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Abstract Achieving consensus in distributed robot networks is a challenging task
when the network contains non-cooperative robots. The conditions of robustness in
communication networks are very restrictive and difficult to adapt to robot networks
where the communication links are based on proximity. In this paper, we present
a new topology network that is suitable for triangular lattices. We introduce suffi-
cient conditions on hexagonal formations to offer resilience up to F non-cooperative
robots. Using our framework, a resilient backbone can be designed to connect mul-
tiple points or to cover a given area while maintaining a robust communication net-
work. We show theoretical guarantees for our proposed hexagonal formation and its
variations. Different scenarios in simulations are presented to validate our approach.

1 Introduction

The communication network of a distributed system is the essential mechanism for
coordination. Robots can achieve agreements by only using nearest neighbor com-
munication [1, 2, 3], but such systems rely on the fact that all robots in the net-
work are cooperative. As a consequence, large networks, composed of thousands
of robots, are susceptible to failure when one or a small number of robots are non-
cooperative and sharing wrong information. These non-cooperative robots can be
attackers (e.g. a malicious outsider controlling a few robots and trying to manip-
ulate the whole network) or defective (e.g. a robot with a malfunctioning location
sensor).

In the networking literature, robust networks [4, 5, 6, 7] have been developed
to achieve consensus in the presence of F -malicious agents. However, those ap-
proaches require high connectivity and specific conditions that are difficult to satisfy
in proximity-based networks. Increasing the algebraic connectivity of the commu-
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nication network increases the network robustness [8, 9], but it also conglomerates
the robots when the communication radius is fixed.

Mobile Robots in lattice-based configurations have been widely studied in robot
formations [10, 11]. These lattice-based configurations offer a notion of order and
modularity in large systems that bring properties such as scalability, reconfigurabil-
ity, and redundancy. Organizing these modular systems with interactive components
allows us to group large number of robots and to understand their capabilities with-
out checking each individual robot. In this way, we can create a link between robust
networks and robot formations. In a previous work [12], we presented a triangular
formation for robot networks that can achieve resilient consensus in the presence of
a single non-cooperative robot. However, a robust formation for any number of non-
cooperative robots is not a straightforward extension. The work in [13] suggests an
underlying structure in the communication graph to design of robust formations. In
this paper, we propose a design method for robot formations in a triangular lattice.
This approach guarantees resilience up to F non-cooperative robots using a fixed
communication radius.

The main contribution of this paper is proposing a new hexagonal formation
that guarantees resilient consensus for robot networks that contain up to F non-
cooperative robots. In contrast to related works, this is the first work that offers and
expandable robot formation in the plane while maintaining the resilience properties.

2 Preliminaries on Resilient Consensus

Consider a network composed of a set of nodes V = {1, 2, ..., n} that are repre-
sented by points in a planar space xi ∈ R2, for all i ∈ V . Every node is equipped
with a communication module that allows it to communicate with other nodes.
The ability to communicate with adjacent nodes defines the set of connections
E ⊆ V × V . Therefore, the network is modeled as an undirected graph G = (V, E).
The neighbors of node i are Ni = {j|(i, j) ∈ E}. In this setup, where agents share
information among them. An agent is said to be cooperative if it applies the consen-
sus update rule and communicates its value to its neighbors at every time-step.

Definition 1 (Non-Cooperative Agent). An agent is non-cooperative if it applies a
different update rule at any time step.

In a setup where each node has a different scalar value, exponential convergence
to a common value can be achieved by computing the average of the neighbors and
sharing the result [2, 1, 14, 15]. However, a single non-cooperative node can avoid
convergence for the whole team [12].
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2.1 Resilient consensus

A robust network is defined as a network that can reach consensus, even in the
presence of F non-cooperative nodes. Neither the identity nor the strategy of the
malicious nodes is known. A known method that achieves consensus by converg-
ing to a weighted average is the Weighted Mean-Subsequence-Reduced (W-MSR)
algorithm [4, 16].

