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Abstract— We consider a team of mobile robots with limited
communication range tasked to coordinate in large environ-
ments. The robots need to maximize the covered area and
achieve consensus in the presence of non-cooperative robots. Ex-
isting works in robot networks showed that a team can achieve
resilient consensus by maintaining an r-robust communication
network. However, the communication range of each robot
needs to be large to satisfy the conditions of r-robustness. This
paper relaxes this requirement on the communication range by
leveraging the robot motion. Specifically, we design modular
dynamic formations where subsets of robots move along simple
closed curves. These modules can be linked together to assemble
larger formations. We derive conditions based on periodic robot
connections for individual and interconnected modules. We
present module designs that satisfy the sufficient conditions
in a lattice space. Simulations are provided to support our
theoretical results.

I. INTRODUCTION

We are interested in deploying teams of mobile robots with
limited communication range in large and complex environ-
ments to execute tasks such as surveillance, monitoring, and
patrolling. The consensus problem arises in these scenarios
when each member of the team has a different estimation of
a global variable or state collected through local sensing. The
robots exchange information to provide an overall estimate
of the state [1], [2]. This is commonly accomplished by
allowing individual robots to communicate their states with
others in their communication range.

There are a myriad of algorithms solving consensus prob-
lems [2], [3], [4], [5]. In practice, robots may become
‘non-cooperative’ by exchanging corrupted information with
neighbors due to internal failures or external disruption. Ex-
isting methods overcome the effect of these non-cooperative
robots by increasing the connectivity of the team [6], [7].
It has been shown that any network that is resilient against
a certain number of non-cooperative robots can retain its
resiliency if an arbitrary subset of the communication links
becomes periodic [6]. Therefore we want to allow some
robots to disconnect periodically from their neighbors, travel
around, and seek additional connections. Their motion should
be carefully planned, such that all the connections are
preserved in a periodic fashion, and the robots are able to
reach consensus while covering a large area that needs to
be monitored persistently. The routing strategy presented in
[6] requires to manually define the motion of each robot.
Hence, if the environment or the number of robots changes,
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new trajectories need to be defined to satisfy the periodic
robustness.

When robots move around, they come in and out of
communication range with other team members. Each robot
may not have a consistent set of neighbors to communicate
with throughout the duration of the task. While the commu-
nication links between robots vary over time, the network
maintains intermittent connectivity. One of the earliest works
considering this concept is [8], where the full connectivity
of a team of robots is periodically regained by letting the
robots travel far from each other’s communication range but
regularly gather in certain locations. In [9], periodically oc-
curred communication links between disconnected subgroups
are generated to intermittently connect the whole group. It
was shown in [10] that robots deployed on pre-defined routes
can form a periodic time-varying communication network,
which can be mapped to an equivalent static network where
standard graph analyzing tools can be used. All these works
have focused on connecting a network over time, while for
reaching resilient consensus, the topology must meet certain
robustness conditions, which will be elaborated in Sec. II.

Once the connectivity of the communication topology is
known, existing algorithms presented in [11], [12], [13],
namely the Weighted Mean-Subsequence-Reduced (W-MSR)
algorithm, provides a method for the state values of all
cooperative robots to converge to the convex hull of their
initial values. The results in [13], [14], [15], [16] provide
methods to evaluate whether a communication topology
satisfies certain sufficient robustness conditions. When the
W-MSR rule is followed by each cooperative robot, the team
is resilient to a finite number of non-cooperative robots.
Such methods are either computationally inefficient [13],
[15], for those require the traversal of all nodes in the
graph, or strongly depending on high algebraic connectivity
of the network, which drives robots to form a tight cluster
[14], [16]. Since monitoring robots must spread out to cover
a large area, such tight clusters are not suitable for most
applications.

Alternatively, both [7], [17] proposed design strategies
by creating well-defined repeating structures that can be
composed to create scalable static networks. Such strategies
avoid the problem of robots clustering into tight formations
but necessitate a large communication range as the number
of non-cooperative robots increases. Heterogeneous sets of
robots are introduced in [18], [19], [20] to build robotic
networks satisfying the robustness conditions. Such methods
require a certain number of always-trusted robots that are not
universally available in real-world applications.

In this paper, we propose a modular design for robot



formations and routing strategy to create a periodic com-
munication topology with desired robustness. The idea is to
design modular closed-loop paths for subsets of robots which
can be composed to create larger formations. We characterize
the sufficient conditions for reaching consensus and provide
examples realized on triangular lattices. In contrast to the
related work, our modular formations can be adapted and
scaled to different types of environments without requiring
large communication ranges.

