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Abstract— We introduce ModQuad, a novel flying modular
robotic structure that is able to self-assemble in midair and
cooperatively fly. The structure is composed by agile flying mod-
ules that can easily move in a three dimensional environment.
The module is based on a quadrotor platform within a cuboid
frame which allows it to attach to other modules by matching
vertical faces. Using this mechanism, a ModQuad swarm is
able to rapidly assemble flying structures in midair using the
robot bodies as building units. In this paper, we focus on two
important tasks for modular flying structures. First, we propose
a decentralized modular attitude controller to allow a team of
physically connected modules to fly cooperatively. Second, we
develop a docking method that drives pairs of structures to be
attached in midair. Our method precisely aligns, and corrects
motion errors during the docking process. In our experiments,
we tested and analyzed the performance of the cooperative
flying method for multiple configurations. We also tested the
docking method with successful results.

I. INTRODUCTION

In biological systems such as ant or bee colonies, collec-
tive effort can solve difficult problems such as exploring,
transporting food and building massive structures. Some
ant species are able to build living bridges by clinging to
one another spanning the gaps in the foraging trail. This
capability allows them to rapidly connect disjoint areas in
order to transport food and resources to their colonies.

Recent works in robotics have been focusing on applying
swarm behaviors to solve collective tasks such as construc-
tion and transportation. There are two main approaches to
assemble structures using autonomous mobile robots. In the
first approach, robots transport building units to assemble
structures. In [1] is presented an algorithm to control a swarm
of robotic termites that can transport, assemble and climb
over building blocks. A quadrotor swarm can also be used to
transport structure parts, like bricks and beams with magnets,
in order to assemble three dimensional structures [2], [3]. In
the second approach, robots use their own bodies as building
units [4], [5], [6]. A cubic block module was introduced
in [7] which is able to attach and to detach other modules
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Fig. 1. Flying Modular Structures. A square shape with four modules on
the left and a line shape with three modules on the right.

forming three dimensional structures. A self-assemble and
self-reconfigurable robot system was developed in [8], where
robots are coordinated at the same time to dock to form
planar structures. Recent algorithms have been focusing on
assembling large scale structures using hundreds of robots
[8], [9]. Modular boats with rectangular [10] and square
shapes [6] have been proposed to self-assemble and to self-
reconfigure planar structures on the water. These systems
require algorithms that avoid deadlocks during the assembly
process. In recent work, we speed up the assembly process
by parallelizing docking actions [11].

In [12] is proposed a scalable multi-rotor aircraft which
can be manually extended depending on the payload re-
quirement. Oung et al. [13] present a reconfigurable aerial
platform based on wheeled hexagonal modules. Each module
contains a single propeller that is not able to fly by itself,
but it can move on the ground to dock other modules and
cooperatively fly. This modular system can also increase its
payload capability by scaling the number of docked modules.
In addition, it can self-assemble on the ground using omni-
directional wheels. A cooperative multi-quadrotor system for
transportation purposes is presented in [14]. The authors use
multiple quadrotors forming different configurations to grasp
and transport different shaped objects.

Flying structures that can self-assemble in midair has not
been shown in the literature. This paper introduces Mod-
Quad, the self-assembly structure that can cooperatively fly
based on autonomous modules (See Figure 1). Using a large
number of robots, it is possible to assemble structures such
as bridges, rectangular platforms, among others. In contrast
to related works, instead of assembling on the ground or on
the water, we propose a faster way to assemble structures.
Docking modules in midair offers a relevant advantage in
terms of speed during the assembly process. The individual



modules are small and agile so they can rapidly move
through environments with obstacles. There are scenarios
where the time-response is crucial to save human lives.
For example, in a burning building, the individual modules
can rapidly navigate through cluttered environments from a
base-station to the target building. Then, they can assemble
bridges, external staircases or platforms near windows to
offer alternative exits.

