
Dynamic Perimeter Surveillance with a Team of Robots

David Saldaña1, Reza Javanmard Alitappeh2, Luciano C. A. Pimenta2, Renato Assunção1,
and Mario F. M. Campos1

Abstract— In this paper, we propose a motion planning
method to escort a set of agents from one place to a goal
in an environment with obstacles. The agents are distributed
in a finite area, with a time-varying perimeter, in which we
put multiple robots to patrol around it with a desired velocity.
Our proposal is composed of two parts. The first one generates
a plan to move and deform the perimeter smoothly, and as a
result, we obtain a twice differentiable boundary function. The
second part uses the boundary function to compute a trajectory
for each robot, we obtain each resultant trajectory by first
solving a differential equation. After receiving the boundary
function, the robots do not need to communicate among
themselves until they finish their trajectories. We validate our
proposal with simulations and experiments with actual robots.

I. INTRODUCTION

In the research area of perimeter surveillance, the problem
of using multiple robots to patrol around a static region has
received much attention in the literature [1], [2], [3], [4].
In some cases, the guarded region contains multiple agents,
like humans or animals, that must be protected. When those
agents need to be escorted by a team of robots from one place
to a goal, the classical perimeter surveillance techniques are
not prepared for such a task, since they do not take into
account the dynamics of the perimeter. We call this concept
dynamic perimeter surveillance, which brings remarkable
new challenges, like the necessity of deformations in the
perimeter or shape adaptation based on the configuration
of the environment. While robots keep moving through the
perimeter in counterclockwise manner, they create a virtual
fence to surround and protect the internal agent(s). When
multiple robots circulate around a specific area with high
speed, they reduce the possibility to allow external agents to
get inside. By the same way, this behavior also prevents the
internal agents to get outside. Dynamic perimeter surveil-
lance covers applications like: the protection of a group
of people that must be escorted from one place to a goal;
shepherding of animals; large area monitoring and mapping;
or multi-robot pattern generation.

In [5], the authors presented a decoupled controller to
move a robotic swarm collectively as a group. Simple shapes
like square and ellipse are adapted to move the group through
obstacles. A stable method that can maintain a minimum dis-
tance among the robots, while they form a desired dynamic
region, it is presented in [6]. The same authors in [7] modeled

1D. Saldaña, R. Assunção, and M.F.M. Campos are with the
Computer Vision and Robotics Laboratory (VeRLab), Computer
Science Department, UFMG. E-mails: {saldana, assuncao,
mario}@dcc.ufmg.br

2 R. Javanmard and L. C. A. Pimenta are with the Graduate Program in
Electrical Engineering (PPGEE), UFMG. E-mails: {Rezajavanmard,
lucpim}@cpdee.ufmg.br

Universidade Federal de Minas Gerais (UFMG), MG, Brazil.
*The authors gratefully acknowledge the support of CAPES, CNPq and

FAPEMIG. D. Saldaña also thanks to COLCIENCIAS for its support.

elaborated shapes by joining simple functions. These works
offer adaptable behaviors for the shapes, but they do not
focus on leaving the internal region available.

In this paper we focus on planning the motion of a team
of robots to guard a region by circulating along its boundary
and leaving the internal area available. In other works that
also deal with the problem of moving single robot [1] or
multiple robots [3] to track a curve, usually the curve is static
or changes according to a given function of time without any
input from the environment where the robots are moving.
Some other works like [8] consider also the case were it
is necessary to estimate a dynamic boundary defined in the
environment. In contrast, in this work we are interested in
the integration between robot motion planning and boundary
motion planning. It is also our objective to plan the motion
of the perimeter.

If the movement of our deformable shape is considered
to be analogous to the movement of a robot, then the plan-
ning problem can be approached by adapting classical mo-
tion planning techniques in robotics. Sample-based planner
techniques have been frequently used to compute collision
free movements in unstructured environments, specially for
systems with high degrees of freedom [9]. Rapidly Random
Tree (RRT) [10] has received a great deal of attention due
to its ability to perform dense exploration of the whole
configuration space in a more practical and faster way [11],
[12], [13]. RRT is also applied for kinodynamic planning
in which control inputs are planned to drive a robot from
an initial to a final state [14]. This technique works well
in high dimensional state spaces, for instance, in [15], they
applied a RRT motion planner to control an acceleration
limited manipulator. In our work, we propose a simplified
RRT-Kinodynamic technique, where the vertices in the tree
are expanding progressively by applying a random control
input. Thus we do not need a local planner in contrast to the
related techniques.

