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Abstract In this paper, we consider environmental bound-

aries that can be represented by a time-varying closed

curve. We use n robots equipped with location sensors

to sample the dynamic boundary. The main difficulty

during the prediction process is that only n boundary

points can be observed at each time step. Our approach

combines finite Fourier series for shape-estimation and

polynomial fitting for point tracking in time. This com-

bination gives a continuous parametric function that

describes the boundary shape and its dynamics. We val-

idate our strategy in simulation and with experiments

using actual robots. We tested on non-convex bound-

aries assuming noisy measurements and inaccurate mo-

tion actuators.

Keywords Boundary prediction · Decentralized

estimation · Multi-Robot Systems

1 Introduction

Tracking and predicting the behavior of hazardous con-

taminants is a critical task to prevent catastrophes in

natural or urban environments. A few examples are oil

spills (Clark and Fierro, 2005; Fahad et al, 2015), forest

fires (Casbeer et al, 2005, 2006), harmful algae blooms
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Fig. 1 Enclosing a boundary with four robots. The red dotted
curve represents the recent shape of the boundary. The blue
disks and their associated green lines represent the robots
on the curve and their paths, respectively. The green points
represent the pointwise samples. The arrows represent the
velocity vector żi(t).

(Pettersson and Pozdnyakov, 2012), and radiation leaks

(Bruemmer et al, 2002). These and other similar oc-

currences possess a common characteristic, which is a

perimeter that borders the affected region.

The affected region can exhibit different behaviors,

such as expansion, contraction, translation, and rota-

tion. All these behaviors may happen at the same time

generating anisotropic changes that depend on multiple

external environmental factors.

Depending on the type, a phenomenon can be mea-

sured by a single sensor such as those aboard a satellite

(Smith, 1997). However, there are other instances where

a global observation is not possible, and only local sen-

sors may be available to observe the phenomenon, e.g.,

temperature, radiation, salinity. Being able to detect

the contaminant and to measure its location point, a

mobile robot can identify and track the anomalous re-

gion in the environment. The main difficulty in this sce-

nario is that only a finite number of points can be sam-
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pled at each time step. These points only describe the

location of the boundary in the environment, but they

do not include their change in time. We illustrate an en-

vironmental boundary tracked by four robots in Figure

1. Anticipating the dynamics of these phenomena is a

potentially life-saving indicator to support evacuations

or to dispel the hazard.

1.1 Related Works

We present a literature review of the most relevant

works that investigated this problem in the areas of

robotic sensor networks, multi-robot systems, and re-

lated areas. We propose to cluster the most relevant

works on monitoring environmental boundaries into cat-

egories according to four main facets of the problem.

1.1.1 Finding boundaries in the environment

When a team of robots starts exploring the environ-

ment, they persistently look for contaminated or af-

fected regions. These robots can execute different boundary-

search algorithms such as random walk (Bruemmer et al,

2002), spiral search (Clark and Fierro, 2005), cooper-

ative exploration (Saldaña et al, 2015), they may fol-

low an environmental function (Marthaler and Bertozzi,

2003a), or follow a gradient (Hsieh et al, 2008). Bruem-

mer et al (2002) proposes a bio-inspired algorithm us-

ing a robotic swarm to detect gradient-free chemical

contamination areas. This algorithm is based on po-

tential fields that allow the robots to search for multi-

ple static boundaries in a finite area. Srinivasan et al

(2008) propose an algorithm to move the robots to-

ward a contour or a level curve in a scalar field. In

(Cortés, 2012), the authors propose a cooperative al-

gorithm to detect boundaries that surround areas with

rapid changes based on statistical estimation. A hy-

brid approach to search and track the boundary with

multiple robots is presented in (Clark and Fierro, 2005;

Cruz et al, 2007). A simplified hybrid hierarchical con-

trol technique is proposed in (Zhang et al, 2013). In pre-

vious work, we proposed a coordination method to de-

tect and to track multiple dynamic boundaries (Saldaña

et al, 2015). Matveev et al (2015) extend the previous

works for non-holonomic Dubins-car-like robots.

1.1.2 Tracking static and dynamic boundaries

When the robots are already on the boundary, their

main task is to follow a static or time-varying bound-

ary accurately. In most of the tracking approaches, the

robots are driven to circumnavigate the boundary in a

counterclockwise manner (Kemp et al, 2004; Marthaler

and Bertozzi, 2003b; Bertozzi et al, 2005). Some works

use gradient information to control the tracking action

(Kemp et al, 2004; Marthaler and Bertozzi, 2003b; Zhang

and Leonard, 2010), while other works use gradient-

free approaches. Especially in the gradient-free case,

each robot can only sense if it is inside or outside the

contaminated area (Barat and Rendas, 2003; Casbeer

et al, 2005; Joshi et al, 2009). The most common and

straightforward approach is implemented by the bang-

bang algorithm (Kemp et al, 2004; Hsieh et al, 2005;

Marthaler and Bertozzi, 2003b; Joshi et al, 2009) in

which a robot keeps persistently switching steering an-

gles to change directions while circulating the perime-

ter. Additionally, a desired objective in the tracking

task is to distribute the robots evenly along with the

boundary shape (Kemp et al, 2004; Marthaler and Bertozzi,

2003b). In this way, the sampling points will be evenly

distributed to improve the estimation task. The specific

case of tracking static boundaries is studied in (Hsieh

et al, 2005; Marthaler and Bertozzi, 2003b).

Barat and Rendas (2003) presented an experimental

work to track multiple benthic zones using autonomous

underwater vehicles. In (Zhang and Leonard, 2005), a

cooperative method is proposed to track level curves

using the gradient information and to minimize the

square error between the robot location and the level

curve. The robots move in a pre-defined configuration

and cooperatively estimate the gradient of the centroid

by combining their measurements at each time step.

Menon et al (2014) presents a method to track a dy-

namic boundary with a single robot using a subopti-

mal sliding mode algorithm. The same authors also pre-

sented an extension of the tracking algorithm for three-

dimensional boundaries in (Menon and Ghose, 2013).