II. PRELIMINARIES

In this section we introduce definitions and preliminary re-
sults on resilient consensus. Consider an undirected commu-
nication graph formed by a set of n robots V = {1, 2, ..., n}.
The time varying connections (capability of communication)
between robots are described with the edge set E [t], where
E [t] ⊆ V×V for any t ∈ Z≥0. The communication topology
is represented by a sequence of graphs G[t] = (V, E [t]).
We denote the neighbors of node i at time t as Ni[t] =
{j|(i, j) ∈ E [t]}.

Each robot has a scalar value zi[t] ∈ R at time step t. This
value represents an estimation variable, heading direction,
inter-robot distance or any local variable that involves global
coordination. The initial value is denoted by zi[0]. At each
time step, robots are able to update their values based on
their own values and the values from their neighbors. We say
that the robot network achieves consensus when all robots
converge to a similar value, i.e. z1[t] ≈ ... ≈ zn[t], when t
goes to infinity.

Some robots in the team may fail to follow the update
rules and send out erroneous information to its neighbors.
These robots are referred to as non-cooperative ones. To
avoid the whole team being affected or manipulated by those
non-cooperative robots, a particular consensus algorithm
has been introduced in [12]. Let F denote the maximum
possible number of the non-cooperative robots in any robot’s
neighborhood. The weighted mean subsequence reduced (W-
MSR) algorithm [12] requires that at every time step t, every
cooperative robot i creates a sorted list of all the values it
received from its neighbors, and compare them with zi[t].
The W-MSR algorithm removes F highest and lowest values
in the list before computing the updated value zi[t+ 1].

For time varying networks, a sliding-time-window version
of the W-MSR algorithm, abbreviated as SW-MSR, was
introduced in [6] to update zi[t] based on the most recent
values received from all robots that have communicated
with i within the last k steps. After removing F values
in the sorted list, the set of the values left is denoted by
Ri[t]. The update rule of zi[t] is given by zi[t + 1] =
wii[t]zi[t] +

∑
j∈Ri[t]

wij [t]z
k
ij [t], where zkij [t] denotes the

most recent value of zj [t] that has been received by i during
(t−k, t]. wii and wij are weights that are lower-bounded by
some α ∈ (0, 1/2) and satisfy

wii[t] +
∑

j∈Ri[t]

wij [t] = 1,∀i ∈ V.

An important sufficient condition for both W-MSR and
SW-MSR to converge asymptotically towards consensus is
established on the r-robustness of the topology.

Definition 1 (r-robust graph). A static graph G is r-robust
if for any pair of nonempty, disjoint subsets of V , at least
one subset of them, denoted as S, contains a node i ∈ S ,
such that |Ni\S| ≥ r.

For a time-varying topology, we define its robustness as
follows.

Definition 2 (Time-varying r-robust graph). Given k ∈ Z>0,
a dynamic graph G[t] is (k, r)-robust if the union ∪kτ=0G[t−
τ ] is r-robust for all t ≥ k.

It was shown in [12] that resilient consensus could be
achieved through the W-MSR algorithm if the underlying
communication topology is r-robust. The existing results for
the time-varying network are reviewed in the following.

Theorem 1 ([6]). Given a communication network G[t],
resilient asymptotic consensus is achieved by the SW-MSR
update rule in the presence of F non-cooperative robots in
any robots’ neighborhood, if ∃ k ∈ Z>0, such that G[t] is
(k, 2F + 1)-robust.

Determining whether a given graph is r-robust or not is
a coNP-complete problem [13], however, there are sufficient
conditions that we can use to efficiently construct large scale
graphs that are r-robust:

Theorem 2 ([21] F -elemental graph). A static graph G =
(V, E) with 4F + 1 nodes is (2F + 1)-robust, if it satisfies
the following:

• ∃S ⊂ V , such that |S| = 2F and Ni ∪ {i} = V for all
i ∈ S.

• V/S is a connected graph.
A graph with the above property is called F -elemental graph.

Theorem 3 ([11]). Suppose G = (V, E) is an r-robust static
graph. Consider a new vertex v∗, and E∗ ⊆ {(v∗, j)|j ∈ V}.
Then G∗ = (V ∪ {v∗}, E ∪ E∗) is also r-robust if |Nv∗ | ≥ r.