Our contributions are threefold. First, we propose a model
that includes the time-variant factor in perimeter surveil-
lance. Second, we adapted a classical motion planning tech-
nique to obtain an analytical function that generates a smooth
changing behavior for a given shape. This behavior can result
in simultaneous transformations like translation, shrinking
and expansion in order to guard and to move a desired region
in a non-discretized environment. Third, we take advantage
of the calculated boundary function to develop a method
that maintains multiple robots circulating around a dynamic
perimeter with a desired constant velocity.

II. PROBLEM STATEMENT

Consider a compact environment E ⊂ R2, which contains
a set of obstacles O ⊂ E . The goal is to use a set of robots R
to patrol along the boundary of a deformable region Ω ⊂ E

while this region moves from an initial point to a final point
without colliding with any obstacle. The boundary/perimeter
of Ω is denoted by ∂Ω that can be modeled by a parametric
shape:

Definition 1 (parametric shape): The parametric shape
Φ : [0, 1] × Q → E , where Q is the n-dimensional
configuration space of the shape. So that, Φ is a function
that maps the connected set ∂Ω into E and can transform its
shape based on n parameters as degrees of freedom.
The free parameters of Φ can change properties such as
position, orientation, and size. Given these n degrees of
freedom, the configuration space of the fixed boundary is
a compact space and the configuration vector is given by
q = [q1, q2, ..., qn]T ,q ∈ Q.

For instance, a shape with the form of an ellipse with fixed
orientation has the following equation,

Φ(s,q) =

[
q0 cos(2πs) + q2
q1 sin(2πs) + q3

]
, (1)

for all s ∈ [0, 1], where the parameters q0 and q1 are the
semi-axes of the ellipse and the parameters q2 and q3 are the
translations in coordinates x and y respectively.

Additionally, we represent the free configuration space as
Qfree = Q\QO, where QO is the obstacle set O in the
configuration space. We define a collision free trajectory as a
function τ : [t0, tf]→ Qfree that maps a finite time interval
[t0, tf] into Qfree starting at the initial configuration q0 and
ending at the final configuration qf . The shape dynamics
along the trajectory is defined as follows:

Definition 2 (boundary function): The boundary func-
tion γ : [0, 1]× R→ E describes how the shape Φ changes
its configuration q along time t ∈ [t0, tf], and satisfies the
equation,

γ(t, s) = Φ(s, τ(t)), (2)

which is twice differentiable.
We have divided our objective into two main problems to

be solved. The fist one is about planning the movement of
the whole perimeter, stated as follows:

Problem 1 (Motion planning for the boundary): Given
a deformable shape Φ, how to compute a trajectory τ to
obtain the dynamic boundary γ, which can change its shape
smoothly in order to move from an initial configuration q0
to a final configuration qf without leaving Qfree.

Once the dynamics of the boundary is identified, the
second problem aims to identify the trajectory for each robot:

Problem 2 (Motion planning for robots): Given a
boundary function γ, how to calculate the trajectory of a
team of robots, so that each robot circulates the time-varying
boundary with a desired velocity v in a counterclockwise
manner.

We approach Problems 1 and 2 in Sections III and IV,
respectively.

III. MOTION PLANNING FOR THE BOUNDARY

In order to solve Problem 1, we propose a method to find a
smooth analytical function τ that defines the transformation
of Φ to reach to the goal qf . We assume that the boundary
parameters can evolve according to a double integrator with
dynamics given by: q̈ = u, where u ∈ U is a control input in
the compact space U ⊂ Rn. The state space for the boundary

is defined by X = R2n and the state vector is denoted by
x = [q, q̇]T ∈ X . In order to generate the trajectory τ from
an initial state x0 = [q0, q̇0]T to a goal state xf = [qf , q̇f]T ,
the motion equation can be defined as:

ẋ(t) = f(x(t),u(t)), x(0) = x0 (3)

where f is a continuous function, x(t) ∈ X in time t ∈ R>0.
We create the motion plan by extending the standard

kinodynamic motion planning technique [14], which is based
on the RRT (Rapidly Random Tree) [10]. In Algorithm 1,
we present our version of the kinodynamic motion planner.
Let G = {V,E} be a tree which is composed of a set
V of n vertices and a set E of n − 1 edges. Each vertex
v ∈ V contains its current state xv and a quadratic function
τv that describes how to arrive from the ancestor of v to v
within a finite time interval.