Matveev et al (2017) proposes a multi-target tracking

approach for a single robot model where a conglomer-

ated set of targets is modeled as a dynamic environ-

mental frontier. In (Casbeer et al, 2005, 2006), the au-

thors propose an approach for monitoring the fringe of

a forest fire. Instead of sampling pointwise data, this

work uses the information from an infrared camera to

sample sections of the boundary. As a result, the aerial

robots can observe and approximate local sections of

the boundary and perform smooth trajectories during

the tracking process.

Recent work by Li et al (2014) proposes a control

method to track dynamic plumes (pollutants released at

a point source) based on the advection-diffusion model.

Their robot controller is analytically constructed with

proved convergence for chemicals or liquid substances

poured in a marine environment. The method of Turge-

man and Werner (2017) allocates robots to track the

boundary and to find the plume source simultaneously.
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In this type of scenario, there is an interest in deploy-

ing robust robots in real environments (Mellucci et al,

2017).

1.1.3 Estimating the boundary shape

Once the robots are sampling the boundary using a

tracking algorithm, an important task is to estimate the

boundary shape using the collected pointwise measure-

ments. Usually, these pointwise measurements come from

the location sensor of the robot, i.e., a GPS sensor. One

of the main problems of mapping a time-varying bound-

ary is that only a small number of boundary points can

be sampled at each time step. This is due to the number

of mobile sensors is finite, and for this reason, mapping

a dynamic boundary as a closed curve remains a chal-

lenge. Kemp et al (2004) made the first attempt to solve

this problem. They represent the boundary curve with

n points (where n is the number of robots) and use a

snake-based algorithm (a well-known technique in com-

puter vision) to drive the robots towards the perimeter

in a distributed manner. In (Susca et al, 2008, 2009),

approximation theory of convex bodies is used to es-

timate slow-moving boundaries with a polygon with a

fixed number of vertices. This algorithm is said to be

provably convergent by increasing the number of inter-

polation points.

1.1.4 Predicting the boundary behavior

A relevant task, in the aforementioned scenarios, is not

only estimating the boundary shape but also predict-

ing how the boundary changes in time. Jin and Bertozzi
(2007) assume that an ellipse can approximate the bound-

ary shape. In their centralized method, the team of

robots acts as a single observer that estimates the bound-

ary dynamics using a Bayesian filter. In a posterior

work, the robustness of the technique is shown by im-

plementation with actual robots (Joshi et al, 2009).

However, elliptical shapes offer a very limited range of

applications in the face of the complexity of natural

boundaries. Another centralized method was proposed

by White et al (2007). Their method uses multiple aerial

vehicles to sample clouds at a fixed altitude. In a planar

representation, the sampled points are used to define

line segments of constant curvature, known as spline-

gons. Then, using the velocity of the measured points

in the cloud and the cloud motion model, the system

is able to generate a linear prediction of the bound-

ary. This linear prediction is a feasible solution only for

slow-moving boundaries or predictions for short-time

intervals. The work of Duttagupta et al (2011) pre-

dicts the behavior of non-closed curves by using range

sensors. Using this type of sensors, robots are able to

sample multiple points of the boundary at the same

time. However, they only work for some specific sce-

narios e.g. it is not suitable for salinity or tempera-

ture. The method due to Nagarathna et al (2014); Na-

garathna and S. (2015) takes into account the commu-

nication issues for reporting the boundary estimation as

a sink. Neighboring sensors communicate and exploit

the spatio-temporal correlation using the parameters of

the contour. As a result, the time to push the sampled

data to the sink is predicted. The contour is modeled as

a non-closed curve with drifted Brownian motion. They

consider measurement errors in detecting the boundary,

and the curve estimation is obtained by interpolating

the filtered sampled points.

In a previous work (Saldaña et al, 2016), we pro-

posed a method to predict the behavior of environ-

mental boundaries without prior knowledge of the dy-

namics of the boundary using a single robot and its

location measurements. Extending this centralized ap-

proach to multiple robots brings challenging issues such

as: i) design a coordination method to distribute the

robots along the dynamic curve; ii) integrate the sam-

pled information from all robots without a central ap-

proach; iii) parameterize the curve without a global

view of the boundary and the samples. In a centralized

approach, all robots might send all their measurements

to a central server. However, this would saturate the

communication network and limit the scalability of the

multi-robot system.

1.2 Contribution

The present work is related to the last three categories

(tracking, estimating, and predicting) and is specifi-

cally focused on predicting dynamic boundaries. A pre-

liminary portion of this manuscript was presented in

(Saldaña et al, 2017). We present an extended anal-

ysis and performance evaluation with simulations and

experiments with actual robots.

The main contributions of this work are i) We present

a multi-robot controller to sample a dynamic boundary

efficiently. We maximize the frequency that every point

on the curve is visited by a robot. ii) We propose a

mathematical framework to represent and estimate dy-

namic curves in the planar space. Our representation is

based on the combination of polynomials and Fourier

series that incorporates the variation in time. In con-

trast to related works, our method estimates not only

the shape of the boundary but also its behavior. iii) We

present a coordination method for collective estimation

without requiring a central agent. Our decentralized ap-

proach enables robots to integrate their estimate using
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a communication network in a ring topology. We high-

light that our method does not require a dynamic model

of the phenomenon.

2 Problem Statement

We are interested in estimating the behavior of a time-

varying region in a planar environment, which is bounded

by a well-delineated perimeter. A set of mobile sensors

with motion and communication capabilities forms the

robotic sensor network. Each robotic sensor can mea-

sure if it is either inside or outside the region of interest

at its location. We study how to sample the boundary

in order to estimate its dynamics.

2.1 Dynamic boundary

This region of interest is a connected set Ωt ⊂ R2 with

finite area, indexed by time t ∈ R≥0, and enclosed by a

boundary defined as

Definition 1 A dynamic boundary is a set of planar

points ∂Ωt such that for every point z ∈ ∂Ωt, and any

real value ξ > 0, the open disc centered at point z with

radius ξ contains points in Ωt and its complement Ω{
t .