The W-MSR algorithm [4] consists of three steps, executed at time t. First, node i
creates a sorted list, from smallest to largest, with the received values from its neigh-
bors Ni. Second, the list is compared to xi[t], and if there are more than F values
that are larger than xi[t], the F largest values are removed. The same removal pro-
cess is applied to the smaller values. The remaining neighbors, without removed
values, are denoted byRi[t]. Third, node i updates its value with the following rule:

xi[t+ 1] = wii[t]xi[t] +
∑

j∈Ri[t]

wij [t]xj [t], (1)

where wij > 0, and
∑

j wij [t] = 1. Yet, for this method to work in the presence of
malicious nodes, the network must satisfy certain topological conditions, which we
detail below.

Definition 2 (r-reachable). A nonempty vertex set S ⊂ V is r-reachable if ∃i ∈ S
such that |Ni\S| ≥ r, r ∈ Z≥0, that is, if it contains a node that has at least r
neighbors outside that set.

Definition 3 (r-robust graph). A graph G is r-robust if for each pair of disjoint sets
S1,S2 ⊂ V at least one is r-reachable.

Using the WMSR algorithm, a robust network is able to achieve asymptotic con-
sensus even in the presence of F malicious nodes as it is shown in Theorem 1.

Theorem 1 ([4]). Consider a time-invariant network modeled by a digraph G =
(V,E) where each normal node updates its value according to the W-MSR algo-
rithm with parameter F . Under the F -local malicious model, resilient asymptotic
consensus is achieved if the topology of the network is (2F + 1)-robust. Further-
more, a necessary condition is for the topology of the network to be (F + 1)-robust.

Although these recent works provide a rigorous study of the topological char-
acteristics that are necessary to provide resilience against a number of malicious
agents [17, 4], they do not consider the physical constraints that real-world systems
often have, such as limited or non-adjustable communication radii. Hence, it is not
clear how the methods are applicable in real settings, and it is still an open question
if their implementations are suitable to distributed actuator/sensor networks.
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2.2 F-Elementals

The work in [13] introduces the concept of F -elemental graphs that satisfy the 2F+
1-robust conditions with the minimum number of nodes.

Definition 4 (F -elemental graph). A graph G = (V, E) is an F -elemental graph,
F ∈ N, if it satisfies that:

1. The number of vertices is |V| = 4F + 1.
2. There is a set V ′ ⊂ V of 2F vertices that are connected to all vertices in V .
3. The set V\V ′ forms a connected subgraph.

Theorem 2 ([13]). Given an upper bound of non-cooperative agents F , if a com-
munication graph is an F -elemental graph, it is 2F + 1-robust.

The elemental graphs can be the starting point to design a resilient network be-
cause they can be extended. The work in [16] presents a method to increase the
number of vertices in a r-robust graph by continually adding vertices with incoming
edges from at least r nodes in the existing graph:

Theorem 3 ([16]). Let G = (V, E) be an r-robust graph. Then the graph G′ =
(V ∪ {i}, E ∪ E ′}) is r-robust if |Ni| ≥ r, where i is a new vertex added to G and
E ′ is the edge set related to i.

3 Robot Formations on Triangular Lattices

In this paper, we focus on robot formations that are based on triangular lattices. A
triangular lattice of triangle side ` can be obtained through linear combinations with
integer coefficients of the base vectors v1 = [ 1 0 ]

T and v2 = [ 1/2
√
3/2 ]

T . The
triangular lattice is the set

L = {`(av1 + bv2)| a, b ∈ Z}, (2)

where ` is the scale factor of the lattice. We call the robots by their index, denoting
the robot set by R = {1, 2, ..., n}. The robots are located in the lattice, where their
associated location is denoted by xi ∈ L, for all i ∈ R. Each robot is equipped with
a communication transceiver and is able to interchange messages with robots that
are located within a radius R. Since the communication radius R is always scaled by
`, without lose of generality, we assume that ` = 1 for simplicity in this manuscript.
The robot team forms a communication network which is defined as follows.