Algorithm 1: Kinodynamic boundary motion planner
Input: (E ,O), (x0, xf) // Input map, desired states.
Output: τ // Motion function for the shape.

1 xr ← x0 // Set initial state to xr.
2 G← Extend(G, (x0, 0)) // Add initial state to the tree.

// Until a termination criteria is satisfied.
3 while (! Termination Criteria) do
4 u← RandomSample(U) // random control input.

// Compute new state by integrating u.
5 x′, τt = Compute NewState(u, xr)
6 if Is Collision Free(E ,O, x′) then

// Add new state to the tree.
7 G← Extend(G, (x′, τt))

// If the goal is achieved.
8 if Is Close(x′, xf) then

// Create a trajectory function.
9 τ ← Construct Trajectory(G, x0, xf)

10 Return τ
end

end
// Choose a vertex randomly or using a heuristic

11 xr ← Select V ertex(G)
end

In this algorithm, we initially create a graph with a single
vertex that represents the initial state (lines 1,2). In line 4,
we generate a random acceleration vector u = q̈, which in
line 5, we integrate in order to obtain the new state vector
x′ = [q′, q̇′]T . We validate the feasibility of the new state
x′ in line 6, then the tree G is extended to add a vertex
with the new information (x′, τt) in line 7. We check if the
new state is close enough to the goal state in line 8. This
process (lines 3-10) will be repeated by choosing vertices in
the tree (line 11), until the goal state is approached (line 8)
or a termination criterion is met (line 3). Finally, if the new
state x′ is close to the desired state xf , we obtain a vertex
with m− 1 ancestors.

The output of this iterative process is a twice-differentiable
function τ(t) that is calculated in line 9, which has the

Goal

Fig. 1. A set of the closest vertices to the goal are highlighted inside
the dashed ellipse. The dotted line indicates to the geodesic path from the
selected vertex to the goal.

following form:

τ(t) =

τ1(t) if t0 ≤ t < t1
τ2(t) if t1 ≤ t < t2

...
τm(t) if tm−1 ≤ t < tm,

where each function τi(t), i = 1, 2...,m is the calculated
quadratic function calculated in line 5,

τi(t) =

a1t

2/2 + b1t+ c1
a2t

2/2 + b2t+ c2
...

ant
2/2 + bnt+ cn

 .
The coefficients aj , bj , cj , j = 1, 2..., n are computed by the
integration of u in t ∈ [tj−1, tj] (line 5), considering that u is
constant during the time interval. As tm is our final time, we
have tf = tm. Therefore, we estimate the boundary function
γ by inserting the calculated τ in Eq. (2). We can argue
that the shape Φ has a continuous smooth motion because γ
changes quadratically with respect to time t ∈ [t0, tf]. This
was the reason for choosing the double integrator model for
the boundary.

For the vertex selection of line 11, instead of a simple
random vertex choice, we use a bias toward the goal to
speed up the algorithm’s convergence. Then, based on a
random variable α ∈ [0, 1], we choose a random vertex with
probability α or we use a heuristic method with probability
(1 − α). The heuristic is based on the geodesic distance
between the vertices and the goal. We choose a vertex
randomly from the set of the k ∈ N nearest nodes to the
goal, where ”nearest” means the ones closest to the goal
according to te geodesic distance. Fig. 1 illustrates a random
tree, where a set of k = 6 candidate vertices is highlighted to
select one of them. Additionally, in contrast to the standard
RRT techniques, we do not need a local planner to connect
a sample point to a node. This is done by setting a small
expanding step and checking the feasibility of the new state.
This heuristic has a remarkable advantage, it only requires
to compute the map distance for R2.

