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Abstract— We consider networks of dynamic agents that
execute cooperative, distributed control algorithms in order to
coordinate themselves and to collectively achieve goals. The
agents rely on consensus algorithms that are based on local
interactions with their nearest neighbors in the communication
graph. However, such systems are not robust to one or more
malicious agents and there are no performance guarantees when
one or more agents do not cooperate. Recent results in network
science deal with this problem by requiring specific graph topo-
logical properties. Nevertheless, the required network topologies
imply high connectivity levels, which may be difficult to achieve
in systems that exhibit time-varying communication graphs. In
this paper, we propose an approach that provides resilience
for networks of dynamic agents whose communication graphs
are time-varying. We show that in the case where the required
connectivity constraints cannot be satisfied at all times, we can
resort to a consensus protocol that guarantees resilience when
the union of communication graphs over a bounded period
of time satisfies certain robustness properties. We propose a
control policy to attain resilient behavior in the context of
perimeter surveillance with a team of robots. We provide
simulations that support our theoretical analyses.

I. INTRODUCTION

The coordination of networks of dynamic agents is facili-
tated by group agreement strategies, i.e., consensus. Yet, the
performance of such networks deteriorates if one or more
agents are compromised, e.g., due to malicious attacks, or
platform-level failures. For example, an attacker might take
control of the communication module of certain agents in the
network. As a consequence, the values communicated by the
compromised agents may not correspond to the truth, and,
hence, the performance of the system will be corrupted. In
another example, an agent’s hardware may undergo faults,
subsequently influencing the values communicated by that
agent. We are interested in providing resilience to such
threats. In particular, we aim at solving this problem for
networks of agents with communication graphs that vary as a
function of time. Indeed, real-world systems with embodied
agents (e.g., unmanned air vehicles (UAVs), satellites in
space, vehicles in highway systems) experience constrained
communication capabilities, due to limited communication
ranges and physical obstruction of the communication chan-
nels. These artifacts are compounded by the motion of the
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agents. For these reasons, we focus on developing a resilient
consensus strategy for systems where the connectivity of
agents varies over time.

Our approach builds on recent work, which proposes a
local consensus protocol that is resilient to a number F of
non-cooperative nodes [1]. This method relies on the network
topology satisfying a certain property known as (2F + 1)-
robustness. In dynamic, real-life scenarios, however, it may
be difficult to achieve this property, and even impossible to
maintain it throughout time — in other words, at any given
moment, the network’s communication graph may not satisfy
required robustness properties. The premise of our work is
that we can control the connectivity of individual agents
in our system so that the necessary topological property
is achieved jointly, over a collection of communication
graphs in bounded time intervals. We proceed to show that
such jointly connected communication topologies can be
characterized by the aforementioned robustness properties.
Building on this, we propose an alternate local consensus
update rule that provides resilience to threats from non-
cooperative agents.

A. Related Work

The topic of resilient consensus has received considerable
attention, in particular in the computer science, algorithms,
and engineering communities [2], [3]. A main result of
this body of work states that resilience can be achieved
through sufficiently high connectivity: if the connectivity of
the network is 2F or less, then F non-cooperative nodes
can prevent some of the nodes from receiving legitimate
information from other nodes in the network. Conversely,
when the network connectivity is 2F +1 or higher, there are
various algorithms that enable a reliable diffusion of infor-
mation [4], [5]. However, these algorithms require non-local
information about the (time-invariant) network topology in
order to provide resilience. As a consequence, Zhang et al.,
and LeBlanc et al. [6], [1], [7] introduced an alternative
definition of network resilience, termed r-robustness, that
facilitates purely local update rules for resilient asymptotic
consensus. The strength of the proposed approach is that
it can deal with large networks with an arbitrary number
of non-cooperative agents. Consensus within a certain ‘safe’
interval is assured as long as each cooperative node has no
more than F non-cooperative neighbors (with r = 2F + 1).
The identities of the non-cooperative nodes are unknown
to the cooperative nodes in the network and only local
information is required. However, while the required network
robustness properties hold in various models for large-scale
networks [7], ensuring that they hold in general time-varying
networks (such as those containing mobile nodes) can be
challenging.