The boundary ∂Ωt can be modeled by a boundary

function such that ∂Ωt = {γ(t, s) | s ∈ [0, 1]}.

Definition 2 A boundary function γ : R≥t0 × [0, 1]→
R2 describes a simple closed curve, mapped by the pa-

rameter s ∈ [0, 1), such that γ(t, 0) = γ(t, 1) and the re-

striction that γ(t, s) is an injective function of s ∈ [0, 1)

for a fixed time t. Hence, γ describes a continuous curve

with no self-intersecting points.

The unitarian tangent vector, at any point, is

T(t, s) =
∂γ(t, s)/∂s

‖∂γ(t, s)/∂s‖ , (1)

where ‖.‖ denotes the Euclidean norm of the vector. We

develop our tracking and estimation method based on

the following assumptions about the boundary.

Assumption 1 (Smooth boundary). — The bound-

ary function γ(t, s) changes smoothly with respect to the

curve parameter s and time t, i.e. its first and second

derivatives exist and are continuous.

Since actual robots have speed limitations, tracking

a completely arbitrary boundary dynamics is not al-

ways feasible. For example, the robot is not able to track

a boundary that moves with ever-increasing speed. There-

fore, we assume the following.

Assumption 2 (Bounded motion). — The magni-

tude of the velocity of any point on the boundary, de-

scribed by γ, is upper bounded by∥∥∥∂γ(t, s)

∂t

∥∥∥ ≤ εv. (2)

2.2 Robotic sensor network

The robotic sensor network is composed of n robotic

sensors, also called robots in this paper, that are ini-

tially distributed along the boundary. We constrain their

motion to the perimeter of the dynamic boundary ∂Ωt.

The location of ith robot along the curve at time t

can be described by an ever-increasing curve parame-

ter si(t). The location of the robot si(t) can be mapped

to the plain using the boundary function γ(t, si(t)). In

our robot configuration, all robots have a cyclic counter-

clockwise identification order along the curve. It means

that the i-th robot is behind its successor (robot i+ 1)

and after its predecessor (robot i − 1), i.e., si−1(t) <

si(t) < si+1(t).

As it was aforementioned, tracking controllers for

dynamic boundaries have been widely studied in the

literature (Kemp et al, 2004; Casbeer et al, 2005; Joshi

et al, 2009). Using local sensing and one of these track-

ing controllers (e.g., a bang-bang controller), we assume

that the robots always move on the curve. In this way,

we denote the robot location in the Euclidean space R2

and its first order dynamics is given by

xi(t) = γ(t, si(t))

ẋi(t) =
dγ(t, si(t))

dt
. (3)

Each robot is always circulating around the boundary

in a counterclockwise manner, i.e., ṡi(t) > 0, and we

can control its speed

‖ẋi(t)‖ = ui(t). (4)

We say that a boundary is slow-moving if we count

on sufficiently rapid robots. This leads us to the follow-

ing assumption.

Assumption 3 (Slow-moving boundary). — The

robots move much faster than the boundary, i.e.

‖ẋi(t)‖ �
∥∥∥∂γ(t, s)

∂t

∥∥∥.
We can also relax this assumption taking into account

the number of robots as

‖ẋi(t)‖ �
1

n

∥∥∥∂γ(t, s)

∂t

∥∥∥.
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2.3 Available Information

Each robot i is equipped with sensors to obtain local

information in discrete time. At each time step tk, k ∈
N, assuming that the robots always move on the curve,

each robot i is able to measure one point of the curve

and the velocity of the point, i.e.,

zi(tk) = γ(t, si(tk)),

żi(tk) =
∂γ(t, si(tk))

∂t
.

We note that żi(tk) is different from ẋi(tk) in (3), since

the first describes the velocity of the point, which can be

arbitrary depending on the phenomenon, and the sec-

ond describes the velocity of the robot moving around

the curve. We illustrate a scenario with four robots and

their sample vectors in Figure 1. The vector Ti is not

always perpendicular to żi because Ti depends on the

shape of the curve and żi depends on the motion of the

curve. However, in relative slow-moving boundaries, it

is also possible to use the vector perpendicular to the

robot velocity vector ẋi(tk), for cases where the vector

żi(tk) is not measurable. In a previous work (Saldaña

et al, 2016), we presented this approximation with sat-

isfactory results.

The robots can exchange messages using a ring topol-

ogy. This communication topology offers a natural way

to maintain network connectivity and to reduce the

number of hops when the robots are distributed along a

closed curve. In this topology, each robot i can commu-

nicate with its successor i+ 1 and its predecessor i− 1,

where n+ 1 = 1.

2.4 Objective

Our objective is to use a team of robots to predict

the behavior of a time-varying boundary. This led us

to two main problems to be solved. Initially, we want

to track the behavior of every point in the curve.

Problem 1 Design a multi-robot controller to distribute

the robots along the curve and to efficiently sample the

boundary.

In Section 3, we present a sampling strategy for

Problem 1. Using this strategy, we can assign a curve

parameter sj to each sample (tj , zi(tj)). In order to

improve the estimation, we describe a controller to ef-

ficiently sample the boundary in Section 4. After sam-

pling, each robot i has a datasetDi = {(tj , sj , zi(tj))|j =

1, ..., k} based on its sample points. We want to inte-

grate all the datasets to estimate the dynamics of the

curve.

Problem 2 Given a distributed dataset D = {Di|i =

1, ..., n} and local communication, estimate the func-

tion γ(t, s), which describes the dynamics of the envi-

ronmental boundary.

We present an estimation method for Problem 2 in

Section 5. Initially, a centralized approach is described,

and then, a coordination method to integrate all the

distributed datasets.

3 Sampling the Boundary

In order to track the motion of every point on the

closed-curve, we propose a method to parameterize the

curve by using the measured information and local com-

munication. This method is composed of three stages.

We initially introduce them in a centralized manner.

Then, we describe a way to decentralize this process

using the ring communication topology.

