4. Moreover, relying exclu-
sively on robots within the inner layers to communicate with
every other robot allows to increase the size and extend
the shape of the formations while preserving the robustness,
shown as follows.

Theorem 5. Let V be a set of robots arranged in a
p-formation with p = pmin (4F + 1), such that it has
(2F + 1)-robust communication network, pmin (4F + 1) >
pmin (2F + 1), and every robot has a communication range
R = ρβ (pmin (4F + 1) + pmin (2F + 1)). Let the footprint
of such formation be F . If there is a pmin (2F + 1)-
formation, with footprint denoted by F0, which is of the
same type as the footprint F and has its center at some
lattice point located at x0 such that F0 ⊂ F , then any robot
located in the footprint of a pmin (4F + 1)-formation with
center at x0 can be added to the communication network of
the set of robots V , preserving the robustness.

Proof. Let C be the set of robots in the pmin (2F + 1)-
formation with footprint F0, which implies that |C| ≥ 2F+1.
By the definition of the p-formation, this subset of robots is
within a ball of radius ρβ (pmin (2F + 1)) centered at x0.
By the theorem’s premise, F0 ⊂ F therefore C ⊂ V , and
p > pmin (2F + 1), leading to

R = ρβ (p+ pmin (2F + 1)) > 2ρβ (pmin (2F + 1)) ,
(22)

where we used the linearity of ρβ (p). Then, by Lemma 3,
any robot located within the ball centered at x0 of radius
ρβ (p+ pmin (2F + 1)) − ρβ (pmin (2F + 1)) = ρβ (p) =
ρβ (pmin (4F + 1)), which circumscribes the footprint of a
pmin (4F + 1)-formation centered at x0, can be added to the
communication network of the set of robots V , preserving the
robustness.

Figure 3 shows an example of the successive application
of Theorem 5 to obtain an extended p-formation from a 2-
large square formation. Theorem 4 and Corollary 2 can be
extended to ensure the robustness of a p-formation for any
value 1 ≤ F ≤ Fmax (p). This extension allows to change
the communication range to achieve the desired robustness.

Theorem 6. Consider a p-formation. Let F be a value such
that 1 ≤ F ≤ Fmax (p). If pmin (4F + 1) > pmin (2F + 1)

and the communication range of every robot in the formation
is given by

R ≥ ρβ (pmin (4F + 1) + pmin (2F + 1)) , (23)

then the communication graph associated to the p-formation
is at least (2F + 1)-robust.

Proof. Let the p-formation have its central layer LL,d
0 at x0,

and let V be the set of all the robots on the formation.
Since F ≤ Fmax (p), and pmin is a non decreasing func-
tion, then p ≥ pmin (4Fmax (p) + 1) ≥ pmin (4F + 1) >
pmin (2F + 1). For an F such that p4 = pmin (4F + 1) >
p2 = pmin (2F + 1), select a subset of robots V1 ⊂ V
such that they form a p4-formation also centered at x0.
By Theorem 4, given the communication range of R =
ρβ (p4 + p2), then the communication graph of only the
robots in V1 in a p4-formation is at least (2F + 1)-robust.
We now show that the rest of the robots in V \ V1 can be
added to the formation, preserving the robustness.

Starting at m = 0, consider a robot i on the (p4 +m)th
layer of the p-formation. Select a subset Ci of robots within
a p2-formation footprint centered at some lattice point on
the (p4 +m− p2)th layer of the p-formation, so that robot
i is on the outermost layer. By Theorem 5, the robots
within the concentric p4-formation footprint can be added
to the r-robust formation, preserving the robustness. Based
on the construction by layers of the p-formations, this p4-
formation footprint includes the neighbors of robot i in
the (p4 +m+ 1)th layer. Repeating the process with every
robot on the (p4 +m)th layer allows every robot on the
(p4 +m+ 1)th layer to join the network. Repeating the
process for m = 0 to m = p − p4 − 1 allows every robot
in the p-formation to joint the network and preserve the
robustness. Therefore, the communication graph associated
to the p-formation is at least (2F + 1)-robust.