Most similarly to our work, the recent work in [8], [9]
considers asynchronous networks with information delays.
That work considers the problem of finding a condition
on the graph topology under which the cooperative agents
reach resilient consensus with delayed information. Our work
differs from the latter in that we provide an alternate (novel)
update algorithm that allows nodes to compute updates at
every time-step (regardless of what information has been
received), and we prove that this algorithm reaches resilient
consensus. Also, we provide an active control strategy that
allows the network to achieve the required graph topological
properties.

B. Contributions

The main contribution of this paper is a method that allows
networks of dynamic agents to achieve resilient consensus
when their communication graphs are time-varying. First,
we demonstrate that if a team of cooperative and non-
cooperative agents are linked together across a time interval
by a r-robust network topology (for sufficiently large r),
then the cooperative agents can achieve resilient asymptotic
consensus. Second, we take advantage of the agents’ motion
capabilities to selectively activate communication links. We
propose a control policy that moves the agents over a Jordan
curve in order to ensure the robustness of the system’s
communication graph.

II. PRELIMINARIES

Consider a network composed of a set of nodes V =
{1, 2, ..., n}. The ability to communicate with adjacent nodes
defines the set of connections E ⊆ V × V . Therefore, we
model the network as an undirected graph G = (V, E). The
neighbors of node i are Ni = {j|(i, j) ∈ E}. For a node
subset S ⊂ V , we denote its complement by S̄ = V\S.

A. Consensus

We consider networks of agents, where each node is an
autonomous entity that can adapt to changing conditions
based on incoming data streams originating from neighboring
nodes. As there is no central master, the nodes need to
reach an agreement with respect to the shared information
in order to make unified decisions. The question of how do
this is solved by consensus algorithms [10], [11], [12], [13].
When performing a consensus algorithm, each node i has a
variable of interest xi, e.g., that describes the locations of the
nodes, or that measures local temperatures. Subsequently, the
whole network may want to estimate a global variable, such
as the centroid of the network, or the average temperature
of the environment, respectively, based on the distributed
information available to the network as a whole. This goal
can be achieved by local interaction, where each node i
updates its own value at time-step t based on some specified
function f :

xi[t+ 1] = f(xi[t], {xj [t]|j ∈ Ni}). (1)

In [11], the authors show that, if the function f represents
a convex combination, then given a connected and balanced
graph G, every node i ∈ V reaches a consensus value that

corresponds to a weighted average of the initial values of all
nodes.

Definition 1. An agent is said to be cooperative if it applies
the consensus update rule and communicates its value to its
neighbors at every time-step. It is called non-cooperative if it
applies a different update rule at any time step. We denote the
set of cooperative agents by C ⊆ V and the non-cooperative
agents by C̄ ⊆ V\C.

Non-cooperative agents can be either (i) defective (unin-
tentionally non-cooperative, e.g., due to a faulty sensor or ac-
tuator), or (ii) malicious (intentionally non-cooperative, e.g.,
an external attacker gains access to a node’s communication
module, with the goal of manipulating the system). Systems
based on Eq. (1) operate well and scale well when every
node is functional and cooperative. However, when a non-
cooperative node stops adhering to the consensus update rule,
that node can affect the behavior of all other nodes in the
network. For this reason, it is desirable to devise a resilient
strategy. The problem of consensus in the presence of non-
cooperative nodes can be solved by deploying a resilient
consensus algorithm.

B. Resilient Consensus

The recent work in [1] proposes a method, termed the
Weighted Mean-Subsequence-Reduced (W-MSR) algorithm,
which achieves resilient consensus by converging to a
weighted average under certain topological conditions, which
we detail below.

The W-MSR algorithm consists of three steps, executed
at time t. First, each cooperative node i creates a sorted list,
from smallest to largest, with the received values from its
neighbors Ni. Second, the list is compared to xi[t], and the
F largest values that are larger than xi[t] are removed (if
there are fewer than F larger values than xi[t], all of those
values are removed). The same removal process is applied
to the smaller values. The remaining nodes in the list are
denoted by Ri[t]. Third, node i updates its value with the
following rule:

xi[t+ 1] = wii[t]xi[t] +
∑

j∈Ri[t]

wij [t]xj [t],

where wij [t] > 0, and
∑
j wij [t] = 1. An extended explana-

tion of this algorithm is given in [1]. Using this algorithm,
it is possible to achieve asymptotic consensus in a network
with at most F non-cooperative nodes, if the communication
graph G is (2F + 1)-robust, detailed below.