3.1 Enclosing the boundary

In the initial state, robots move along the curve in coun-

terclockwise direction by ui = Υ, where Υ > 0 is a de-

sired constant speed. The boundary is enclosed when

each robot i projects its vector żi(t) and this vector

crosses the path or robot i + 1. We illustrate the en-

closing stage in Figure 1. We can see four robot paths

intersect with the projection of vectors żi(t), for all

i = 1, ..., n.

3.2 Initial parameterization of the curve

Once the boundary is enclosed, we proceed to assign a

parameter value to each sample point. One way to en-

close a boundary is by using polylines (Saldaña et al,

2015). A polyline defines a continuous line based on

straight line segments, and it is composed by a set of

sorted points. The path of robot i is modeled as a poly-

line Pi(tk) = {zi(t)|t = t1, ..., tk} with sorted points

by decreasing time values. Figure 2(a) illustrates three

different robot paths after enclosing the boundary.

At time tk, the robots enclose the boundary, and

each robot i has a polyline Pi(tk). We take the last sam-

ple point of the polyline zi−1(tk) ∈ Pi−1(tk) and trace a

line that passes this point with direction żi−1(t). Since

we assumed that the boundary is slow-moving, part of

the polyline Pi(tk) is close to Pi−1(tk), and therefore,

the line traced from crosses Pi(tk) at point pi. Then,

we remove the older points after the intersection and

include the intersected point, the resultant polyline is

P ′i(tk) = {zi(t)|t = t1, ..., tl} ∪ {pi},
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(a) Initial paths after completing a cy-
cle. The actual boundary and polylines
are represented by the dashed line and
solid line respectively.

(b) Piecewise boundary, represented by
the solid line. The boundary at time tk
is represented by the dashed line.

(c) Parameterization of the sample
points (blue dots) by using the piecewise
boundary.

Fig. 2 Distributed parameterization of the closed-curve. It is computed in three steps: (i) enclosing the boundary as presented
in Panel (a), (ii) computing a piecewise boundary as presented in Panel (b), and (iii) the parameterization of the piecewise
boundary based on the arc-length is illustrated in Panel (c).

where l is the last point before the intersection. There

are two special cases to take into account: first, if the

line intersects multiple points in P ′i(tk), we remove all

the points after the most recent intersecting point; sec-

ond, if żi−1(t) = 0, it means that the boundary is static

at that point, then the point zi−1(tk) is on the polyline

Pi(tk) and the intersecting point is pi = zi−1(tk). Now,

we proceed to use all the new computed polylines.

Definition 3 A piecewise boundary is a set of n poly-

lines that surrounds a boundary,

B(tk) := {P ′1(tk), ...,P ′n(tk)}.

Each of these polylines comes from a robot path, and

they can be connected to form a closed loop by pro-

jecting the velocity vector ż of the first point of each

polyline.

Figure 2(b) illustrates the resultant piecewise bound-

ary after processing the paths from Figure 2(a). We

highlight that the piecewise boundary is a fundamen-

tal part of our method because it is used for the robot

distribution and the boundary estimation. In the next

sections, we will describe our approach to control the

robots in order to increase the updating frequency of

every point in the curve.

We now proceed to parameterize the piecewise bound-

ary B(tk). The length of the polyline, associated with

robot i, is denoted by `i := length(P ′i(tk)). The total

length of the piecewise boundary is ` =
∑n

i=1 `i. The

number of points in a polyline is denoted by |P ′i(tk))|.
We can assign a parameter s ∈ [0, 1] to each point of the

piecewise boundary based on the arc-length. Therefore,

the parameter of the jth sample point of the ith robot

is

sij =
1

`

( i−1∑
l=1

`l +

j−1∑
k=1

‖zi(tk+1)− zi(tk)‖
)
. (5)

Figure 2(c) shows the parameterization of the piecewise

boundary for the aforementioned example.

3.3 Decentralized coordination

In the initial stage, the robot with an identification

number equal to n serves as a temporary leader in
charge of identifying if the boundary is enclosed, and

creating the initial parameterization of the curve. Af-

ter the initial parameterization, the robots will continue

working without the need for a leader and estimate the

boundary using only local information and communi-

cation with their neighbors in the ring topology.

Robots can check if they enclose the boundary if

the projection of the vector żi(t) crosses the path of the

robot i+1. Following the ring communication topology,

each robot i shares its sample (t, zi(t)) to the robot i−1

at each time step t. Robot i−1 can identify the path of

robot i using only the received values. The global task

of enclosing the boundary is completed when all the

local tasks are completed. The robot team can check

the achievement of the global task by periodically ex-

changing messages. Each robot shares with its neigh-

bors a boolean flag representing whether its local task

has been completed or not. When it receives the flags

from its neighbors, it applies a logic and comparator to

its flag, and the received flags. Then it shares the new
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resulting flag. After exchanging n messages, all robots

will know whether the task was completed or not. This

checking process is periodically repeated until all the

robots complete their own local tasks, and as a conse-

quence, all flags will be true.

The robot team can also coordinate to parameter-

ize the curve. Every robot is able to locally compute

{P ′i(tk)}. Robot n sends {P ′n(tk)} to robot n−1. When

robot n−1 sends {P ′n(tk),Pn−1(tk)} to robot n−2. The

same process is repeated n times through the network

until the temporal leader receives the set

{P ′n(tk), ...,P ′1(tk)}. Then, the leader applies the pa-

rameterization using (5) and shares the result.

4 Distributing the robots along the curve

Our objective is to control the robots in order to visit

every point in the curve as frequently as possible. By

design, the robots move in a counterclockwise manner,

and we control the speed of the robots (from (4)). If the

robots circulate with speed Υ around a slow-moving

boundary, our problem becomes a distribution problem.

Since the boundary is a closed-loop, every point on the

boundary is going to be visited periodically by each of

the robots. If the robots move with constant speed, the

longest time that a point is going to be visited is propor-

tional to the longest distance between a pair of neighbor

robots. Therefore, we minimize the longest distance be-

tween every pair of robots by evenly distributing them

along the curve. In this way, in a static boundary, every

point will be visited with frequency

F =
Υ

si+1 − si−1
=
nΥ

`
.