The contributions of this paper are threefold. i) We in-
troduce ModQuad, a novel flying modular robotic structure
that is able to self-assemble in midair and cooperatively
fly. ii) ModQuad is the first modular system that is able to
self-assemble in midair. We present a docking method that
accurately aligns and attaches pairs of flying structures in
midair. iii) We present a stable decentralized modular attitude
controller to allow a set of attached modules to cooperatively
fly. Our controller generates the required moments minimiz-
ing motor saturation.

II. MODQUAD DESIGN

Our design is focused on developing a modular robot with
the ability to dock in midair. In this way, we extend the
capabilities of the regular aerial flying vehicles. Our modular
robot, ModQuad, is propelled by a quadrotor within a light-
weight cuboid frame with a passive docking mechanism. Its
main components are described as follows.

A. Flying Vehicle

The ModQuad is propelled by a quadrotor platform. In
this case, we use the Crazyflie 2.0. This robot has been used
in swarm applications with large numbers of robots [15].
It is open-source and open-hardware. The vehicle weighs
27g, having a maximum payload of 15g. Its dimensions are
92x92x29mm and its battery lasts around five minutes. Its
low-cost and total payload gives an acceptable scenario for
a large number of modules.

B. Modular Frame

The quadrotor is enclosed and attached to a cuboid frame
as it can be seen in Figure 2. The dimensions of this
cuboid are 116x116x48mm. Light-weight carbon fiber rods
connected by eight 3-D printed ABS connectors form the
frame. The frame weight is important due to tight payload
constraints. Our current frame design weights 7g , about half
the payload capability.

C. Docking Mechanism

To enable rigid attachments between modules, we in-
clude a docking mechanism in the modular frame. We used
Neodymium Iron Boron (NdFeB) magnets as passive actua-
tors due to their large strength-to-weight ratio. The magnets
are redsquares square, 6.35x6.35x0.79mm. Two magnets are
located at each of the eight 3-D printed connectors in the
frame (See Figure 2). These magnets enable our modules
to have connections on the four vertical faces. When two
modules are connected face-to-face, the four magnets are
able to provide a bonding force equivalent to a 1kg, which
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Fig. 2. A Flying Modular Robot. It is based on a quadrotor within a
cuboid frame. It is equipped with a docking mechanism, made up of square
permanent magnets located in the corners of the frame. This enables the
modules to rigidly attach to each other.

is a strong force in comparison to the module mass (40g)
The strength-to-weight ratio is approximately 25:1. Although
a module has six faces, we focus on planar structures
only, where vertical faces perform horizontal dockings. Once
attached, undocking is a difficult task and is left to future
work.

III. MODQUAD MODEL

In this section, we describe a general model for ModQuad
and state the two main problems that we solve in this paper.
This system is able to assemble structures from modules
defined as follows.

Definition 1 (Module). A module is a flying robot that
can move by itself in a three dimensional environment and
horizontally dock to other modules.

This module is based on a quadrotor platform within a
cuboid modular frame. The lower and upper faces of the
cuboid have an area w×w and the frame has a height h. A
docking mechanism allows the module to horizontally attach
to other modules. The modular robot has a mass m, including
the quadrotor, the frame and the docking mechanism.

We consider a team of N modules, which are indexed
by the set M = {1, ..., N}. All modules are homogeneous,
including shape, mass, inertia, and actuators. We define a set
of connected modules as a structure.

Definition 2 (Structure). A flying structure, S ⊆ M,
is a non-empty set of rigidly connected modular robots
that behaves as a single rigid body. These modules are
horizontally connected by docking along the sides so the
resulting shape has the same height h.

A. Coordinate frames

We set three different coordinate frames to define the
module and the structure pose:

1) The world coordinate frame, W : or inertial frame is
fixed and has its z-axis pointing upwards. We denote the
location of the center of mass of the ith module in the world
frame W by xi ∈ R3. The robot attitude is represented by
the Euler angles Θi = [φi, θi, ψi]

> for roll φi, pitch θi, and
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Fig. 3. Representation of an structure with two modules. The black arrows
represent the rotor forces, and the curved gray arrows represent the rotor
moments. The blue, green, and red axis represent the world, module and
structure coordinate frames respectively.

yaw ψi. We can see the attitude angles with respect to the
world frame for module 1 in Figure 3.