Definition 2. A set S ⊆ V is a r-reachable set if there exists
a node i ∈ S such that |Ni\S|≥ r.

Definition 3. A graph G is r-robust if for any pair of
nonempty, disjoint subsets of V , at least one of them is r-
reachable.

Based on this definition of graph topology, the work in [1]
shows that a network that is (2F+1)-robust achieves asymp-
totic consensus in the presence of up to F non-cooperative
agents (in each local neighborhood), if cooperative agents
follow the W-MSR update rule.



III. PROBLEM FORMULATION

In order to ensure that deploying the W-MSR algorithm
locally on each node will lead to resilient consensus in the
presence of F non-cooperative agents, we must first ensure
that the communication topology is (2F + 1)-robust. For
the reasons described in Section I, this may be difficult to
achieve. Hence, we develop a solution that provides resilient
consensus granted that the collection of joint communication
graphs over a bounded time interval is (2F + 1)-robust.

We formulate our problem as follows. Let us consider a
time-varying graph G[t] = (V, E [t]), where the agents are
represented by vertices, and the edges may vary through
time. The neighbors of node i at time t are denoted by
Ni[t] = {j |(i, j) ∈ E [t]}.

Problem 1. Consider a network of dynamic agents with a
time-varying communication graph, and a given threat of
up to F non-cooperative agents in the network. Under the
constraint that the network may not be a (2F + 1)-robust
topology at any given time-step, and under the assumption
that communication links can be activated selectively (e.g.,
through motion control), design a strategy that allows the
network to achieve asymptotic resilient consensus.

We solve this problem in three steps. First, we demonstrate
that if the agents are linked together across a time interval by
a (2F +1)-robust network topology, then resilient consensus
can be achieved. Second, we propose a sliding window
approach that uses old values in order to achieve consensus
based on time-varying communication graphs. Third, we
propose a periodic clustering method to generate control
policies that ensure that a network of mobile agents achieves
robust topologies periodically. Overall, our strategy enables
networks of dynamic agents to achieve resilient consensus
without the need to maintain the stringent network robustness
requirements at all times, but rather repeatedly, jointly over
bounded time intervals.

IV. RESILIENT CONSENSUS WITH SLIDING WINDOW

In this section, we describe our approach to solving
the resilient consensus problem with jointly robust network
topologies.

Definition 4. For fixed T , r ∈ Z>0, the dynamic graph G[t]
is (T, r)-robust if ∪Tτ=0G[t− τ ] satisfies the conditions of an
r-robust graph ∀t ≥ T . We denote GT [t] := ∪Tτ=0G[t− τ ].

This implies that the dynamic graph G[t] is not required
to be r-robust at every time step. Instead, depending on the
dynamics of its edges, it may be (T, r)-robust. Based on this
concept, we show that agents in our system do not need to
form robust network topologies at every time-step, but rather
jointly, over bounded intervals of duration T . Building on
this, we extend the W-MSR algorithm [1] for time-varying
networks.

A. Description of SW-MSR
We present the Sliding Weighted Mean-Subsequence-

Reduced algorithm (SW-MSR), which introduces a sliding
window approach that extends the classical W-MSR algo-
rithm. We consider a window with duration T steps, during

Algorithm 1: SW-MSRi(T , F , t)
1 // Find most recent values of neighboring nodes
2 N T

i [t] := ∪tτ=t−TNi[τ ]
3 τij [t] := max({τ ∈ [0, T ] | j ∈ Ni[t− τ ]}), ∀j ∈ N T

i [t]
4 // Remove F values strictly larger and smaller than xi[t]
5 Ri[t] = Remove(xi[t], F,N T

i [t], τij [t])
6 // Compute weighted average
7 xi[t+ 1] = wii[t]xi[t] +

∑
j∈Ri[t]

wij [t]xj [t− τij [t]]
8 return xi[t+ 1]

which each agent i stores the time-stamped values received
from its neighbors. A message is a triplet (j, τ, xj [τ ]), where
τ is the time-step at which agent i received the message from
agent j. Algorithm 1 describes the SW-MSR update rule for
each cooperative agent i at time step t. Line 2 creates a set
N T
i [t] that stores the neighbors during the interval [t−T, t].