Franchi et al (2010) designed a control law to move

and distribute a robot team around a circular shape.

Since a simple closed curve is topologically the same as

a circle, we can apply a similar approach to evenly dis-

tribute the robots along the boundary based on the arc-

length parameterization. We extend the results from

Franchi et al. for slow-moving closed curves.

In order to ensure the robots are evenly distributed

along the curve, we apply the following control law for

the i-th robot,

ui = Υ +K(`i+1 − `i), (6)

where K > 0 is a gain constant. It means that we

want each length of the updated paths to be the same,

`i → ¯̀
i, where ¯̀

i = (`i+1 + `i−1)/2. Note that using

(6), the ith robot only requires the length of the poly-

line of the robot i+1 and the length of its own polyline.

Those polylines are computed by simply connecting the

sample points. A prediction of the boundary shape is

not required at this stage. This behavior will homoge-

neously distribute the robots as long as they move on

slow-moving boundaries (see Assumption 3).

Proposition 1 If the boundary is slow-moving, and

each robot follows the control rule (6), the robots asymp-

totically converge to an equidistant distribution along

the curve (by arc-lenght). Additionally, the robots will

keep moving with constant speed Υ.

Proof. Initially, we re-parameterize the curve by arc-

length. The arc-length parameter is given by

r(s) =

∫ s

0

∥∥∥∂γ(t, u)

∂u

∥∥∥du.
Since ‖∂r/∂s‖ > 0 for all s, it has a differentiable in-

verse function s = s(r), we can consider a new curve

function

α(t, r) = γ(t, s(r)),

where the parameter r is bounded by 0 ≤ r ≤ L(t),

and L(t) is the arc-length of the curve at time t. The

location of the ith robot in the curve α(t, r) is denoted

by ri(t).

We can decompose the robot dynamics from (3) by

using the chain rule in the new parameterization,

ẋi(t) =
∂α(t, ri(t))

∂t
+
∂α(t, ri(t))

∂r
ṙi(t)

=
∂α(t, ri(t))

∂t
+ ṙi(t)Ti.

Then, its magnitude satisfies,

‖ẋi(t)‖ ≤
∥∥∥∂α(t, ri(t))

∂t

∥∥∥+ ṙi(t)‖Ti‖.

Since the curve is parameterized by arc-lenght, the tan-

gent vector is ‖Ti‖ = 1, and based on (4), we obtain

ui(t) ≤
∥∥∥∂α(t, ri(t))

∂t

∥∥∥+ ṙi(t).

Based on ∂α
∂t =

∂γ
∂t and (2),

ui(t) ≤ εv + ṙi(t). (7)

The path of the robot from the last point that inter-

sected the previous robot at time ti−1 and the current

position is

`i(t) =

∫ t

ti−1

‖ẋi(t)‖dt

≤
∫ t

ti−1

(εv + ṙi(t))dt

≤ εv(t− ti−1) + ri(t)− ri(ti−1).
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Since robot i−1 intersects the path at location ri−1(t),

the location of the robot is ri−1(t) = ri(ti−1). Based

on Assumption 3, if we increase the speed of the robot

then ui(t) approximates to ṙi(t) in (7). Therefore, for

the quasi-static case, we can say that the updated path

of the ith robot is approximately equal to a section of

the curve, i.e., `i = ri − ri−1. The controller from (6)

can be expressed as,

ui = Υ +K(ri+1 + ri−1 − 2ri). (8)

We rewrite (8) for all robots in a compact form

ṙ = Υ 1 +KAr,

where A is a circular matrix with its first row equal

to [−2 1 0 ... 0 1], with 1 = [1, ..., 1]T , and with r =

[r1, ..., rn]T as a vector of robot locations.

We say that robot i is equidistant to robot i + 1

and robot i− 1, if robot i is in the middle of the other

two robots. That is r̄i = ri, where r̄i = (ri+1 + ri−1)/2.

Then, the error is given by ei = r̄i − ri. In a general

form, for all robots,

e =
1

2
Ar.

The dynamics of the error is

ė =
1

2
Aṙ

=
1

2
A(Υ 1 +KAr)

=
Υ

2
A 1 +KAe

= KAe.

Since the matrix A is positive semidefinite and its

eigenvalues are non-positive, the linear system yields

the error e equals to the average of its initial values e(0).

This average is zero because 1Te(0) = 1TAr(0)/2 =

0.

5 Cooperative prediction

In this section, we present a parametric function that

describes the dynamics of the boundary, a centralized

way to estimate the parameters, and how to integrate

distributed information.

5.1 Modeling the curve function

We can approximate the trajectory of a point on the

curve in a finite time interval using an n-degree poly-

nomial. The trajectory of a point with a parameter

s0 ∈ [0, 1] can be approximated by

γ̂(t, s0) =

[
β00 β01 . . . β0n
β10 β11 . . . β1n

]
︸ ︷︷ ︸

β(s0)


1

t
...

tn

 .
︸ ︷︷ ︸
f(t)

(9)

Letting β(s0) be the 2× (n+ 1) constant matrix for s0,

and f(t) the polynomal terms that depend on t. Since

the curvature changes smoothly, we can generalize this

trajectory for every point on the curve by making the

matrix β a function of s ∈ [0, 1],

γ̂(t, s) = β(s) f(t). (10)

Each entry of β can be described by a periodic function

with β(0) = β(1), which is continuous, differentiable,

and injective for every s ∈ [0, 1]. Therefore, we can ap-

proximate every entry of β with the truncated Fourier

series as

β̂ij(s) = a
(ij)
0 +

m∑
k=1

a
(ij)
k sin(2πks)+

m∑
k=1

b
(ij)
k cos(2πks).

We arrange the terms of the Fourier series in a

vector g(s) = [1, sin(2πs), . . . , sin(2πms), cos(2πs), . . . ,

cos(2πms)]>. We join the Fourier vector g(s) and the

polynomial vector f(t) by using the Kronecker product

as

h(t, s) = f(t)⊗ g(s) = [f1g1, f1g2, . . . , fn+1 g2m+1]>.