2) The module coordinate frame, Ri: is defined for
each robot. The origin is attached to the center of mass
and the x-axis is aligned to the front of the module. The
angular velocities in the module frame are denoted by Ωi =
[pi, qi, ri]

>.
3) The structure coordinate frame, S: is defined for a set

of attached modules S. The origin is attached to the center of
mass of the structure. We assume that all modules point in the
same direction. Thus, the x-axis of the structure coordinate
frame is parallel to the x-axis of all module coordinate
frames in the structure. Figure 3 illustrates two modules and
their associated coordinate frames.

We assume that the modules have approximately the same
yaw orientation ψ1 = ... = ψN . Without loss of generality,
we assume that this orientation is ψi = 0, for all i ∈M.

B. Robot actuators

Each module i has four vertical rotors in a square config-
uration, indexed by j = 1, ..., 4, each with an angular speed
ωij that generates vertical forces

fij = kF ω
2
ij ,

and moments
Mij = ±kM ω2

ij ,

where kF and kM are motor constants that can be obtained
experimentally. The sign of the moment depends on the
direction that the motor spins. It is either positive for
counterclockwise or negative for clockwise.

The coordinates of the rotors 1 to 4 in the module frame
Ri are (d,−d, 0), (−d,−d, 0), (−d, d, 0) , and (d, d, 0)
respectively, where d is the distance from the rotor to the
respective x- or y-axis of the module coordinate frame.

C. Robot sensors

Each module i is able to measure its pose, its location in
the world coordinate frame xi, its angles for roll φi, pitch θi,
and yaw ψi, and its respective angular velocities pi, qi, and

ri. We identify if a module i is connected to another module
j using the location sensor. We check if ‖xi − xj‖ = w is
satisfied, where ‖·‖ denotes the Euclidean norm.

D. Dynamics of the modular rigid body

A set of connected modules – structure S – forms a single
rigid body. We denote the number of robots in the structure S
by n = |S| (|S| is the cardinality of S). All modules in the
structure share the same plane and have the same orientation.
We denote the location of the ith module in the structure
coordinate frame by (xi, yi, zi).

The thrust and attitude of the flying structure depends on
the forces and moments produced by each rotor. The total
thrust F and the roll, pitch and yaw moments, denoted by
Mx, My, and Mz respectively, are computed as the result of
all the rotor forces in the structure

F
Mx

My

Mz

 =
∑
i


1 1 1 1
yi1 yi2 yi3 yi4
−xi1 −xi2 −xi3 −xi4
kM
kF

−kMkF
kM
kF

−kMkF



fi1
fi2
fi3
fi4

 (1)

where (xij , yij) denotes the location of the rotor j = 1, ..., 4
that belongs to the ith module with respect to S. In this dy-
namical system, we can control the force of each individual
actuator by the input vector

[fi1, fi2, fi3, fi4]
> = ui. (2)

The resultant force and moments generate translational and
rotational accelerations.

nm ẍS =

 0
0

−nmg

+ RW
S

 0
0∑
ij fij

 ,
where g is the gravity constant, RW

S ∈ R3×3 is the rotation
matrix that transforms from the structure coordinate frame S
to the world coordinate frame W .

We assume that the each module is symmetric and
its inertia tensor is a diagonal matrix, denoted by I =
Diag(Ix, Iy, Iz). We can describe the rotational accelerations
using the linearized model

IS

ṗq̇
ṙ

 =

Mx

My

Mz

 , (3)

where IS is the mass moment of inertia of the structure S.
We can compute the structure inertia, denoted by IS , based

on the inertia matrix of a single module I, using the parallel
axis theorem

IS = nI +m

∑i y
2
i 0 0

0
∑
i x

2
i 0

0 0
∑
i x

2
i + y2i

 . (4)



E. Objective

In this paper, we want to control two of the main actions
that the team of modular robots can perform. These actions
are cooperative flying and docking in midair.