Line 3 identifies the time-stamp of the most recent message
for each neighbor j in the time interval. On line 5, the
function Remove sorts the set {xj [t−τij ]|j ∈ N T

i [t]} using
the current agent’s value xi[t] as a reference. Analogous
to W-MSR, if there are less than F values strictly larger
than xi[t], then agent i removes all values that are strictly
larger. Otherwise, it removes precisely the largest F values
in the sorted set. In the same manner, if there are less than
F values strictly smaller than xi[t], then agent i removes
all values that are strictly smaller. Otherwise, it removes
precisely the smallest F values. It returns the non-removed
elements in the set Ri[t] ⊆ N T

i [t]. Finally, line 7 computes
the weighted average based on the agent’s own value and
the remaining received values from the neighbors in the
current time interval, where each weight is lower-bounded
by α ∈ (0, 1/2) and the sum of all the weights satisfies
wii[t] +

∑
j wij [t] = 1. Initially, while t < T , the agents

apply the SW-MSR update rule with a temporal period
T ′ = t. In this initial state, asymptotic consensus cannot be
guaranteed; but the estimates are not affected by malicious
outlier values since the F largest values and the F smallest
values are removed in line 5.

The main difference between this algorithm and the stan-
dard W-MSR algorithm is that we take into account all values
received within the time interval T as a reference for the
removal process. This feature exploits temporal information
retained by each node upon the reception of messages.

B. Achieving resilient asymptotic consensus

In the following section, we demonstrate that a network
with a (T, 2F + 1)-robust topology can achieve resilient
consensus in the presence of F non-cooperative nodes. This
proof substantially generalizes the proofs of convergence
in [1], [14] to handle the time-varying networks that we
consider in this paper.

Let M [t] and m[t] be the maximum and the minimum
values of the cooperative nodes in the time interval [t−T, t],



as

M [t] := max
i∈C, τ∈[0,T ]

xi[t− τ ],

m[t] := min
i∈C, τ∈[0,T ]

xi[t− τ ],

D[t] := M [t]−m[t].

Lemma 1. The functions M [t] and m[t] are non-increasing
and non-decreasing, respectively, for t ≥ T , if each cooper-
ative node i ∈ C updates its current value xi[t + 1] based
on the SW-MSR algorithm with at most F non-cooperative
nodes in the neighborhood N T

i [t].

Proof. Consider a cooperative node i ∈ C, We know that
after the removal process, every remaining node (j, τij [t]) ∈
R[t] satisfies m[t] ≤ xj [t − τij [t]] ≤ M [t]. Therefore, the

value for node i at the next time step is upper bounded by

xi[t+ 1] ≤ wii[t]M [t] +
∑

j∈Ri[t]

wij [t]M [t]

≤ M [t],

and similarly, it is lower bounded by xi[t+ 1] ≥ m[t]. Since
M [t + 1] and m[t + 1] are the largest and smallest values,
respectively, of any cooperative node in the interval [t−T +
1, t + 1], we see that M [t + 1] ≤ M [t] and m[t + 1] ≥
m[t].

Lemma 2. Consider a cooperative node i ∈ C. For any
k ≤ T , we have |xi[t]− xi[t+ k]|≤ (1− αT )D[t]

Proof. Recall that we lower-bound the weights with
α ∈ (0, 1/2). Then we have

xi[t+ 1] = wii[t]xi[t] +
∑

j∈Ri[t]

wij [t]xj [t− τij ]

≤ αxi[t] + (1− α)M [t].

For the following time step,

xi[t+ 2] ≤ αxi[t] + (1 + α)(1− α)M [t].

After k ≤ T steps,

xi[t+ k] ≤ αkxi[t] + (1 + α+ ...+ αk−1)(1− α)M [t]

≤ αkxi[t] + (1− αk)M [t].