IV. MOTION PLANNING FOR THE ROBOTS

In this section, we address Problem 2 by computing
the trajectory of each robot that circulates with a desired
velocity around the boundary. Let R = {r1, r2, . . . , rk} be
the set of configurations of the k robots, where each robot
configuration is represented by the vector ri = [xi, yi]

T ,

0.0 0.5 1.0 1.5 2.0

x

−0.5

0.0

0.5

1.0

1.5

2.0

y

∂γ(t, s(t))

∂γ(t + ∆t, s(t + ∆t))

`

∂Ωt

∂Ωt+∆t

Fig. 2. Robot trajectory (yellow line) in a time interval [t, t + ∆t], it is
approximated by a linear movement (dashed line) for a ∆t. The blue curve
is the boundary at time t, and the green curve is the boundary at time t+∆t.
The robot moves from point γ(t, s(t)) to point γ(t+ ∆t, s(t+ ∆t)).

i = 1, 2, ..., k where xi, yi define the coordinates in the
Euclidean space. We assume the holonomic fully actuated
model for each robot:

ṙi =

[
ẋi
ẏi

]
= wi, (4)

where wi is velocity inputs. Thus the velocity magnitude is
given by vi =

√
ẋ2i + ẏ2i . In order to track the perimeter

∂Ω, each robot ri circulates along the dynamic boundary
in counter-clockwise manner with a desired velocity v. At
t = t0, the robot ri starts at location γ(t0, s0), where the
constant s

0
∈ s maps to an arbitrary point of the boundary.

Now we define a function describing the trajectory of each
robot along the boundary.

Definition 3: The trajectory of robot i along the bound-
ary is represented by the function Si(t), where for each time
t, there is a function s(t) : R≥0 → [0, 1] such that

Si(t) = γ(t, s(t)), ∀t > t0

in which, s(t) maps the curve parameter s to the robot
position. It satisfies the initial condition s0 = s(t0).

Theorem 1: If a robot is moving with a desired velocity
v in counter-clockwise direction along a dynamic boundary,
described by the function γ(t, s), then the robot trajectory
S(t) = γ(t, s(t)) that starts at a point in γ(t0, s0), is such
that s(t) satisfies the ordinary differential equation

ṡ =
1

x2s + y2s

(
−xsxt − ysyt +

√
v2(x2s + y2s) +B

)
, (5)

where B = −x2sy2t + 2xsxtysyt − x2ty2s , and xs = ∂x
∂s , ys =

∂y
∂s , xt = ∂x

∂t , and yt = ∂y
∂t .

Proof: We analyze the movement between time t and
time t + ∆t. It may be approximated by a straight linear
movement for a very small ∆t. Then between t and t+ ∆t,
the robot moves a distance `, as illustrated in Figure 2.

In this proof, we abuse the notation of x and y in order
to represent separate coordinates of γ. Then we can rewrite
the γ function as a combination of functions x, and y,

γ(t, s) =

[
x(t, s)
y(t, s)

]
.

The distance ` is calculated by the Pythagorean theorem,

`2 = ∆x2 + ∆y2,

where ∆x = x(t + ∆t, s(t + ∆t)) − x(t, s(t)) and ∆y =
y(t+∆t, s(t+∆t))−y(t, s(t)). As the robot moves linearly
with constant velocity v, then ` = v∆t,

v2 ∆t2 = ∆x2 + ∆y2,

which is the same in Newton’s notation,

v2 = ẋ2 + ẏ2. (6)

Using the chain rule for ẋ and ẏ, we obtain ẋ = xt+xsṡ and
ẏ = yt + ysṡ, respectively. Replacing ẋ and ẏ in Equation
(6),

v2 =
(
xt + xsṡ

)2
+
(
yt + ysṡ

)2
.

Expanding terms and simplifying we obtain,

v2 = x2t + 2ṡxsxt + ṡ2x2s + y2t + 2ṡysyt + ṡ2y2s .

Solving for ṡ, we obtain two solutions. As the robot is
moving in counter-clockwise manner, the variable s is always
increasing, then the solution is

ṡ =
1

x2s + y2s

(
−xsxt − ysyt +

√
v2(x2s + y2s) +B

)
,

where B = −x2sy2t +2xsxtysyt−x2ty2s . The robot’s trajectory
is computed by the function S(t) = γ(t, s(t)), that satisfies
the initial condition s0 = s(t0).

The first-degree differential equation above can be solved
by numerical methods like Runge-Kutta4. Then, the starting
point γ(t0, s0) can be used as the initial condition in order
to obtain an approximation of the function s(t). Hence, each
robot ri, i = 1, 2, ..., k receives the boundary function γ with
a different initial location si ∈ [0, 1] in order to obtain its
trajectory Si(t), by solving the Differential Equation (5) in
a distributed way. After receiving the boundary function, no
robot needs to communicate with other robots until it has
completed its trajectory.