Definition 5 (Communication network). Given a set of robots R and a com-
munication radius R, the communication network of R is an undirected graph
GR = (V, ER), where the vertices are the robots V = R and the edges are

ER = {(i, j) | i, j ∈ V ∧ ‖xi − xj‖ ≤ R}.
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The placement of the robots in the lattice can also be modeled as a graph. We
define the lattice graph as follows.

Definition 6 (Lattice graph). A lattice graph G` = (V, E`) of a robot set R is a
graph, where the vertices are the robots V = R and the edges are

E` = {(i, j) | i, j ∈ V ∧ ‖xi − xj‖ ≤ `}.

A set of robots S ⊆ R are lattice neighbors if its associated lattice graph is
connected. Giving a robot set S and a robot i 6∈ S, the robot i is a lattice neighbor
of a set S, if there exists a robot j ∈ S such that ‖xi − xj‖ = `. We denote the set
of lattice neighbors of a set S by

LS = {i|i ∈ R\S, j ∈ S ∧ ‖xi − xj‖ = `}.

3.1 Hexagonal formations and variations

In a triangular lattice, forming hexagons presents advantages in terms of commu-
nication for wireless or proximity-based networks. We want to focus on hexagonal
configurations and variations.

Definition 7 (p-hexagonal formation). A set of robots on a lattice,Hp, is said to be
in a p-hexagonal formation if there exists a circle of radius p ∈ N≥2 that surrounds
all robots without empty lattice points within the circle.

The number of robots in a p-hexagonal formation is given by

|Hp| = 1 + 6

p∑
i=1

i

= 3p2 + 3p+ 1 (3)

We denote the lattice neighbors of a p-hexagonal formation by LHp . Every p-
hexagonal formation has a centroid and it is defined as follows.

Definition 8 ( centroid). A robot i ∈ Hp is a centroid if the center, c ∈ L, of the
circle of radius p that encloses all robots in Hp, is equal to the location of robot i,
i.e. xi = c.

The p-hexagonal formations are suitable to form resilient communication net-
works. The following theorem shows the relationship between the size of the for-
mation and its robustness against non-cooperative agents.

Theorem 4. A p-hexagonal formationHp is 2F + 1−robust with

F =

{
3 if p = 2,⌊
3p(p+1)

4

⌋
if p ≥ 3,

(4)
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Fig. 1 A p−hexagonal for-
mation, for p = 2, which
is 2F + 1-robust, F = 3,
represented by the yellow
region. The robots are the
blue and red disks. Hp can
be divided into: a concentric
(p − 1)−hexagonal forma-
tion, Hp−1 (red region) and
its boundary B (blue region).
The boundary B also contains
a subset B′ (green region).

B′

B

Hp−1

Hp

p

if the robot communication radius is R = 2p− 1.

Proof. Initially, we proceed show that the communication network of a p−hexagonal
formation contains an F -elemental graph. The number of robots in an F -elemental
graph is (4F + 1). The setHp has enough robots to create an F -elemental graph as
it satisfies the inequality

4F + 1 ≤ |Hp|
≤ 3p2 + 3p+ 1,

for any p ≥ 2 and F given by (4).
The set of robots in the p−hexagonal formation, Hp, can be separated into two

disjoint subsets, a concentric internal (p − 1)-hexagonal formation, Hp−1, and a
boundary set B = Hp\Hp−1. Let us consider a subset B′ ⊂ B such that its number
of robots is |B′| = (4F + 1)− |Hp−1| and the robots in this set are adjacent in the
lattice. We illustrate these sets in Figure 1.