Then,

xi[t]− xi[t+ k] ≥ (1− αk)(xi[t]−M [t])

≥ −(1− αk)D[t].

Similarly, using the lower bound m[t], we get xi[t]− xi[t+
k] ≤ (1− αk)D[t] and consequently,

|xi[t]− xi[t+ k]| ≤ (1− αk)D[t]

≤ (1− αT )D[t].

For any γ ∈ R, let XM (t, t′, γ) be the set of cooperative
nodes that had a value larger than M [t−T ]−γ at least once
in the past T time steps (from t′). Similarly, let Xm(t, t′, γ)
be the set of cooperative nodes that had a value smaller than

m[t − T ] + γ at least once in the past T time steps (from
t′). Formally,

XM (t, t′, γ) := {i ∈ C|xi[t′ − τ ] > M [t− T ]− γ,
for some 0 ≤ τ ≤ T}

Xm(t, t′, γ) := {i ∈ C|xi[t′ − τ ] < m[t− T ] + γ,

for some 0 ≤ τ ≤ T}.
We will now use these sets (with appropriately defined γ)
to show that the cooperative nodes reach consensus under
SW-MSR dynamics and (T, 2F + 1)-robust networks.

Theorem 1. Given a network modeled as a graph G[t], re-
silient asymptotic consensus is achieved, even in the presence
of F non-cooperative agents, if the graph is (T, 2F + 1)-
robust for every time step t, and the cooperative nodes
apply the SW-MSR update rule. Furthermore, this consensus
value will be in the convex hull of the initial values of the
cooperative nodes.

Proof. We will show that D[t]→ 0 when t→∞ by showing
that for all t ≥ T , after applying the SW-MSR update rule,
the network satisfies the inequality

D[t+ |C|(T + 1)] ≤
(

1− α|C|(T+1)+T

2

)
D[t− T ].

For any t ≥ T , consider the sets XM (t, t, γ0), and
Xm(t, t, γ0), with

γ0 :=
αT

2
D[t− T ].

These two sets are disjoint, since a node i ∈ XM (t, t, γ0)
cannot be in Xm(t, t, γ0) (and vice versa) by Lemma 2 and
the definition of γ0.

Since GT [t] is (2F + 1)-robust, there exists a node in
XM (t, t, γ0) or Xm(t, t, γ0) that has (2F + 1) neighbors
outside its set. Suppose i ∈ XM (t, t, γ0) is such a node; since
there are at most F non-cooperative nodes, node i has at least
F + 1 cooperative neighbors outside the set XM (t, t, γ0).
By the definition of this set, all of these F + 1 cooperative
neighbors had values smaller than M [t − T ] − γ0 in the
interval [t − T, t]. If all of these F + 1 values are smaller
than xi[t], after the removal step (line 5 in Alg. 1), at least
one of the remaining neighbors has a value smaller than
M [t − T ] − γ0. Then the value xi[t + 1] is upper bounded
by

xi[t+ 1] ≤ α(M [t− T ]− γ0) + (1− α)M [t]

≤ M [t− T ]− αγ0
by Lemma 1. The above bound also holds if xi[t] is smaller
than M [t − T ] − γ0, since node i assigns a weight of at
least α to its own value (the same is in fact true for any
cooperative node i ∈ C outside XM (t, t, γ0)). By repeating
this reasoning, one can show that

xi[t+ k] ≤M [t− T ]− αkγ0
for k ∈ Z>0. This means that node i will not be in the set
XM (t, t+ T + 1, αT+1γ0).

Similarly, if i ∈ Xm(t, t, γ0) has 2F +1 neighbors outside
its own set, then x[t + 1] ≥ m[t − T ] + αγ0. We have the



same lower bound for the next value of any other cooperative
node outside Xm(t, t, γ0). In this case, node i will not be in
the set Xm(t, t+ T + 1, αT+1γ0).