Problem 1. Given a desired attitude Θ∗ and thrust F for
a flying structure S, the problem is to find a control input
ui, for all i ∈ S, such that the modular flying structure is
driven to the attitude Θ∗ while generating the thrust F .

Problem 2. Given a pair of structures S1 and S2, find the
control inputs ui, for all i ∈ S1 and uj for all j ∈ S2, such
that the structure S1 docks to the structure S2 in the three
dimensional space.

We approach Problem 1 and 2 in Section IV and V
respectively.

IV. CONTROL OF THE FLYING MODULAR STRUCTURE

In order to allow the flying structure to navigate in a three
dimensional environment, we control thrust and attitude to
generate vertical and horizontal translations, and rotation in
the yaw angle. We assume that the robots know the shape
of the structure as well as their location xSi = [xi, yi, zi]

>

in the structure coordinate frame S.
The total thrust can be computed by dividing the total

thrust F among all rotors. The contribution for each rotor is
given by

fij =
F

4n
.

The controller first generates moments for the structure, then
we formulate a modular attitude controller to satisfy those
moments.

A. Controlling moments

We want to generate a desired moment M = [Mx, My ,
Mz]

> on the structure S using the rotor forces fij . To
achieve this, each rotor ij can contribute to the total moment
of the structure with Mij = [Mxij

,Myij ,Mzij ]
>. The local

moments Mij must satisfy

M =
∑
ij

Mij .

Since the system is redundant, this equation has infinite
solutions. We might distribute the total moment evenly
among all actuators, but it would overload the robots that
are closer to the center of mass because a high force would
be required given the small moment arm. In [14], the authors
compute the pseudo inverse of the dynamics. Although this
approach minimizes the squared sum of the local moments
and forces, it overloads some of the actuators. This is
especially problematic when there are many small rotors that
can easily saturate. In a similar way, the authors in [13]
distribute the forces linearly with respect to the center of
mass, overloading and saturating the rotors that are far from
the center of rotation. Additionally, the batteries of those
modules drain faster than the rotors in the middle. The main
problem in these cooperative systems is that if one module

fails, the whole structure fails. For these reasons, we want to
develop a method that given thrust and moments [F,M]>,
it minimizes the maximum rotor force as:

u∗S = argmin
uS

‖uS‖∞, (5)

subject to (1), where uS is the vector of all control inputs
in the structure and ‖·‖∞ denotes the infinity norm, also
known as Chebyshev norm, which returns the maximum
absolute value in the input vector. In this way, it is possible
to generate the maximum performance of the system without
saturating the motors. A solution that satisfies the structures
dynamics (1) is

fij =
F

4n
+
Mxij

yij
+
Myij

xij
+ (−1)j+1 kF

kM
Mzij . (6)

The solution for (5) evenly distributes the forces among all
rotors. To achieve this, we proportionally distribute the total
moments Mx and My based on the distance of the actuator
to the respective axis. Then, we have

Mxij =
|yij |∑
ij |yij |

Mx, (7)

Myij =
|xij |∑
ij |xij |

My. (8)

In the case of Mz , all the rotors are in the same plane. Then
we can evenly distribute the yaw moment among all rotors
as

Mzij =
Mz

4n
. (9)

Substituting (7), (8), and (9), in (6), we obtain

fij =
F

4n
+
χ(yij)Mx∑

ij |yij |
+
χ(xij)My∑

ij |xij |
+ (−1)j+1 kFMz

nkM
,

where χ denotes the signum function χ(x) := x/|x|. Using
the location of the rotor in the robot coordinate frame, we
can define the constants of the structure

Cx =
∑
ij

|yij |= 2
∑
i

|yi + d|+|yi − d|

Cy =
∑
ij

|xij |= 2
∑
i

|xi + d|+|xi − d|

Cz =
4nkM
kF

.