III. FORMULATION OF COMMUNICATION LINKS

We consider the problem of deploying a team of robots to
monitor a given environment, where each robot measures a
scalar value, such as temperature, time, speed of an object,
or distance between two objects. The group as a whole must
perform consensus on the measured value. The robots are
assumed to have the same communication range, R, and the
same constant speed, v̄. There are mainly two aspects: (i)
coverage of the environment and (ii) connectivity mainte-
nance of the communication network for resilient consensus.

We approach this problem by considering multiple non-
overlapping and non-crossing sub-spaces, each containing a
closed path of the same shape with no self-intersection. The
paths are described by rotating, translating, shifting phase, or
reversing the direction of the same arc-length parametrized
function γ : [0, L) 7→ R2, where L is the arc-length of



the paths. We consider a robot team composed of N sub-
teams with the same number of robots. Each sub-team has
n robots and is allocated to a single path to continuously
circulate along it. In the rest of this paper, we use I and J
to index the sub-teams and their paths, and i and j to index
the robots.

The robots in the same sub-team move with the same
speed and direction along the path, so they keep the same
order. Let the position of a robot i on the path I be denoted
by si ∈ [0, LI) based on the arc-length parametrization,
and the Cartesian coordinate be γI(si). Without loss of
generality, we define γI of this path in a way, such that
the robots’ motion is along the positive direction of the
arc length. That is to say, after a small amount of time δt,
robot i’s position on the path will be si + v̄δt. If a pair of
robots (i, j) are on the same path I , we say i is s̃ij ahead
of j, with s̃ij = si − sj . (For simplicity in the rest of this
paper, we use s̃ij = (s̃ij mod LI) for all the si and sj on
the loop path indexed I .) The arc length between i and j is
then min(s̃ij , s̃ji). The Euclidean distance between i and j
is ||γI(si)− γI(sj)||.

We assume that the robots on the same path are indexed
along their moving direction, such that robot i + 1 is the
closest robot ahead of robot i. Since all robots move at the
same speed, the arc length between any two consecutive
robots remains constant. We assume that all robots in the
same sub-team are uniformly distributed along the path, such
that the arc length between two consecutive robots is always
∆, satisfying ∆ ≤ R. The time that one robot takes to finish
a cycle on the path is denoted by T . Each path, together with
the circulating robots on it, is defined as follows.

Definition 3 (Circulating module). A circulating module, or
module, is a tuple of a closed path with no self-intersection
and a team of robots. All robots are uniformly distributed on
the path with a constant arc-length spacing ∆ ≤ R and are
moving along the path in the same direction at a constant
speed.

A. Inter-robot connection
Inter-robot communication occurs when the Euclidean

distance between a pair of robots drops below the commu-
nication range R. Note that this condition may be true for
robots that are in the same module or in different modules.
For the robots in the same module I , we always have
||γI(si) − γI(sj)|| ≤ min(s̃ij , s̃ji). Since the arc length
between robots in the same module is constant, robots i
and j in the same module are connected at every time step
if min(s̃ij , s̃ji) ≤ R, which we call a persistent connection.
For pairs with an arc-length greater than R, and pairs in the
different modules, the communication links may temporarily
created when they enter certain sections of their paths. The
proximity, in this case, is generated due to the geometry
of the modules. Since communication is only possible at
a certain timing, we call this a temporal connection. Fig.1
illustrates both types of inter-robot connections. If both
robots enter this section periodically, and they have a com-
mon period, the temporal connection between them is also

periodic. Since robots in the same module have the same
period of motion, all inter-robot connections within the same
module are periodic.

(a) Persistent connection (b) Temporal connection

�(si)
<latexit sha1_base64="TNeI/D3geNR3K7rcVVn83l5FGZs=">AAACZnicbZDNattAFIXHStO4aps6CaWLboaagrMxUhpIV8HQTZcJ1EnAEubO6MoZMj9iZpRghN6k2+Sd8gZ9jI5sL5qkFwYO5/7M4WOVFM4nyWMv2nq1/Xqn/yZ+++797ofB3v6FM7XlOOVGGnvFwKEUGqdeeIlXlUVQTOIlu/nR9S9v0Tph9C+/rDBXsNCiFBx8sOaDQcZcky1AKWhHbi4O54NhMk5WRV+KdCOGZFNn873eaVYYXivUnktwbpYmlc8bsF5wiW2c1Q4r4DewwFmQGhS6vFlFb+nX4BS0NDY87enK/XejAeXcUrEwqcBfu+e9zvxfb1b78nveCF3VHjVff1TWknpDOw60EBa5l8sggFsRslJ+DRa4D7TiOCuwzFTZZN1lVrZro2PFjCy6REa28dM0nAcELoxqvOMmENVFk9UMbDtL86B0gXY9FK4EtxmmbbgRiKfP+b4UF0fj9Nv46Px4OBlt2PfJZ/KFjEhKTsiE/CRnZEo4uSW/yT156P2JdqOP0af1aNTb7ByQJxXRv0hvulg=</latexit>