With some algebraic manipulation (details in (Saldaña

et al, 2016)), we can separate the curve function (10)

into two parts: a matrix of weights C with dimension

(n+ 1)(2m+ 1)× 2, and a vector h(t, s) as

γ̂(t, s) = C> h(t, s). (11)

Based on this model, we can frame this problem as a

linear regression system, where we have to analyze the

number of terms that should be used in the function

vector h and attempt to infer the matrix of weights C.
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5.2 Estimating the curve function

We use the time t and the curve parameter s as input

variables, and the sampled locations zi(tj) = [xi(tj), yi(tj)]
>

as the output. In this way, we use the trajectory infor-

mation D = {(tj , xj , yj , sj)|j = 0, 1, ..., k} to predict

the anomaly behavior by attempting to estimate the

parameter matrix C of (11). We model the problem as

a linear system with the form

X C = Y, (12)

where Y is a matrix with dimension k×2 that contains

each output location (xi, yi), i = 1, ..., k in the robot’s

trajectory D; C is the weighted matrix that we want to

estimate; and X is the design matrix created using the

input (ti, si), i = 1, ..., k and the functions of h(ti, si),

defined as

X =

h(t1, s1)>

...

h(tk, sk)>

 .
Our objective consists of adjusting the parameters

matrix C, from (12), of the model function γ̂ to best fit

the data set D. Assuming that X is a full-rank matrix,

we can estimate C̃ by solving

C̃ = (X>X)−1X>Y. (13)

Therefore, the curve function γ̂(t, s) is approximated

by

γ̂(t, s) = C̃
T

h(t, s).

The matrix X can be estimated if a robot has the

full dataset D and requires computational power to
compute (X>X)−1. Then, in the next section, we ex-

tend this method to allow the team of robots to esti-

mate the curve in a distributed collaborative way, where

the samples are distributed among all robots.

5.3 Online prediction

For each time step, the dataset D with k samples can

be used to estimate the boundary behavior. We in-

clude a subscript to the design matrix Xk to denote

the number of samples k. When a robot takes a new

sample (tk+1, xk+1, yk+1, sk+1), the estimation requires

the computation of (X>k+1Xk+1)−1, which has an O(k3)

time complexity . Additionally, the robot needs to have

all the data in Xk+1. Our objective is to use the com-

puted estimation from Xk and the new sample to com-

pute Xk+1. In this way, robots do not need the whole

dataset, and they can update the estimation using the

new samples and the old estimation.

We extend our estimation method using Recursive

Least Squares to obtain the updated prediction by tak-

ing advantage of the already computed (X>k Xk)−1 and

avoiding to invert the whole matrix at every time step.

In order to make (13) iterative, we rewrite it as the

operation with the rows of C̃,

C̃ =
( k∑

i=1

hih
>
i

)−1 k∑
i=1

hiy
>
i , (14)

where hi = h(ti, si) and yi = [xi, yi]
>. The left sum in

the right side of (14) defines the correlation matrix P,

which can be recursively calculated,

P(i) = P(i− 1) + hi h>i , (15)

with P(1) = h1 h>1 , and the cross-correlation vector of

right sum in (14),

q(i) = q(i− 1) + hi y>i , (16)

with q(1) = h1 y1. Then, (13) is rewritten as the mul-

tiplication of two iterative terms,

C̃ = P(k)−1q(k). (17)

For every iteration, it is possible to compute the inverse

P(k)−1 using the last estimation P(k−1)−1. Assuming

that the matrices P = P> and (P+hh>) are invertible,

we apply the Sherman-Morrison formula (Sherman and

Morrison, 1950) as,

P(k)−1 = (P(k − 1) + hkh>k )−1

= P(k − 1)−1 − (P(k−1)−1hk)(P(k−1)−1hk)
>

1+h>k P(k−1)−1hk
.(18)

Based on this mathematical framework, we present two

coordination methods to integrate all the distributed

information.

5.4 Integrating distributed information

We integrate the distributed sampled point-wise mea-

surements with a sliding window approach. Our on-line

prediction is based on the latest k sampled points (win-

dow), and the robots remove (slide) the older points.

Then, each robot keeps in memory its own dataset

Di = {(tj , sj , xj , yj)|j = 1, ..., k}.

We can ask any robot about the boundary prediction.

Assuming that we ask robot n, it computes the bound-

ary prediction, represented by the vector qn(tk) and

the matrix P−1n (tk), using (16) and (18) respectively.

Robot n sends the matrix and the vector to robot n−1.

When robot i < n receives the matrix P−1i+1(tk) and the

vector qi+1(tk) from robot i+ 1, it proceeds to update
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the received matrix and vector with its own k samples

using the same equations. Next, robot i sends P−1i (tk)

and qi(tk) to robot i−1. This iterative process is finally

completed when robot n receives the information from

robot 1. When this happens, robot n uses the received

information to compute the matrix of weights

C̃ = P1(k)−1q1(k).

Finally, we obtain the curve function

γ̂k(t, s) = C̃
T

h(t, s),

which integrates the distributed information from n

robots. We want to emphasize that the estimation is

obtained by exchanging n messages, and the size of the

message package is fixed. The message package only

contains P−1i (tk) and qi(tk), and they are independent

of the size of the local dataset k and the number of

robots n.

By using this method, every robot keeps its own

updated dataset with the latest sampled points. When

a robot receives a request for a boundary estimation,

it computes a pair (P−1i (tk),qi(tk)), representing the

collected information for the estimation. Then it makes

them circulate around the ring topology in order to

iteratively collect the information of all robots.

We highlight that the integration of the distributed

information can be started from any robot. This implies

that a time step, every robot can request an estimation,

and then we can have n estimation pairs circulating

around the ring topology.