The communication network of the robot set Hp−1 ∪ B′ is 2F + 1-robust, since
it it can form an F -elemental graph (satisfying the conditions of Def. 4). The set
Hp−1∪B′ contains 4F +1 vertices (satisfying condition 1). The maximum distance
‖xi − xj‖ of any pair of robots i ∈ Hp−1, j ∈ Hp is 2p − 1, and hence, if the
communication radius is R = 2p − 1, every robot in Hp−1 will be communicated
with every robot in Hp. We can also verify that the number of elements in Hp−1 is
greater or equal than 2F as

|Hp−1| ≥ 2F⌊
3p2 − 3p+ 1

2

⌋
≥ F,

where F is given by (4). Therefore, any subset V ′ ⊆ Hp−1 of |V ′| = 2F satisfies the
condition 2 of the F -elemental graph. Since R > 1 and the robots in B′ are adjacent
in the lattice, they form a connected subgraph. Then, the robots inHp−1\V ′ are also
connected to B′, satisfying condition 3.
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We can extend the F -elemental graph of the robot set Hp−1 ∪ B′ to include all
remaining robots in B\B′. Lets pick a robot i ∈ B\B′ which is adjacent in the lattice
to a robot in B′. Since robot i has more than 2F +1 neighbors (it is connected to all
vertices inHp−1 and, at least one of the vertices in B′), the communication network
of the robot setHp−1∪B′∪{i} is also 2F +1-robust by Theorem 3. We can repeat
the logic process of robot i to continue adding, one by one, all the remaining robots
in B\B′\{i}. As a result, the networkHp = Hp−1 ∪B is also 2F +1-robust. a ut

The lattice neighbors of a p-hexagonal formation LHp
have a minimum number

of communication neighbors inHp as it is stated in the following lemma.

Lemma 1. Let i ∈ LHp
be a lattice neighbor of a p-hexagonal formationHp. If the

communication radius is R = 2p− 1, the number of neighbors of i inHp satisfies,

3p2 − p− 1 ≤ |Hp ∩Ni| ≤ 3p2 + p− 2.

Proof. Let c ∈ L be the centroid location of Hp. The lattice neighbors of Hp are
in the set LHp = Hp+1\Hp which are located over a hexagon of radius p + 1. In
a hexagon of radius p + 1, the distance from the centroid to any hexagon vertex is
p + 1, and the distance from the centroid to any side is

√
3
2 (p + 1). Since, these

distances are the minimum and the maximum of any point on the hexagon,we can
say that euclidean distance of a neighbor i ∈ LHp

to the centroid c satisfies

√
3

2
(p+ 1) ≤ ‖xi − c‖ ≤ p+ 1.

We illustrate the closest and the farthest points in Figure 2. In the farther case, where
the node i is a hexagonal vertex, the communication radius of robot i coversHp but

p+ 1

2p− 1

c

xi

(a) Farther lattice neighbor ofHp

√
3(p+ 1)/2

√
3(2p− 1)/2

c

xi

(b) Closer lattice neighbor ofHp

Fig. 2 The farther and the closer neighbors of the centroid of Hp. The blue disks represent the
robots inHp. The x marks represent the lattice neighbors ofHp. The red and blue X represent the
farther and closer neighbors respectively. The red shadowed area represents the communication
coverage of the neighbor for R = 2p− 1.
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Hp

Hp+1

Hp+2

(a) p-hexagonal expansion.

H[1]
p

H[2]
p

(b) Two adjacent p-hexagonal formations.

Fig. 3 Variations of the p-hexagonal formation with p = 2.

the last two lines of the opposite sides (see Figure 2a). The number of non-neighbor
robots is |Hp\Ni| = 2(2p + 1). In the closer case, the neighbor i only has an
opposite side of the hexagon ofHp (see Figure 2b), the number of uncovered nodes
is |Hp\Ni| = 2(p+ 1) + 1 = 2p+ 3.

Therefore, the number of neighbors of i inHp, i.e. |Hp ∩Ni|, is bounded by

|Hp| − 2(2p+ 1) ≤|Hp ∩Ni| ≤ |Hp| − (2p+ 3)

3p2 − p− 1 ≤|Hp ∩Ni| ≤ 3p2 + p− 2.

We propose two variations of the p-hexagonal formation. The first one is the p-
hexagonal expansion, where the robots maintain the same communication radius
R = 2p− 1, but the radius of hexagon is increased to p+ k, k ∈ N. The expanded
hexagon is illustrated in Figure 3a. An expanded hexagon is also 2F + 1-robust as
it is shown in the following corollary.