�(sj)
<latexit sha1_base64="1x1EYHL1463UuOlGGQOofrn0s1s="></latexit>

si
<latexit sha1_base64="yPgjI1sLewNctbyhOjpIfsSWbGw="></latexit>

sj
<latexit sha1_base64="kYQ8GXniq1RIKDjs85l3QTc0waM="></latexit>

Fig. 1. Examples illustrating the two types of inter-agent connection. (a)
The arc length of i and j is no greater than the communication range.
All robots in the light blue circle remain connected at all times when they
circulate the path. (b) The arc length between i and j is longer than the
communication range, but they are able to communicate temporally, and
this connection occurs every round of their circulation.

Preserving persistent connections across non-consecutive
robots requires a large communication range, and is not
always feasible. In this paper, we require persistent connec-
tions only between the closest neighbors on the path (i.e.
between robot i and robot i ± 1), such that every module
is guaranteed to be connected. The distances between robots
may be affected if the robots fail to maintain the required
speed. Whether such uncertainty in the distances between
robots will disrupt scheduled connections is subject to the
communication range and the geometry of the modules.

B. Inter-module connection

A robot i in module I can communicate with robot j from
a different module J if at some time step, both i and j find
themselves in communication range with each other. If there
exists at least one such pair of robots, we say module I and
J are periodically connected. In the rest of this section, we
describe how this inter-module connection is formed.

Given a pair of circulating modules I and J , let l1 =
[s1, s1 + l] be a segment on path I , and l2 = [s2, s2 + l] be
a segment on path J with the same arc length l. Similarly
to Sec. III, if si + l ≥ L, then li = [si, si + l] represents
the segment of [si, L) ∪ [0, (si + l mod L)]. We define
interfacing section as follows.

Definition 4 (Interfacing section). Consider a pair of circu-
lating modules I and J with segments l1 and l2 respectively.
We say l1 and l2 are interfacing sections if ||γI(s1 + σ) −
γJ(s2 + l − σ)|| ≤ R for all σ ∈ [0, l], where R is the
communication range.

When a robot i in module I enters the interfacing section,
the subset of robots in module J that will be able to
communicate with i can be determined. Robots on I and
J may travel in reverse directions or the same direction
when they are on the interfacing sections depending on how
the modules are arranged. Fig. 2 illustrates the interfacing
sections with robots traveling on them in reverse directions.
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Fig. 2. Illustration of the interfacing sections.

Lemma 1. Consider a pair of modules I and J with
interfacing sections l1 and l2, a robot i in module I , and
a robot j in module J . At the time when robot i arrives at
s1, if robot j is at sj ∈ [s2 − l, s2 + l], then i and j are
guaranteed to connect temporally before j reaches s2 + l.

Proof. Since all robots are moving at the same speed, when
robot j arrives at sj+δs, robot i will arrive at s1 +δs. Since
l1 and l2 are interfacing sections, and sj ∈ [s2 − l, s2 + l],
there exists some δs ∈ [0, l], such that sj + δs = s2 + l− δs,
and therefore ||γI(s1 + δs)− γJ(s2 + l − δs)|| ≤ R.

Since all modules have the same period, the connection
between i and j will be periodic, and I and J are periodically
connected. For any robot i in module I , it may periodically
connect with a number of robots from module J . Since
robots in the same module are uniformly distributed along
the path, finding this number is straightforward.

Definition 5 (Interfacing index). The interfacing index of
robot i in I with module J , denoted by Di(J), is the number
of robots in J that i periodically connects with. Module I’s
interfacing index with module J is DI(J) = min{Di(J)}
for all robots in module I .

If both modules have the same period, a robot i in mod-
ule I connects with the same subset of robots in module J
at every cycle, then calculating DI(J) is straightforward by
using the arc length of the interfacing section and the spacing
of J .