Based on the above reasoning, we have

XM (t, t+ T + 1, αT+1γ0) ⊆ XM (t, t, γ0),

Xm(t, t+ T + 1, αT+1γ0) ⊆ Xm(t, t, γ0),

with at least one strict inclusion, and both sets disjoint.
If both sets are nonempty, there exists a node i in one

of the sets that has 2F + 1 neighbors outside that set in
GT [t+ T + 1]. Following the same reasoning as above,

XM (t, t+ 2(T + 1), α2(T+1)γ0)

⊆ XM (t, t+ T + 1, αT+1γ0),

Xm(t, t+ 2(T + 1), α2(T+1)γ0)

⊆ Xm(t, t+ T + 1, αT+1γ0),

with at least one strict inclusion, and both sets disjoint.
We continue in this manner by considering the sets

XM (t, t + k(T + 1), αk(T+1)γ0) and Xm(t, t + k(T +
1), αk(T+1)γ0) for k ∈ N. If both sets are nonempty for
some k, at least one of the sets is guaranteed to shrink in
size when k is incremented. Thus, at k = |C|, one of the sets
will be empty. Suppose XM (t, t + |C|(T + 1), α|C|(T+1)γ0)
is empty. Then, by the definition of this set,

M [t+ |C|(T + 1)] ≤M [t− T ]− α|C|(T+1)γ0.

Since m[t] is non-decreasing, we obtain,

D[t+ |C|(T + 1)] = M [t+ |C|(T + 1)]−m[t+ |C|(T + 1)]

≤ D[t− T ]− α|C|(T+1)γ0

= D[t− T ]− α|C|(T+1)+T

2
D[t− T ]

=
(

1− α|C|(T+1)+T

2

)
D[t− T ].

The same expression will arise if the set Xm(t, t+ |C|(T +
1), α|C|(T+1)γ0) is empty. Thus, as t→ 0, we have D[t]→
0, which means that the cooperative nodes reach consensus.

The fact that the consensus value will be in the convex
hull of the initial values of the cooperative nodes follows
from Lemma 1.

The derivation above shows that resilient asymptotic con-
sensus is achieved for (T, 2F + 1)-robust graphs. In the
following, we propose a control strategy that produces (T, r)-
robust graphs in the context of perimeter surveillance.

V. APPLICATION TO PERIMETER SURVEILLANCE WITH
NETWORKED ROBOTS

In applications such as the guarding of a perimeter or the
surveillance of a facility, a team of multiple mobile robots is
tasked to collaboratively patrol the boundary of the desired
region. In order to achieve this task, the robots may have
different initial estimates of the variables that allow them to
successfully collaborate (e.g. minimum inter-agent distances,
desired velocities, etc.), and they must rely on consensus
algorithms to reach an agreement on the goal. This problem
has been considered previously [15], [16], [17], even when

the shape is dynamic [18]. However, all of these systems
assume that all robots are cooperative.

Ring communication topologies offer a natural way to
maintain network connectivity when the motion of the robots
is constrained to closed curves. Importantly, the challenge
posed by this task is that large perimeters and small inter-
agent communication ranges may prevent the network from
being connected (and thereby achieving the desired level of
robustness) throughout time.

In this section, we take advantage of the agents’ mo-
tion capabilities to ensure the robustness of the system’s
communication graph. We develop a control policy that
selectively activates communication links in order to create
a robust topology over time. In conjunction with our SW-
MSR algorithm, we show that the cooperative robots can
reach asymptotic consensus on their variables of interest.

In the Euclidean space, the location for robot i is denoted
by ri ∈ R2. The communication network at time t is
modeled as a time-varying graph G[t] = (V, E [t]), where
robots are represented by vertices and the time-varying edges
are computed based on a disk communication model E [t] =
{(i, j)| ‖rj − ri‖ ≤ R ∀i, j ∈ V}, where R > 0 is the
maximum communication radius. We model the perimeter of
the protected region as a Jordan curve γ : [0, 1]→ R2 such
that γ[0] = γ[1]. The location of the robot i in the curve is
denoted by si. We assume that robots are holonomic, and
move in the environment based on a control input

ui = ṡi.

In order to reconfigure the robots to achieve a (T, r)-robust
communication graph, we introduce an active behavior that
uses their motion capabilities along a perimeter curve γ(s).