Corollary 1. A (p+k)-hexagonal formation, k ∈ N, is 2F + 1-robust, where F sat-
isfies (4), if the the communication radius is R = 2p− 1.

Proof. We use induction to show this proposition. For k = 1, a (p + 1)-hexagonal
formation,Hp+1, contains a concentric formationHp, which is 2F+1-robust (from
Theorem 4). Since each robot i ∈ Hp+1\Hp, satisfies |Hp ∩ Ni| ≥ 3p2 − p − 1
(from Lemma 1) and the inequality 3p2 − p− 1 ≥ 2F + 1 holds for any p ≥ 2, the
communication network of Hp ∪ {i} is also 2F + 1-robust (by Theorem 3). In this
way, adding one by one each of the nodes in Hp+1\Hp, we show that the set Hp+1

is also 2F + 1-robust.
Assuming that the (p + l)-hexagonal formation is 2F + 1-robust, we can show

that the (p+ l+ 1)-hexagonal formation is also 2F + 1-robust. For every robot i ∈
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Hp+l+1\Hp+l, there exists a non concentric formationHp ⊂ Hp+l with a centroid
robot j such that ‖xi − xj‖ ≤ p + 1. Therefore, the robot i satisfies the minimum
number of neighbors in Hp+l. In this way, adding one by one each of the nodes in
Hp+l+1\Hp+l, we demonstrate that the setHp+l+1 is also 2F + 1-robust. ut

Extending the hexagonal formation is a fundamental part to design resilient for-
mations. In the following lemma, we show that any robust network that contains a
hexagonal formation can be extended by plugging an adjacent hexagonal formation.

Lemma 2. Let S be a set of robots with communication radius R = 2p − 1, which
contains at least one hexagonal formationH[1]

p ⊂ S and its communication network
is 2F + 1. If a hexagonal formation H[2]

p is joined to S, such that the centroids
i ∈ H[1]

p and j ∈ H[2]
p are lattice neighbors, the extended robot set S ′ = S ∪H[2]

p is
also 2F + 1-robust, where F satisfies (4).

Proof. We show that the additional nodes in S ′\S satisfy the minimum number of
neighbors (2F+1) in S (Theorem 3). Since each node i ∈ S ′\S is a lattice neighbor
ofH[1]

p , it contains at least 3p2 − p− 1 neighbors in S by Lemma 1. The inequality
3p2 − p − 1 ≥ 2F + 1 holds for any p ≥ 2, therefore the communication network
of Hp ∪ {i} is also 2F + 1-robust (by Theorem 3). In this way, adding one by one
each of the nodes in S ′\S , we show that S ′ is 2F + 1-robust. ut

Lemma 2 shows that a set S with some properties can be extendable. The basic
case of a set S that satisfies these properties is the p-hexagonal formation Hp as
well as its expansions. This lemma is the key to create the resilient backbones that
are described in the following section.

4 Resilient Backbones

We want to extend the p-hexagonal formations in such a way that a designer can
assemble a resilient network by defining what we call a resilient backbone and its
associated extended hexagonal formation.

Definition 9 (Resilient backbone). A resilient backbone is a set of robots C that
forms a connected lattice graph and each robot i ∈ C is the centroid of a p-hexagonal
formationH[i]

p .

Definition 10 (Extended hexagonal formation). An extended hexagonal forma-
tion,Qp(C), is a set of robots that contains a resilient backbone C and its associated
p-hexagonal formationsH[i]

p , for all i ∈ C, i.e.

Qp(C) = ∪i∈CH[i]
p .

A formation Qp(C) and its resilient backbone is illustrated in Figure 4.
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Fig. 4 An extended hexagonal formationQp(C). The robots in its associated resilient backbone C
are represented by the red dots.

Theorem 5. An extended hexagonal formation Qp(C) is 2F + 1-robust, where F
satisfies (4), if the communication radius is R = 2p− 1.