Lemma 2. Consider two identical circulating modules I and
J with interfacing sections l1 and l2 with the arc length l.
The path of each module has the same length L. The arc
length spacing of each module is ∆. If L ≥ 2l, then the
interfacing index satisfies DI(J) ≥ d 2l

∆e − 1.

Proof. According to Lemma. 1, a robot i entering l1 at
s1 will have temporal connections with all robots located
between [s2− l, s2 + l]. The section has an arc length of 2l.
If 2l is an integer multiple of ∆, there are d 2l

∆e or d 2l
∆e+ 1

robots on this section. Otherwise there are d 2l
∆e or d 2l

∆e − 1
robots on this section. Since both modules have a common
period, all the temporal connections are periodic. Therefore
robots i will have periodic connections with at least d 2l

∆e−1
robots in module J .

In the rest of this paper, we design circulating modules that
can be connected to one another. The interfacing indices are
used to discuss the connection between those modules.

IV. GENERAL PROPERTIES OF MODULAR FORMATIONS

A. Periodic communication topology

A formation composed of multiple modules with the same
period T will have a communication topology that varies
with the time period of T . Therefore we have G[t + T ] =
G[t] for all t ≥ 0. At any time step t, the collection of all
communication links that existed in the last T time units
is described by GT [t] = ∪Tτ=0G[t − τ ]. It is easy to see
that GT [t] remains unchanged for all t ≥ T . Therefore, we
drop the time argument and write GT [t] as GT = (V, ET ).
Furthermore, we define N T

i = {j|(i, j) ∈ ET } to be the set
of neighbors that can communicate with i within one period
of time.

According to Theorem 1, a time-varying communication
topology G[t] with a period T achieves resilient consensus in
the presence of F non-cooperative robots if GT = ∪Tτ=0G[t−
τ ] is (2F + 1)-robust. Therefore, for all dynamic formations
with periodic communication topology, we consider the
robustness of the union graph GT . If the graph union GT is
(2F+1)-robust, we consider the formation to be a (2F+1)-
robust formation.

In the rest of this section, we propose a construction of
(2F + 1)-robust formations. We start from a core formation
fortified by the concept of F -elemental graph (see Theo-
rem 2), and we expand it by adding modules in such a way
that preserves the (2F + 1)-robustness.

Definition 6 (Core formation). We call a composition of
identical circulating modules as a (2F + 1)-core formation,
if their overall periodic communication topology is (2F+1)-
robust.

B. Construction of (2F + 1)-core formations

An F -elemental graph contains 4F +1 nodes. If a module
contains at least 4F + 1 robots, an F -elemental graph may
be generated within a single module. Let VI = {1, 2, ..., n}
represent the set of robots in a single module I , the com-
munication topology of module I is denoted as GI [t] =
(VI , EI [t]), with EI [t] ⊆ VI ×VI , for all t. The collection of
connections within one period is captured by GTI = (VI , ETI )
with ETI = ∪Tτ=0EI [t− τ ]. A sufficient condition to generate
an F -elemental graph within this single module is described
as follows.

Lemma 3. A communication topology GTI = (VI , ETI ) is a
(2F + 1)-core formation, if |VI | ≥ 4F + 1, and GTI is a
complete graph.

Proof. Choose an arbitrary subset VF ⊆ VI that contains
4F+1 nodes. Denote the topology of this subset as GTF . Since
GTI is a complete graph, GTF is a complete graph as well.
According to Theorem 2, GTF is F -elemental and therefore
is (2F + 1)-robust. For all v∗ ∈ VI \ VF , we have |Nv∗ ∩
VF | ≥ 4F + 1. Since GTF is a sub-graph of GTI , according



to Theorem 3, adding any node from VI/VF back to the
F -elemental graph will yield a new (2F + 1)-robust graph.
The same logic is repeated until all nodes in VI \ VF are
added back, and the final topology GTI is (2F + 1)-robust as
well.

When a standard module contains less than 4F +1 robots,
we have to construct an F -elemental graph with multiple
modules. A sufficient condition is presented in the next
lemma.

Lemma 4. Consider two modules, I and J , with their
communication topology GI [t] = (VI , EI [t]) and GJ [t] =
(VJ , EJ [t]) identical to each other. The period of both mod-
ules is T . |VI | = |VJ | < 4F +1. The overall communication
topology is GIJ [t]. Module J’s interfacing index with module
I is DJ(I). Then there exists a sub-graph GTF ⊆ GTIJ that
is an F -elemental graph if GTI is a complete graph, and
DJ(I) + |VI | ≥ 6F .