In order to enforce each robot ri to follow the desired
trajectory Si(t), we compute the control inputs in (4) by
means of:

wi = Ṡi(t) + k(Si(t)− ri(t)), (7)

where k > 0 is a constant.

Minimum linear velocity to track the boundary
The minimum linear velocity, vmin, required to make the

robot advance along the curve must satisfy ṡ > 0 ∀ t ∈
[t0, tf]. Using Equation (5) with ṡ > 0,

1

x2s + y2s

(
−xsxt − ysyt +

√
v2(x2s + y2s) +B

)
> 0,

and isolating v, we obtain v >
√
x2t/2 + y2t /2. As the right

side of the Equation depends on time t, and the velocity
is constant, the minimum constant velocity that can walk
around the boundary is the maximum in the interval:

vmin > max
(√x2t

2
+
y2t
2

)
. (8)

For example, for the growing circle with boundary equa-
tion γ(t, s) = [t cos(s), t sin(s)]T , by applying Equation (8),

vmin > max
(√cos2(s)

2
+

sin2(s)

2

)
,

(a) Ellipse at t = 1. (b) Ellipse at t = 2. (c) Ellipse at t = 3.

(d) Crocked-egg at
t = 1.

(e) Crocked-egg at
t = 2.

(f) Crocked-egg at
t = 3.

Fig. 3. Deformation of an ellipse and a crocked egg while maintaining
their area constant.

then, we obtain the minimum velocity vmin > 1/
√

2.

V. EXPERIMENTS AND RESULTS

As we mentioned in Section II, we propose a general
model for any shape function Φ. In our experiments, we
consider two different shapes to validate our technique in
simulations and with actual robots. The shapes are the ellipse
and the crooked egg. Both shapes have some parameters
that influence the perimeter and the area. By constraining
these parameters, we might maintain the corresponding area
constant during deformations to pass through obstacles and
achieve the goal. The area is an important constraint because
it allows the escorted agents to move within the dynamic
shape by reconfiguring their formation.

The deformable behavior plays a vital role when the shape
(and correspondingly the robots) must pass though a narrow
passageway or a corner. Figures 3(a-c) illustrate how the
deformable ellipse can pass through a reduced space and
simultaneously maintaining its constant area. Figure 3(d-
f) shows how the crocked egg is flexible enough to bend
around corners. Hence, we can choose a corresponding
shape depending on the environment. In the rest of this
section, we formulate the two kinds of shapes, describe
the simulations, and the experiments with actual robots.
Watching the accompanying video may help the visualization
of the robots executing the computed trajectories.

A. Shape model Formulations
We formulate the ellipse and the crooked-egg functions as

follows.
1) Ellipse function: An ellipse centered in [x, y]T =

[q2, q3]T and semi-axes [r1, r2]T = [q0, q1]T was described
in Eq. (1). In order to maintain a specific area A in this
shape, we use the area constraint A = πr1r2, to define r2 as
a function of r1 as, r2 = A

π.r1
. Then, we obtain the ellipse

function with n = 3 degrees of freedom,

Φe(s,q) =

[
q0 cos(2πs) + q1
A
πq0

sin(2πs) + q2

]
. (9)

We can also add a new degree of freedom n = 4 for rotation,

Φe(s, q) =

[
q0 cos(2πs) cos(q3)− A

πq0
sin(2πs) sin(q3) + q1

A
πq0

sin(2πs) + q0 sin(2πs) cos(q3) + q2

]
,

(10)

where the configuration vector is q = [q0, q1, q2, q3]T .
2) Crooked egg shape: The crooked egg is a shape that

can be deformed to adapt to corner-based environments like
mazes. The general form of the crooked egg function in polar
coordinates (r, θ) is r(θ) = c0 sin3 θ + c1 cos3 θ, where the
coefficients c0 and c1 determine the orientation, form, and
size of the shape. The total area A is given by,

A =

2π∫
0

r2(θ)

2
dθ =

5π

16
(c20 + c21).