Proof. By definition, an extended hexagonal formation can be decomposed into p-
hexagonal formations Qp(C) = ∪i∈CH[i]

p . Lets arbitrarily choose a centroid i ∈ C
and define a set C′ = {i}. The extended hexagonal formation of C′ is a hexagonal
formation, and therefore it is 2F + 1-robust (from Theorem 4). Let j ∈ C\C′ be a
lattice neighbor of C′, we can say thatQp(C′∪{j}) is 2F+1-robust by Lemma 2. We
extend the robust set as C′ = C′ ∪ {j}. Since all robots in C are lattice neighbors,
and C is a finite set, we can continue adding lattice neighbors from C to C′ until
completing C′ = C. The formationQp(C′) is 2F +1-robust, thereforeQp(C) is also
2F + 1-robust. ut

Checking if a communication network is 2F + 1-robust is a NP-Hard prob-
lem [4, 16]. However, we can check if a set of robots form a extended hexagonal
formation in polynomial time. Algorithm 1 can check if a set of robots R form an
extended hexagonal formation. Line 1 computes a set Si, for all i ∈ R, that con-
tains all the surrounding robots in a radius p. Since we check every pair of robots, it
takes O(|R|2) computational time. Line 2 identifies the set of centroids C ⊂ R by
checking if the the number of surrounding robots is equal to the number of robots of
a p-hexagonal formation. Checking every robot, the computational time is O(|R|).
Creating the adjacency matrix of the set C can be computed inO(|C|2) time. Check-
ing if a graph is connected (Line 4) can be computed by running a Deep First Search
(DFS) algorithm with complexity O(|C|3). Therefore in a large network where the
centroids most of the robots are centroids, the time complexity of the algorithm is
O(|R|3).
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Algorithm 1: CheckExtendedHexagonalFormation(R, p)
1 Si = {j| j ∈ R ∧ ‖xi − xj‖ ≤ p}, ∀i ∈ R.
2 C = {i| i ∈ R ∧ |Si| = |Hp|} . Identify the centroids of the robot set.
3 G` = computeLatticeGraph(C)
4 return isConnected(GL) ∧Qp(C) = R

5 Simulations

Previous works [9, 8] have shown that the r-robustness is related to the algebraic
connectivity of the communication graph. In [9], the algebraic connectivity is used
to increase the robustness of the graph, but the downside of this approach is that the
robots tend to conglomerate when the communication radius is fixed. In this section,
we evaluate a critical configuration where the algebraic connectivity is not high. We
evaluated three different scenarios in a network of 266 robots and R = 3. The robot
formation is illustrated in Figure 5. Since this formation is an extended hexagonal
formation with p = 2, it is resilient up to F = 3 non-cooperative robots. In the
first scenario, the network has three non-cooperative robots {0, 3, 8}, and the robots
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Fig. 5 A set of 266 robots in a extended hexagonal formation. The lines represent the edges of the
lattice graph.
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Fig. 6 Consensus for three scenarios in the same robot formation.

apply the WMSR update rule with F = 3. We can see in Figure 6a that the robots
successfully achieve consensus. In the second scenario, we illustrate that the consen-
sus value can be manipulated if we increase the number of attackers {0, 3, 8, 9, 10}.
In the third scenario, the robots use WMSR with F = 5, but the cooperative robots
are not able to achieve consensus as it is shown in Figure 6b. Therefore, the first
scenario shows that the extended hexagonal formation can achieve consensus in the
presence of three malicious robots corroborating our theoretical analyses. Our anal-
yses presents sufficient conditions for robust communication networks as long as we
maintain up to F non-cooperative robots in the network. We also showed an strat-
egy of the non-cooperative robots to avoid resilient consensus when the required
conditions are not satisfied.

6 Conclusions and Future Work

In this paper, we proposed a new way to design robot formations that guarantee
consensus in the presence of non-cooperative robots. We developed a framework
based on hexagonal formations and some variations of it. Our formations can guar-
antee that the properties of robust graphs are fulfilled. Our simulations validated
some critical scenarios were the algebraic connectivity is low but the robots still
can achieve consensus if the proposed conditions are satisfied. As a future work,
we want to study network reconfiguration, different types of lattices, and higher
dimensions.
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