Then, we can write the control input for robot i, in a compact
form

ui = Pi C

[
F
M

]
, (10)

where the matrix

Pi =


1 χ(yi − d) χ(xi + d) 1
1 χ(yi − d) χ(xi − d) −1
1 χ(yi + d) χ(xi − d) 1
1 χ(yi + d) χ(xi + d) −1


has a form {1,−1}4×4 that depends on the location
of the ith module (xi, yi) in the structure coordinate
frame and the distance d. The structure matrix C =



Diag([1/4n,C−1x , C−1y , C−1z ]>) contains the constants of the
structure, which is the same for all robots.

We can see in (10) that the rotor forces only depend on the
quadrant in the structure coordinate frame. In approaches like
[13] and [14], the rotors with higher |xij | and |yij | saturate
first without maximizing the use of the other rotors. In our
approach, the rotors in the same quadrant generate the same
force. Therefore, instead of saturating a few rotors, all rotors
in the quadrant saturate at the same time. This approach is
very efficient for low-cost quadrotors where the force interval
[fmin, fmax] is narrow. However, this approach is not energy
efficient and drain the batteries faster than [13] and [14].

B. Decentralized Modular Attitude control

We want to drive a structure S to a desired attitude Θ∗ =
[φ∗, θ∗, ψ∗]> and thrust F . In our decentralized setup, the
central trajectory planner sends Θ∗ and F to the structure.
Then, each module i ∈ S has to independently compute
its control input ui based on its location in the structure
coordinate frame and its local inertial sensor. We use a
proportional-derivative controller for a single quadrotor:

φ̈
∗

= Kp,φ (φ
∗ − φ) +Kd,φ (p

∗ − p),
θ̈
∗

= Kp,θ (θ
∗ − θ) +Kd,θ (q

∗ − q),
ψ̈
∗

= Kp,ψ (ψ∗ − ψ) +Kd,ψ (r∗ − r),

where Kp,·Kd,· > 0 are gain constants for a single robot.
We can write this in a compact form,

Ω̇
∗
= Kp(Θ

∗ −Θ) + Kd(Ω
∗ −Ω) (11)

where Kp and Kd are diagonal matrices that include the
gain constants. In this controller, we can set the desired
angular velocities to zero Ω∗ = 0. Without re-tuning the
gain constants, we want to be able to fly the structure for any
configuration and any number of robots. Since all modules
in a structure are on the same plane and pointing towards
the same direction, each robot is able to use its local sensor
to estimate the attitude Θ and angular velocities Ω of the
whole structure S. In this way, we can say that Θ1 = ... =
Θn = Θ and Ω1 = ... = Ωn = Ω. Thus, each module
i ∈ S is able to independently compute the desired angular
accelerations Ω̇

∗
using its local measurements Θi,Ωi in

(11). Maintaining the same angular desired accelerations of
a single robot for the multi-robot structure is hard to achieve
because inertia grows rapidly with the number of robots
(from (4)). Additionally, agility is reduced with the size of
the rigid body as it is studied in [16], [17]. Therefore, we
can define the desired angular acceleration of the structure
Ω̇
∗
S as a function of the desired acceleration of a single

module Ω̇
∗
. We propose a function that increases the angular

accelerations proportionally to the location of the rotors and

inversely proportional to the inertia of the structure,

ṗS =
Ix
ISx

Cx
4d
ṗ

q̇S =
Iy
ISy

Cy
4d
q̇

ṙS =
Iz
ISz
Cz ṙ.

In this equation, Cx and Cy are related to the locations of all
robots in the structure, while 4d is related to the distance of
the four rotors in a single module. We can rewrite the new
desired acceleration of the structure S in a compact form

Ω̇
∗
S = I−1S IDΩ̇

∗
(12)

where the matrix D = Diag([Cx/4d, Cy/4d, Cz]>) con-
tains the constants of the structure. From (10), the control
input that satisfies the new desired angular accelerations is
described by

ui = Pi C

[
F

ISΩ̇
∗
S

]
.