In order to keep the area constant, we can change c0 as a
function of c1 or vice-versa. If we say that c0 or c1 is c then
we can write the other as:

f(c) =

√
16A

5π
− c2.

where c ≤
√

16A/5π. We avoided the negative value of f
because it gives the orientation of the shape and we will
include it in the r function. Then the function r can be
extended by adding a parameter q0 ∈ [−4, 4] that determines
the form and orientation of the crooked-egg shape,

r(θ, q0) =

(q0 + 3) sin3 θ + f(q0 + 3) cos3 θ, if q0 ∈ [−4,−2)
f(q0 + 1) sin3 θ − (q0 + 1) cos3 θ, if q0 ∈ [−2, 0)
(1− q0) sin3 θ − f(q0 − 1) cos3 θ, if q0 ∈ [0, 2)
−f(q0 − 3) sin3 θ − (q0 − 3) cos3 θ, if q0 ∈ [2, 4].

By converting from polar coordinates to Cartesian coordi-
nates, we can obtain the crooked egg model as

Φ(s,q) =

[
r(2πs, q0) cos(2πs) + q1
r(2πs, q0) sin(2πs) + q2

]
, (11)

where q1 and q2 are the translation factors, and q0 determines
the form and the orientation of the crooked-egg.

B. Simulations

In order to validate our proposed method, we initially
created two different scenarios for simulations. The first
one uses the ellipse function (Eq. (10)) to navigate in an
environment with narrow spaces vertically and diagonally.
By using our motion planning algorithm (Alg. 1), the shape
is transformed to pass through the obstacles, from a starting
point S to a goal point G, by adapting its orientation and
its anchor. We use the boundary function γ(t, s) to obtain
four different robot trajectories Si(t), i = 1, ..., 4. Figure 4
shows an snapshot of the trajectories that each robot follows.
The robots are represented by small circles with different
colors, and the continuous lines connected to each robot as
a tail, represent the movement during the last 660s before
the snapshot.

The second scenario uses the crooked-egg shape (Eq. (11))
to escort a constant area, from a start point S to a goal point
G, in a maze. The robot trajectories are shown in Figure 5,
the tail shows the motion of the last 330s before the snapshot.
It is possible to see how the obtained crooked-egg function
adapts its shape, as planned by Algorithm 1, to pass through
the corners.

In both scenarios, the robots maintain a constant linear
velocity v = 0.39m/s while they move around the dynamic
boundary. We can see that the resulting trajectory does not

0 20 40 60 80 100 120 140 160

x (m)

0

20

40

60

80

100

y
(m

)

S

G

Fig. 4. Escorting an ellipse shape with constant area in an environment with
obstacles. Snapshot of four robot trajectories. The small circles represent the
robots and the continuous lines are the recent movement before the snapshot.

0 20 40 60 80 100 120 140 160

x (m)

0

20

40

60

80

100

y
(m

)

S

G

Fig. 5. Escorting a crooked-egg shape in a maz. The walls are represented
by the black rectangles.

collide with obstacles or walls as we are navigating in the
free configuration space.

We found that the robots start in approximately equidistant
positions, but depending on the boundary dynamics, the
robots have an attractive behavior to the points that have
the tangent vector in the same direction of the shape’s
translation. However this phenomenon is reduced when the
robots’ velocity v is high in comparison to the shape’s
translational velocity.

C. Experiments with real robots

To evaluate the applicability of the proposed technique in
real world with the presence of external noise and unmodeled
dynamics, we have performed some experiments with a team
of four e-puck robots (See Fig. 6). Our testbed is composed
of an open map with dimensions of 150 × 125 cm and
localization based on a camera mounted on the ceiling. We
used the Robot Operating System (ROS) as implementation
too. To command each e-puck (differential) robot i, we
convert the robot input of Equation (7) to send linear and
angular velocities (vi, ωi), i = 1, ..., 4 based on the static
feedback linearization scheme [16] as follows,[

vi

wi

]
=

[
cos(θ) sin(θ)
− sin(θ)

d
cos(θ)
d

]
wi, (12)

Fig. 6. A team of four E-puck robots.

0 20 40 60 80 100 120 140

x (cm)

0

20

40

60

80

100

120

y
(c
m

)

r3

S3(t)

(a) Trajectory for Robot r3. The dashed line represents the
desired trajectory S3(t)

0 50 100 150 200 250 300 350 400

t (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v
(c
m
/s

)

|ṙ3|
v3

(b) Linear velocity for Robot 3 and the desired constant
velocity v3.