Proof. First of all, since DJ(I) ≤ |VI |, we have VI ≥ 3F .
Since I and J are identical modules, |VIJ | = 2|VI | ≥ 6F >
4F + 1.

Now we construct GTF by selecting a subset SJ of b
consecutive robots along the path of J , with b = 4F + 1−
|VI |. We index the b robots as 1J , 2J , ..., bJ . Without loss of
generality, we index the first DJ(I) robots from module I
that robot 1J is able to connect with as 1I , 2I , ..., DJ(I)I .
Since I and J are identical, robot 2J will connect to
2I , 3I , ..., (DJ(I) + 1)I , and so on.

Therefore, robots indexed as bI , (b + 1)I , ..., DJ(I)I are
those who periodically connect with all the b robots in SJ .
Since b = 4F + 1 − |VI | and DJ(I) + |VI | ≥ 6F , the set
SF = {bI , (b+ 1)I , ..., DJ(I)I} contains at least 2F nodes.

Let VF = VI ∪ SJ , ETF be the collected connections over
one period. We have |VF | = 4F + 1. There are at least 2F
nodes in SF ⊆ VF , each is connected to all the nodes in
VF , since GTI is a complete graph. VF \ SF is periodically
connected since it is composed of three periodically con-
nected sub-sets: S1 = SJ , S2 = {1I , 2I , ..., (b − 1)I}, and
S3 = {(DJ(I) + 1)I , (DJ(I) + 2)I , ..., |VI |I}. S1 and S2

are periodically connected since robot 1J and robot 1I are
periodically connected. S1 and S3 are periodically connected
since robot 2J and robot (DJ(I) + 1)I are periodically
connected. According to Theorem 2, the topology GTF =
(VF , ETF ) is an F -elemental graph.

If there is any node in the graph GTIJ but not in the sub-
graph GTF , adding them back following a similar discussion
as in Lemma 3 will lead to that GTIJ is also a (2F + 1)-core
formation.

Notice that we only consider (2F + 1)-core formations
composed of 1 or 2 identical modules, since any module of
at least 2F + 1 robots can form a (2F + 1)-core formation
by itself or by connecting with another identical module.
Modules containing 2F or fewer robots may form (2F +1)-
core formations by connecting multiple identical modules but
have no guarantee of robustness while we extend the core

formation by adding more identical modules. This will be
further illustrated in Sec. IV-C.

C. Extending a (2F + 1)-robust formation

We discuss how to expand a (2F + 1)-robust formation
by adding new modules to the current formation while
preserving its (2F + 1)-robustness.

Lemma 5. Consider a set of connected modules R =
{1, 2..., H}. The overall communication topology is repre-
sented by GR[t], where GTR is (2F +1)-robust. Deploy a new
module H + 1 next to R, and define R′ = {R} ∪ {H + 1}.
The communication topology of the new assembly GTR′ is
(2F + 1)-robust, if there exists a module J ∈ {1, 2, ...,H},
such that DH+1(J) ≥ 2F + 1.

Proof. Since DH+1(J) ≥ 2F + 1, we have |NH+1 ∩VR| ≥
2F + 1 holds for all nodes p ∈ VH+1. Therefore adding
any node from VH+1 to the formation R will create a new
(2F +1)-robust formation. By repeating adding nodes to the
graph until all nodes in VH+1 are added, it will create a new
(2F+1)-robust formation every time and the final formation
with a topology of GTR(H+1) is therefore (2F + 1)-robust as
well.

Now we consider a set of connected modules, Q. The
higher-level graph GQ treats the modules as the nodes and
inter-module connections as the edges. The topology of the
robots in each module is GI , and the topology of all the
robots in the whole set Q is Gq . The theorem below examines
whether the topology Gq of all robots is (2F + 1)-robust.

Theorem 4. Consider a set of connected modules, Q, that is
composed of H ∈ Z≥2 identical circulating modules, each
with a periodic communication topology GTI = (VI , ETI ),
for all I ∈ {1, 2, ...,H}. Let VQ = {1, 2, ...,H}, and EQ
contains all (I, J) ∈ VQ × VQ. Let TQ = (VQ, ETQ ) be
a spanning tree of GQ = (VQ, EQ). Let Vq be the set of
all robots in Q, and ETq the set of collected inter-robot
connections within one period. The communication topology
of the whole formation GTq = (Vq, ETq ) is (2F + 1)-robust,
if the following conditions hold.