Using (12), we can write the control input as a function
of the desired angular acceleration of a single module Ω̇

∗
:

ui = Pi E

[
F

IΩ̇
∗

]
, (13)

where the matrix E reformulates C to satisfy the new angular
accelerations as E = Diag([1/4n, 4d, 4d, 4]>). We highlight
that in our modular attitude controller (from (13)), it is not
necessary to tune the attitude gains for each configuration of
the structure. As a summary, given a control input [F,Θ∗]>,
we use (11) to obtain the desired acceleration of a single
robot Ω̇

∗
. We use the computed Ω̇

∗
and the desired input

thrust F to obtain the desired input ui based on (13). When a
new structure is assembled, each module only needs to know
the number of robots in the structure n and its location in
the structure to compute Pi.

V. HOVERING AND DOCKING IN MIDAIR

In this section, we describe our method to dock a struc-
ture S1 to a structure S2, resulting a new structure S3 =
S1 ∪ S2. In order to achieve this goal, we initially describe

how to control the linear velocity of the structure using the
modular attitude controller from previous section. Then, we
use the velocity controller to hover in a desired waypoint
and to dock pair of structures in midair.

A. Controlling linear velocity

We can control a structure S as a single quadrotor [14],
[18]. All robots have the same desired yaw angle and
without loss of generality, we assume that this angle is
zero. The desired linear acceleration ẍ∗S = [ẍ∗S , ÿ

∗
S , z̈
∗
S ]
> is

transformed to the attitude controller [F,Θ∗]> using

[
F
Θ∗

]
=


mg +m z̈∗S
−ÿ∗S/g
ẍ∗S/g
0

 . (14)
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Fig. 4. Block diagram that illustrates the interaction between the velocity
controller and the distributed modular attitude controller for the flying
structure.

We can move the robot with a desired velocity ẋ∗S using

ẍ∗S = Ka(ẋ
∗
S − ẋS). (15)

Then, we can control the linear velocities by considering the
desired velocity as the control input

ẋ∗S = wS . (16)

The velocity controller and its interaction with the modular
attitude controller is illustrated in Figure 4. It starts with the
velocity controller, from (16). Its output ẍ∗S is transformed
into a desired attitude [F,Θ∗]> for the whole structure using
(14). In a decentralized manner, each module i receives
the desired attitude and combines it with feedback Θi,Ωi

from its inertial measurement unit (IMU) based on (11).
Using the desired angular acceleration of the structure and
the desired thrust, [F, Ω̇]>, each module computes its own
control input ui using (13). In order to close the loop for the
velocity controller, we compute the velocity of the structure
by averaging the velocity of all modules.

Now, we proceed to dock pairs of flying structures in
midair. In our approach, one flying structure waits in a
hovering action and the other structure performs the docking
action. It reduces the motion errors and disturbances from the
hovering structure, so the other structure can precisely align
and dock. Both the hovering and the docking actions use the
velocity controller as described in the following subsections.

B. Hovering

In the hovering state, we want to maintain the robotic
structure in a desired point x∗. We can drive it by using the
velocity controller, from (15), as

wS = Kv(x
∗
S − xS). (17)

C. Docking action

In order to dock structure S1 to S2, we take as reference a
pair of modules (i, j), such that i ∈ S1 and j ∈ S2. Assum-
ing that module i docks to module j, and it docks through
the x-axis of Rj . The location of module i in the coordinate
frame of module j, Rj , is denoted by (x

(j)
i , y

(j)
i , z

(j)
i ).

Our docking method is based on a gradient function ∇f ,
which is followed by the velocity controller as

wS = ∇f(x
(j)
i , y

(j)
i , z

(j)
i ).
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Fig. 5. Gradient function in the xz−plane. It is symetric and depicts the
same for the yz−plane.The arrows represent the direction of the gradient
on a given point and the background color represents the magnitude of the
gradient.