Fig. 7. Real Robot motion in comparison to the desired motion.

where θ and d are the robot orientation with respect to
the global frame and the constant offset point parameter,
respectively.

A trial of the real robot experiment and the com-
puted trajectories can be watched in the accompanying
video [https://www.youtube.com/watch?v=Ug5Ne6v34iQ].
In Figure 7(a), we illustrate how robot 3 follows the tra-
jectory S3(t). It is possible to see that the robot follows the
trajectory very close but not exactly, for this reason, we must
take into account a margin of possible collisions to increase
the size of the obstacles before the shape motion planning.
We can see in Fig. 7(b) how the proportional controller tries
to maintain the constant velocity v3. At the beginning, we
get a peak in the velocity until the convergence.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a surveillance method to escort
a set of agents from one place to a goal. We stated and
proposed a solution for two problems for dynamic perimeter

surveillance. The first one states how to estimate the trajec-
tory of a boundary to guard the agents, by generating a plan
to move and to deform a boundary shape. We approached this
problem by using a modification of the classical kinodynamic
motion planning technique to create an analytical continuous
function for the boundary behavior. The second problem
states how to move the robots around the boundary function
with a desired constant velocity. We proposed a method that
takes the boundary function to create the robot trajectories.
These trajectories are obtained of resolving a differential
equation in each robot distributively. We validated our pro-
posal in simulations and with real robots. In our experiments,
we showed the flexibility and effectiveness of our method by
testing in different scenarios. With two different shapes, the
ellipse and the crooked egg, we can encompass a finite area
around complex environments.

As a future work, we would like to extend this method
to decentralize the whole planning process. Furthermore, we
also would like to change the deformation strategy regarding
to application conditions, i.e. using obstacles as an aid to
protect the internal agents and distribute the robots along
the open area.

REFERENCES

[1] F. Zhang and N. E. Leonard, “Coordinated patterns of unit speed
particles on a closed curve,” Systems & control letters, vol. 56, no. 6,
pp. 397–407, 2007.

[2] N. Ceccarelli, M. Di Marco, A. Garulli, and A. Giannitrapani, “Col-
lective circular motion of multi-vehicle systems,” Automatica, vol. 44,
no. 12, pp. 3025–3035, 2008.

[3] L. Pimenta, G. A. Pereira, M. M. Gonçalves, N. Michael, M. Turpin,
and V. Kumar, “Decentralized controllers for perimeter surveillance
with teams of aerial robots,” Advanced Robotics, vol. 27, no. 9, pp.
697–709, 2013.

[4] L. Sabattini, C. Secchi, and C. Fantuzzi, “Closed-curve path tracking
for decentralized systems of multiple mobile robots,” Journal of
Intelligent & Robotic Systems, vol. 71, no. 1, pp. 109–123, 2013.

[5] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
Robotics, IEEE Transactions on, vol. 20, no. 5, pp. 865–875, 2004.

[6] C. C. Cheah, S. P. Hou, and J. J. E. Slotine, “Region-based shape
control for a swarm of robots,” Automatica, vol. 45, no. 10, pp. 2406–
2411, 2009.

[7] S. P. Hou and C. C. Cheah, “Dynamic compound shape control of
robot swarm,” Control Theory & Applications, IET, vol. 6, no. 3, pp.
454–460, 2012.

[8] Y. Cao and R. Fierro, “Dynamic boundary tracking using dynamic
sensor nets,” in Decision and Control, 2006 45th IEEE Conference
on, Dec 2006, pp. 703–708.

[9] H. M. Choset, Principles of robot motion: theory, algorithms, and
implementation. MIT press, 2005, ch. 7.

[10] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, 2000, pp. 293–308.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotic Research,
vol. 30, no. 17, pp. 846–894, 2011.

[12] D. Schneider, E. Schomer, and N. Wolpert, “Completely randomized
rrtconnect: A case study on 3d rigid body motion planning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015.

[13] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based
motion planning with constant-time inference,” in IEEE International
Conference on Robotics and Automation (ICRA), 2015.

[14] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” The
International Journal of Robotics Research, vol. 20, pp. 378–400,
2001.

[15] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic
planning for robot manipulators with acceleration limits,” in Intelli-
gent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, Sept 2014, pp. 3713–3719.

[16] J. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of mul-
tiple mobile robots,” in Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on, vol. 4, May 1998, pp. 2864–
2869 vol.4.