The constraint of pmin (4F + 1) >
pmin (2F + 1) ensures that the communication range
R = ρβ (pmin (4F + 1) + pmin (2F + 1)) satisfies
R ≥ ρβ (2pmin (2F + 1) + 1), so that a robot in the
layer LL,d

pmin(2F+1)+1 is within the range of all the (2F + 1)

robots in the pmin (2F + 1)-formation footprint. This
allows for the extension the formations as discussed in
the previous results on this section. If pmin (4F + 1) =
pmin (2F + 1), an augmented communication range of
R = ρβ (pmin (4F + 1) + pmin (2F + 1) + 1), such that
R ≥ ρβ (2pmin (2F + 1) + 1), can be used for every robot.
The ability to extend the formations is gained at the cost of
increasing the communication range.

V. SIMULATIONS AND RESULTS

Our previous work in [16] presents sufficient communi-
cation ranges for sparse formations on lattices to satisfy the
desired r-robustness. The ranges for connected formations
R−, triangular formations R4, and square formations R�

are presented, as well as a strategy assigning different
communication ranges for different robots. The sum of the
square of the communication ranges, which is proportional



Fig. 3. Extension of a 9-robust 2-large square formation resilient to F = 4 malicious robots, following Theorem 5. The pmin (2 (4) + 1) = 1-formation
footprint is delineated by a solid red line, while the footprint of the pmin (4 (4) + 1) = 2-formation is delinated by a dotted line. The formation is
extended while preserving the r-robustness by placing new robots at any of the lattice points within the 2-large square footprint around any available
1-large square footprint.

Fig. 4. a) A formation obtained by extending a 9-robust 2-large square
formation, resilient against F = 4 malicious robots using the local model.
Every robot has a communication range of ρS (3). b) Asymptotic consensus
is achieved in spite of thirteen malicious robots shown in red.

Fig. 5. a) A 10-hexagonal formation that is 19-robust, where each robot
has a communication range of ρH (5), giving it the maximum robustness of
a 3-hexagonal formation. The footprints of the 3-hexagonal and 2-hexagonal
formation are delineated in yellow. b) Asymptotic consensus is achieved in
spite of the twelve malicious robots following the local model, shown in
red.

to the required power for the communication, was used as a
metric of the efficiency to achieve a robustness with a given
communication range. This section presents the comparison
between the use of the communication ranges for sparse
formations and the communication ranges for p-formations.
The simulations show that, for a given formation, the results
of our present paper require a smaller communication range
than previous results in the literature.

Figure 4 shows a formation obtained by extending a
large square formation using Theorem 5, as well as the
convergence of the consensus algorithm in the presence
of malicious robots. Figure 6 a) shows the comparison
between the sum of squares of the communication ranges
in the extended large square formation using the results
for sparse formations and the communication range ρS .
Figure 5 shows an example of a 10-hexagonal formation
constructed by extending a 3-hexagonal formation using
Theorem 6, as well as the convergence of the consensus
algorithm in the presence of malicious agents. Figure 6 b)

Fig. 6. a) Sum of the square of the ranges for all the robots in the formation
from Figure 4 a) using different communication ranges. b) Sums of the
square of the communication ranges for all the robots in the formation from
Figure 5 a) for different values of F . In both cases, the p-formation range
computed in this paper requires the lowest power compared to previous
strategies in the literature.

Fig. 7. a) A 13-robust formation of robots obtained by extending a 1-cubic
formation, resilient against F = 6 malicious robots under the local model.
Since pmin (4F + 1) = pmin (2F + 1) = 1, the extension was enabled
by augmenting the communication range of the robots to R = ρC (3). b)
Asymptotic consensus is achieved in spite of the malicious robots following
the local model, shown in red.

shows the comparison between the sum of squares of the
communication ranges using the results for sparse formations
and ρH for the first 28 feasible values of F . The comparisons
shows that using the communication range for p-formations
requires less power than the other strategies. Figure 7 shows
an extended p-cubic formation and its consensus, using the
augmented communication range.

VI. CONCLUSIONS

In this paper, we present strategies to deploy robots in
triangular, square, and cubic lattices. We derive sufficient
communication ranges to satisfy a desired r-robustness, al-
lowing the formation to achieve consensus in the presence of
malicious robots. The higher number of robots in the vecinity
of each robot allows for the use of smaller communication
ranges compared to the sparse formations in the literature.
Our results optimize the energy usage in the network.
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