Our docking function defines what we call approaching
tunnel, which is a cylinder with radius r aligned with the
x−axis of Rj . The radius r is related to the motion error that
is tolerable during docking, e.g. a small misalignment error
(< 25mm) is fixed by the attraction force of the magnetic
docking mechanism. If the module i is inside the tunnel,
it will move towards module j with constant velocity v.
Otherwise, meaning that module i is not aligned to module j,
the module will rapidly be attracted towards the tunnel before
approaching to the other module. If the module is outside
the tunnel and close to the yz-plane, the gradient will push
it backwards to correct the alignment before approaching.

Our gradient function for docking is given by

∇f(x, y, z) = −

g(x)x/|x|k1 y
k2 z

 ,
where the rejection/approaching tunnel function is

g(x, y, z) =

{
−k3 e−k4|x| if y2 + z2 ≥ r,

v otherwise.
(18)

Using this function, the module in any arbitrary location
will be driven towards the x-axis of Rj (by the proportional
controller in the y− and z−axis). When the module is close
to the x−axis, with a distance less than r, within the tunnel,
it will be approaching the origin with constant speed v.
When the module is outside the tunnel, it is rejected of the
yz−plane. Using the method, we guarantee that the module
is aligned for the docking action, since the module can
only approach to the origin if it is within the tunnel. We
depict the gradient function ∇f(x, y, z) for the xz−plane in
Figure 5. Since the function is symmetric, the vector field in
the xy−plane is the same as the vector field in the xz−plane.
We can see that the only way to approach to the zero is by the
purple region, where the module slowly moves and maintains
the alignment during the docking action. Theoretically, this
gradient-following approach guarantees a successful docking
action, since the function f has a single minimum and the
only way to reach it is by a proper alignment.



VI. EXPERIMENTS

We performed three different experiments to study: the dy-
namics performance of the modular system; the behavior of
the docking action; and the interaction of the flying controller
and the docking method for multiple configurations.

In our experimental testbed, we used the Crazyflie-ROS
node [19] to control the robots, and to determine the robot
pose in space as well as relative locations for docking. We
are using a motion capture system (VICON) operating at
100 Hz. We are able to measure the angular velocities of the
robots using their IMU sensors. On the computer, we run
the velocity (15) and attitude (14) controllers as ROS nodes.
The same attitude command is broadcasted to all robots in
the structure via 2.4GHz radio. The original firmware of
the Crazyflie robot was modified to implement the force
distribution from (13). The PD controller from (11) is already
implemented in the firmware.

A. Dynamics performance

In this experiment, we evaluate the dynamics performance
for multiple modules in a line configuration. We used our
modular attitude controller sharing same gains for all mod-
ules. The modules are distributed along the x-axis of the
structure in such a way that the x−axis of the structure and
x−axis of the modules are aligned. In our setup, we attached
the robotic structure to a mechanical system that constrains
the system motion allowing only rotation in the pitch angle.
We tested the angular velocity in pitch θ for n = {1, 3, 5, 7}
modules using the same gains. We set the desired pitch angle
to zero, θ∗ = 0, and an initial angle θ = π/4. From the
initial angle we released the structure allowing it to achieve
its desired angle. Figure 6(a) shows the angular velocities
of the structure meanwhile it drives its error to zero. It is
possible to observe how the time response is reduced with
respect to the number of modules. Using the obtained data,
we estimated the angular accelerations of the structure. Based
on (12), we can obtain that the angular acceleration in the
line configuration is reduced with order O(1/n), since the
inertia grows cubically and Cy grows quadratically in the
line configuration. It matches the results of our experiment,
since the maximum estimated angular accelerations were
max(q̇) = {38.93, 16.52, 9.61, 8.55} (rad/s2) for n =
{1, 3, 5, 7} respectively. A similar test were conducted for the
yaw angle case (see Figure 6(b)). In comparison to the pitch
case, we can see that the increment of modules generates a
higher impact in the reduction of the angular velocity. The
angular acceleration in yaw is reduced with order O(1/n2)
(see (12)) because the constant Cz for the yaw angle grows
slower than Cx. For this reason, the yaw angle is the most
affected when the number of modules in the structure is
increased.