6 Experiments

We want to validate our method in experiments with

actual robots. Using the Lebesgue measure to quantify

the area of a set in R2, denoted by µ, we define a metric

to quantify the difference between the actual bounded

area Ωt and our estimation Ω̂t. Our estimation error,

δ(Ωt, Ω̂t) =
µ(Ωt \ Ω̂t) + µ(Ω̂t \ Ωt)

µ(Ωt)
, (19)

takes into account the non-estimated area µ(Ωt \ Ω̂t)

plus the misestimated area µ(Ω̂t \ Ωt) (see Figure 3).

In order to have a proportion of the error with respect

to the actual area, we include the actual boundary area

µ(Ωt) in the denominator. Similar metrics to quantify

the accuracy in boundary estimation were presented in

(Susca et al, 2008; Saldaña et al, 2015, 2016).

In a previous work (Saldaña et al, 2016), we pre-

sented a quantitative comparison between our method

using a fast single robot and a polygonal approximation

Ωt

Ω̂t

Ω̂t \Ωt

Ωt \ Ω̂t

Ω̂t ∩Ωt

Fig. 3 Illustration of the metric δ(Ωt, Ω̂t) for a bounded re-

gion Ωt (green area) and its estimation Ω̂t (blue area). This
metric quantifies the error in the estimated bounded region,
by taking into account the non-estimated region Ωt \ Ω̂t and

the incorrectly estimated region Ω̂t \Ωt.

(Susca et al, 2008). In shape estimation, the error of the

polygon approximation never goes to zero as the poly-

gon passes over old points. In contrast, our estimation

improves by increasing the number of sampling points,

and the number of polynomial and Fourier terms.

The experiments in the present paper validate our

estimation method for a non-linear changing analytic

boundary and a real liquid boundary on a flow.

6.1 Simulations

We evaluate the performance of our method with re-

spect to the numbers of robots. Initially, we study how

well the robots can maintain their equidistant locations

in the curve and how this affects the prediction. The

robots circulate an analytic function described by the

function

γ(t, s) =

[
50(2 + d sin(0.03t)) cos(2πs)

50 sin(2πs)

]
,

where d = 0 if s ∈ [1/4, 3/4] and d = 1 otherwise. This

boundary function describes a circle in which one half

stays static, and the other half stretches along the x-

axis in an oscillatory manner. This non-linear function

is challenging since it cannot be modeled by a polyno-

mial, and it combines static and dynamic sections. The

perimeter and the internal area of this boundary also

describes an oscillatory behavior.

6.1.1 Enclosing

We studied how to enclose the boundary while main-

taining the robots at equidistant locations. In this sim-

ulation, we evaluated the performance of the enclosing

method (using (6)) and the impact of the boundary
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(a) n = 3 robots.
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(b) n = 9 robots.

Fig. 4 Consensus error for n = 3 and n = 9 number of robots
respectively. Each colored line represents a different robot.
The dashed line represents the total variation of the boundary
(from (21)).

variation. Since, we want to keep the robots equidis-
tant on the curve, the distribution error is

εi =
`i+1 + `i−1

2
− `i. (20)

We can describe the total variation of the curve by

e(t) =

∫ 1

0

∥∥∥∂γ(t, s)

∂t

∥∥∥ds. (21)

We can see in Figure 4(a) that the error for n = 3

robots is bounded even when the boundary achieves its

maximum variation. The dashed line shows the oscil-

latory behavior of the total variation (from (21)). This

graphic shows that the oscillatory behavior is coupled

with the distribution error. However, the magnitude of

the error is reduced as the number of robots increases

(see Figure 4(b)). We can see that once the robots con-

verge, they maintain their errors within a finite interval,

and this interval is proportional to the total change of

the boundary.
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time (s)

0.00
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0.02
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δ

n = 3

n = 5

n = 7

n = 9

Fig. 5 Prediction error for different number of robots n. Each
colored line denotes the prediction error δ in time.

6.1.2 Predicting

As aforementioned, our prediction method is improved

if the robots are equidistantly distributed along the

boundary. We show that the estimation error (19) de-

pends on the number of robots (see Figure 5.). We can

see that the prediction method is also affected by the

oscillatory behavior of the boundary as the error func-

tion also exhibits a periodic pattern. The predictions

are very accurate, even in the worst case for n = 3

robots where the error is below 6.0%. The error reduces

rapidly as the number of robots increases. For this spe-

cific boundary dynamics, seven robots are enough to

keep the prediction error smaller than 1.0%.

We also want to analyze the future estimations of

the boundary shape. Given a set of parametrized sam-
pled points D, we want to estimate the shape of the

boundary during a time interval (including future time).

Using the same previous simulated testbed, the predic-

tion error can be seen in Figure 6. In this figure, we

present predictions of the curve during a time inter-

val using the same dataset. We used a fixed number of

Fourier terms, M = 10, and polynomials with degrees

N = 0, 1, 2. A polynomial degree N = 0 represents a

constant value and it means that the shape does not

change in time. The estimator tries to approximate a

fixed boundary that fits all sampled points. We can see

that this estimator has the largest error δ most of the

time, although occasionally it has a small error. The

linear estimator (with N = 1) offers a better approxi-

mation, and its associated error changes slowly. This is

a good estimator since it requires less sampled points

and does not ignore the time in the evolving process.

The last one uses N = 2 and this approximation of-

fers the best estimation, maintaining the error within a

small percentage during the observation period. How-
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Fig. 6 Prediction error for a fixed dataset. The vertical
dashed line represents the last time that a point was sam-
pled. The continuous lines represent the prediction error for
three polynomial degrees, N = 0, 1, 2.

ever, the error grows faster than the linear estimator for

future predictions. This is one of the main problems of

estimators based on high-degree polynomials. We also

simulated higher-degree polynomials, but they require

a larger number of points in the dataset to satisfy the

minimum required data for least-squares.

6.2 Experiments with actual robots

In this section, we show that our method can be used

with actual robots and real boundaries. We use a team

of three robotic boats in a tank in order to track and

predict the shape of a liquid. In our testbed, each

robot is driven by two propellers in the back as pic-

tured in Figure 7. We can control these robots by

using the differential drive model. The location of the

robots is obtained using an external motion capture

system around the tank. Although we assumed holo-

nomic motion in the problem statement, we can re-

lax this assumption by using these differential robots,

which can track the boundary and control their velocity.