• GTI is a complete graph for all I ∈ VQ;
• There exists some TQ, such that for all (I, J) ∈
ETQ , there is max{DI(J), DJ(I)} ≥ 2F + 1, and
max{DI(J), DJ(I)}+ |VI | ≥ 6F .

Proof. According to Lemma 3 and Lemma 4, there exist
some (I, J) ∈ ETQ such that GTIJ is a (2F + 1)-core forma-
tion. According to Lemma 5, adding modules satisfying the
conditions stated in the theorem will preserve the (2F + 1)-
robustness of the formation. Since every pair of (I, J) ∈ ETQ
satisfies the conditions, the overall formation Q is (2F +1)-
robust.

Notice that DI(J) does not necessarily equals to DJ(I).
Although all modules are identical, robots from different
modules may enter the interfacing section asynchronously
and yields different indexes for different modules.



Fig. 3. Examples of periodic connections. (a) shows δi-bridges formed by
a slit shaped bent on the path. The dash line connection i and i + 9 is a
9-bridge, and the one connection i+1 and i+7 is a 6-bridge. (b) shows a
pair of interfacing sections with a path length of 4d. The interfacing indexes
will be DI(J) = DJ (I) = 9.

V. GEOMETRIC DESIGN

In the previous section, sufficient conditions on circulat-
ing modules are provided to ensure resilient consensus on
formations composed of identical modules. In this section,
we discuss the actual design of the path’s shape in a latticed
space [22], [23] to satisfy those conditions.

We use a triangular lattice as introduced in [7]. The lattice
is defined as L = {d(xv1 + yv2)|x, y ∈ Z}, where d is
the scale factor of the lattice, which denotes the length of
the triangular sides. v1 = [1, 0]> and v2 = [ 1

2 ,
√

3
2 ]> are

the base vectors. Let d = ∆, where ∆ is the spacing in a
circulating module, which is slightly smaller than the robots’
communication range R. When all robots arrive at the top of
some lattice points, communication is only available between
those on the lattice points next to each other. Connecting
lattice nodes with straight lines of a length of d creates a
lattice grid.

We design the path of a module as a closed curve
composed of a limited number of line segments along the
grid lines. At time t = 0, there is a robot on every lattice
node on the path. Let the number of robots in one module to
be n, and the robots indexed as 1, 2, ..., n along the moving
direction of robots. The location of a robot i at t is denoted
as si[t]. Let 1 time step to be the time that a robot takes to
move from one lattice node to the next, si[t+ 1] = si+1[t],
for all i = 1, 2, ..., n− 1, and sn[t+ 1] = s1[t].

Robot i is always connected with i + 1 and i − 1. At
some lattice node along the path, robot i is in communication
range with some robots i + δi, δi ∈ Z≥2, and we say there
exists a δi-communication bridge. As shown in Fig. 3, the
dashed lines in part (a) are a 6-bridge and a 9-bridge. The
connections across δi-bridges are periodic.

When two identical modules are periodically connected
through a pair of interfacing sections, the path length of
an interfacing section is always an integer multiple of d, as
shown in Fig. 3, part (b). Let the arc length of the interfacing
section be pd, p ∈ Z≥1, the interfacing index of one module
with another is always 2p+ 1.

A. Path features

a) Fully Connected graph: One of the important condi-
tions to construct (2F+1)-robust formations is to ensure that

in each module, every robot is periodically connected with
all other robots. For the n robots in the same module, there
should be δi-bridges in the path for all δi = 2, 3, ..., dn2 e.
One method to ensure the δi-bridges is to create a ‘slit’ shape
as shown in Fig. 3. A section of the path with a length of
dn2 e and being bent as a slit shape can provide a series of
δi-bridges for δi = 2, 3, ..., dn2 e.

b) Interfacing section: The other important condition
to construct (2F + 1)-robust formations is to provide a
sufficient interface number while connecting two modules.
For example, as shown in Fig. 3, part (b), a straight line
segment of length pd on the path can provide a sufficient
interfacing index while serving as an interfacing section if
p ≥ F and 2p+ n+ 1 ≥ 6F . If we are connecting multiple
identical modules, each module should contain at least 2 non-
overlapping sections that can provide sufficient interfacing
indexes.