We can see that all robots try to converge to the steady
state, but the angular acceleration is reduced when we in-
crease the number of robots. A small number of modules are
very agile and converge to zero in a faster way. In contrast,
a large number of robots present a smoother behavior.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t (s)

−6

−4

−2

0

2

θ̇
(r
a
d
/s

)

n = 1

n = 3

n = 5

n = 7

(a) y−axis

0 5 10 15 20

t (s)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

ψ̇
(r
a
d
/s

)

n = 1

n = 3

n = 5

n = 7

(b) z−axis

Fig. 6. Angular velocities in the y− and z−axis for n = {1, 3, 5, 7}
robots. The modules are arranged in a line configuration. In this experiment
the robot structure is released from an angle φ = π/4 and (13) drives it to
φ = 0.

B. Docking action

In our second experiment, we want to test the behavior
of the docking action from multiple initial points. We set
a static and a moving module. The module, that performs
the docking action, follows the gradient function, from (18),
with constants k1 = 3.0, k2 = 3.0, k3 = 1.0, k4 = 10.0 and
v = 0.1. We present multiple trajectories that the module
performs during the docking action from different initial
locations (see Figure 7). The docking action is successfully
completed even in the presence of motion errors. We can see
that the module follows the gradient and always executes the
approaching procedure satisfying the alignment requirement.
We can also see that the robots are overshooting on the
desired z and have to perform an additional curve. However,
this behavior and motion errors are always compensated by
the docking function. In the experiments we observed that
the magnetic field created by the docking mechanism was
able to compensate and correct misalignments between two
structures generating successful docking even with motion
errors.
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Fig. 7. Robot trajectories during the docking action. The initial locations
of the the docking robot are represented by the blue rectangle. This robot
moves towards a static module (red rectangle) and docks where the dashed
green rectangle is located.

C. Assembling Structures

In our third experiment, we want to test the integration
of the flying modular attitude controller and the docking
method. We performed the docking experiment for multi-
ple robots and multiple configurations. We implemented a
ROS-node that automatically detects when two or multiple
robots are attached by using the robot locations from the
VICON System. For each detected structure, the matrix Pi

in (13) is uploaded to every module in the structure using
radio communication. Once all modules receive the updated
parameters, the structure recovers its stability.

In general, we tested our controller for structures with
multiple configurations. The angular acceleration in roll
and pitch angles is reduced when the number of robots is
increased but they are still stable. However, in the case of the
yaw angle, due to the low-powerful motors of the Crazyflie,
we experimented motor saturations. For this reason, the gains
in yaw should be maintained as low as possible. Although
the controller maintains the modules stable, the scalability of
the system is mainly constrained to the yaw moment that the
rotors can offer without saturation. We also observed that the
shear stress between connected modules was not an issue due
to the high strength-to-weight ratio the docking mechanism
provides.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces ModQuad, a novel flying modular
robotic structure that is able to self-assemble in midair and
cooperatively fly. One of the main challenges was developing
a modular attitude controller in which each module has to
use its own inertia sensor to compute its local control input.
We implemented this controller in low-cost robots. Although
our approach is not energy efficient, it allows us to use low-
cost motors with a low maximum thrust. In our approach, the
gain constants in our controller do not need to be re-tuned
as the configurations change, but the angular acceleration is
reduced with the addition of modules.

Using a velocity controller, we are able to dock multiple
robots in midair in order to assemble arbitrary structures.
The docking system and control has been validated through
multiple experiments.

Future work includes examining how the system scales as
more modules are attached and rigorously determining the
effects of motors saturation on the performance and stability
of the structure. In addition, methods and mechanisms for
undocking will be explored.
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