We implemented the bang-bang algorithm (Marthaler

and Bertozzi, 2003b) to keep the robots moving on the

boundary.

A small tank (0.1×0.1×0.02m3) was used to gener-

ate and record the boundary. The boundary was created

by suspending two liquid dye droplets in a 1:1 glycerol-

water mix. The submerged rotating disks are driven

such that two adjacent 4×2 sets of disks are controlled

by independent stepper motors and controllers. The ex-

perimental setup for creating the boundary is shown in

Figure 8. We track the boundary of the viscous liquid

using an RGB camera and image processing. Then, we

take the recorded boundary, remap it to a larger tank,

and command the robots to track the recorded time-

varying boundary. This allows us to reproduce the ex-

periment with different conditions for the same bound-

ary1. The presented boundary is highly non-convex and

changes in all directions; it translates, expands, shrinks

all at the same time.

The experiments were conducted in the multi-robot

Coherent Structure Testbed (mCoSTe) which consists

of a 3.0× 3.0× 0.5m3 tank and a fleet of autonomous

surface vehicles (ASVs). The tank was filled with still

water, and we used a team of three ASVs as pictured

in Figure 9. In the accompanying video2, we show an

experiment where the three actual robots track and pre-

dict a dynamic non-convex boundary. We can see that

all boundary points change their locations at different

rates and directions. In the tracking process, the ASVs

experience difficulties following the boundary because

their inertia causes the robots to slide on the water,

making it difficult to compensate with its small actu-

1 The dataset: https://github.com/dsaldana/boundary-dataset
2 The video is available at https://youtu.be/Zwc6vNuUFDw

Fig. 7 A robotic boat driven by two propellers in the stern.
The reflective markers on the top are used for localization. A
sealing system prevents water from entering the boat

Fig. 8 Experimental setup creating a time-varying boundary.
The tank contains two liquid dye droplets in a 1:1 glycerol-
water mix. The nonlinear flow field is generated using a 4×4
lattice of submerged counter rotating disks. This image and
corresponding video is courtesy of Prof. Peter Yecko.
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ators. Figure 10 depicts three snapshots of the exper-

iment. We can see that the robots move outside the

boundary and experience some oscillations before re-

suming proper tracking of the boundary. Even though

the boats ASVs were not able to move precisely along

the boundary during the tracking process, we obtained

estimates that match closely to the real dynamic bound-

ary. We can see on the left side that the robots had

difficulties moving through the sections with high cur-

vature (see around the point (1.2, 1.7) in Figure 10(c)).

Situations with lower curvature did not result in large

estimation errors (see around the point (2.0, 2.3) in Fig-

ure 10(b)). The outcome is an estimated boundary

that is closer to the robot path than to the actual

boundary. Despite this, the estimation is approximately

equal to the real boundary, even in the presence of these

uncertainties. The estimation error (from (19)) during

the experiment is presented in Figure 11. We can see

that while the error fluctuates as a result of the oscil-

latory movements, it is generally under 13%.

Our method offers better estimates as we increase

the number of sampled points. In Figure 12, we illus-

trate how the metric δ is rapidly reduced as we increase

the number of sampled points. We can also observe that

taking into account a large number of points (> 400)

does not considerably reduce the accuracy. Depend-

ing on the dynamics of the curve, e.g., boundaries that

exhibit oscillatory behaviors, using a large number of

sampled points can be a problem if the degree of the

polynomial is not increased.

Different from other approaches in the literature

where the sample points are used to approximate the

boundary (Susca et al, 2008), our method takes into

account the motion of the points in time. In Figure 13,

we can see the samples of three robots, depicted by the

Fig. 9 Top view of the robotic boats in the tank. The robots
are highlighted by the blue circles, and the tracked region is
represented by the darker area.
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(a) t = 200
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(b) t = 320
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(c) t = 400

Fig. 10 Snapshot of the experiment at two different time
steps. The robot locations and their trajectories are repre-
sented by the yellow disks and the dotted line, respectively.
The real boundary is represented by the dashed line and the
estimation by the continuous green line.

yellow points, our estimation of the boundary, depicted

by the dashed line, and the real boundary, depicted

by the solid line. We can see that sampled points are

off in comparison with the real boundary. At the time,

when the last points were sampled, the whole boundary

was already shifted and shrunk. If we approximate the
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Fig. 11 Estimation error of the boundary for each time step
using the last k = 399 samples (133 per robot).
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Fig. 12 Convergence of the estimator by increasing the num-
ber of samples k.

boundary by a polygon and apply the metric in (19)

to compare it with the ground truth, we get a metric

of 0.257, which is %222.84 larger than the metric for

the estimation. The key to this method is combing old

points and current points to project the location of the

new points. We perform the projection by approximat-

ing the function in (11).

7 Conclusions and Future Work

In this paper, we presented a cooperative prediction

method for dynamic boundaries using multiple robots.

Our method maintains the robots uniformly distributed

along the curve in order to track the boundary. We

use point-wise measurements to fit a general boundary

function, which is the combination of a polynomial and

a truncated Fourier series. We validated our method

through multiple simulations and experiments with ac-

tual robots.
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Fig. 13 Recent samples, estimation, and original boundary.

In a previous work (Saldaña et al, 2016), we showed

that a single fast robot is able to predict the behavior

of dynamic boundaries. In this paper, we study cooper-

ative prediction using a team of n robots. We can say

that given a phenomenon surrounded by a boundary

with maximum variation εv, one or multiple robots can

be used for the prediction, but there is a trade-off be-

tween the number robots and the feasible speed Υ. We

can use a large number of slow-moving robots or a small

number of high-speed robots.

As future work, we want to study how to predict the

behavior of three-dimensional boundaries such as lava

after a volcanic eruption, hurricanes, and whirlpools.
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