B. Examples

Following the constraint of path features analyzed, we
provide some example designs.

a) Unit triangles: A module I3 with 3 robots on a
triangle path with each edge of a unit length d, as shown in
Fig. 4, part (a), is always fully connected. It has 3 sections,
each with a length of d, that can be interfacing sections.
Hence placing another triangle module at one of the 6
locations (shown in the shaded triangles) can establish an
interfacing index of 3 between them. Therefore this module
with nI3 = 3 and pI3 = 1 can form large scale formations
that is resilient in consensus performance against FI3 = 1
non-cooperative robots.

b) Triangles with slits: Fig. 4, part (b) shows an exam-
ple module I15 with 15 robots. Its communication topology
is GI15 [t]. The robots form a triangle with 2 sections of length
4d that can be interfacing sections. Black dash lines show
δi-bridges of δi = 2, 3, ..., 6. The dashed line highlighted

Fig. 4. (a) Unit triangle module I3; (b) Triangle module I15; (c) U-shape
module I16; (d) A formation composed of multiple I15 modules is resilient
against F = 4 non-cooperative robots.



in blue shows a communication bridge that is both a 7-
bridge and an 8-bridge. Therefore GTI15 is fully connected.
It can be shown that two I15 modules can form a (2F + 1)-
core formation with FI15 = 4, and connecting multiple
identical I15 modules can form a formation that is resilient
against FI15 = 4 non-cooperative robots in any robot’s
neighborhood. Fig. 4, part (d) shows an example formation.
Notice that each module can only connect with 2 other
modules.

c) U-shape: Fig. 4, part (c) shows a U-shape path
with a slit bent on it. This module I16 has 16 robots and
the path contains 3 sections, each of the length 3d, that
can be interfacing sections. The communication topology
of this module is GI16 [t]. Dash lines show δi-bridges for
δi = 2, 3, ..., 8. Therefore GTI16 is fully connected. It can be
shown that a single I16 is a (2F + 1)-core formation with
FI16 = 3, and connecting multiple I16 modules can form a
formation that is resilient against 3 non-cooperative robots.
Every module can assembled with 3 other modules.

VI. SIMULATIONS

In this section, we present four different dynamical net-
works where the cooperative robots achieve resilient con-
sensus in the presence of multiple non-cooperative robots1.
The non-cooperative robots are shown in red circles. The
initials of each team were randomly chosen, including the
non-cooperative robots. The cooperative robots follow the
SW-MSR algorithm, and the non-cooperative robots generate
oscillatory and random values. The signal from the non-
cooperative robots try to avoid consensus from the coopera-
tive robots. In each scenario, the communication network is
periodic and satisfies all the sufficient conditions that we de-
scribed in the previous sections. The result of the simulations
is summarized in Figure 5. We can see that in all the cases,
the cooperative robots can achieve resilient consensus using
the SW-MSR algorithm. If we compare the convergence
rate in panels (c) and (d), we can see that the convergence
rate is faster for a small number of modules. This result is
expected since the network connectivity is reduced by adding
new modules to the network. However, in comparison to
methods in the literature where high connectivity is required
to satisfy r-robustness, we can achieve r-robustness and still
maintaining low connectivity. In panel (d), we show that the
modular configuration limits the neighborhood of each robot,
allowing up to F = 4 non-cooperative robots in every robot’s
neighborhood.

VII. CONCLUSIONS

This work proposed a formation and routing strategy to
generate robotic communication networks that is resilient in
consensus performance by connecting modular circulating
routes, each deployed with a sub-group of robots. We showed
how circulating modules with a complete communication
topology can be composed to form a resilient formation.
The modules are connected to each other so that they have a

1Some of the simulation results are shown in the video available at
[https://youtu.be/dj2afGyhBB4]
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(a) Triangular module (3 robots each)
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(d) Ten large triangular modules

Fig. 5. Simulations for four different modular dynamical networks. On the
left side of each panel, we present the network topology. The dark disks
represent the robots and the arrows illustrate their direction of motion. On
the right side, the evolution of the scalar variable in time. The solid lines
and the dashed lines represent the scalar values of the cooperative and non-
cooperative robots respectively.

sufficient number of “inter-module” communication, which
we call the interfacing index. With the assumption that all
robots are moving at the same constant speed, we satisfy
the conditions on the connectivity and on the interfacing
index by carefully designing the geometry of the modular
circulating path.

Our future work will allow modules to have different
shapes and different numbers of robots. More generalized
routes in environments without lattice will be studied. We
also consider the deployment on pre-defined circulating



paths, in which the design variable is now the robots’ speed
profile so that they achieve required temporal connections.
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