A. Periodic Clustering Method
Let r ∈ Z≥0 and m ∈ Z>0, and suppose there are

n = (r + 1)m robots. We propose a periodic clustering
method (PCM) that can coordinate the motion of the robots
in order to create m clusters of r+ 1 elements during r+ 1
subintervals, each with duration I > 0, where I is an upper
bound on the needed time to reconfigure the robots along
the curve. The goal is to aggregate the robots in such a
way that all the members in each cluster can communicate
among themselves (i.e., the communication graph of each
cluster is a clique). We assume that the robots are indexed
incrementally around the curve, as illustrated in Fig. 1(a).
Then, for each subinterval, we reconfigure the members of
each cluster (clique), so that a (T, r)-robust graph is achieved
for the time interval T = (r + 1)I .

The subinterval number is computed by
η[t] = dt/Ie mod (r + 1). For each subinterval, we
define the set of m leader agents as

VL[t] = {(r + 1)k + η[t]| k = 0, ...,m− 1}.
For each leader i ∈ VL[t], there are r followers

VFi
[t] = {i+ k| k = 1, ..., r}.

During this subinterval, the follower nodes move towards
their respective leader nodes to create a clique. This cyclic
process is executed repeatedly. Specifically, for the perimeter
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(a) At t = 0, the robots start in a ring
configuration with only two neighbors.
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(b) At t = 30, each leader node i ∈
{1, 6, 9, 13} has its own cluster.
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(c) At t = 90, the clusters change and their
leaders are i ∈ {3, 8, 11, 15}.

Fig. 1. Snapshots of PCM applied to resilient perimeter surveillance. The colored disks represent the robots (yellow for the leaders, green for the followers,
and red for the non-cooperative robot); the dashed lines are the communication links among the robots; the circles represent the shape function γi[t] for
each robot i ∈ V . The periodic time period is T = 120.
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(a) Consensus in a ring topology with two
neighbors in the absence of non-cooperative
agents.

0 50 100 150 200 250 300 350 400

t

1.0

1.1

1.2

1.3

1.4

1.5

1.6

ρ

(b) Consensus in a ring topology with one
non-cooperative agent. The red sinusoidal line
represents the value that is shared by the non-
cooperative agent.

0 50 100 150 200 250 300 350 400

t

1.0

1.1

1.2

1.3

1.4

1.5

1.6

ρ

(c) Consensus using PCM. The red sinusoidal
line represents the value that is shared by the
non-cooperative agent. The dashed black lines
represent the bounds M [t] and m[t].

Fig. 2. Consensus on an estimate of the circle radius ρi, i ∈ V . With the same initial conditions, the panels show the dynamics of the consensus in three
different cases.

surveillance task, where the robots circulate along the curve
γ(s), we apply the control law:

ui = Ω,

for each leader i ∈ VL[t], which makes the agent patrol
along the curve at a constant velocity Ω ∈ R. Each follower
j ∈ VFi

[t] not only patrols the curve, but also moves towards
its leader using the control law:

uj = Ω +Kp

(
si − sj + (j − i)sR

r

)
,

where Kp > 0 is a gain constant, and sR is the minimum dis-
tance in the curve that satisfies the communication radius R.
We assume that follower robot j can observe the location si
of the leader robot i by a means other than communication,
for example, by employing a relative positioning sensor.
Overall, this behavior on the closed curve takes the robots

to a robust configuration over time t ≥ (r + 1)I 1.

Proposition 1. If the set of mobile robots follows the
Periodic Clustering Method on a closed curve γ(s), then
the communication graph of all robots is (T, r)-robust for
t ≥ (r + 1)I .

Proof. By the definition of PCM, the union of the commu-
nication graphs in the time interval T = (k + 1)I is:

Gc[T ] =

r+1⋃
η=1

G[ηI],

and the periodic behavior yields Gc[t + T ] = Gc[t], t ≥ T .
In the graph Gc[t], each node i ∈ V has the neighbors Ni =

1In our work, we assume that non-cooperative robots do not cooperate
in communication, but do cooperate in motion. Despite this assumption,
our threat model is sufficiently powerful, since devious motion can be
easily detected with standard filtering / outlier removal methods, and non-
cooperative robots flagged by their actions, whereas devious communication
can be executed in such a way that it is hard to detect and ignore.



{i−r, ..., i−1, i+1, ..., i+r}, in a ring configuration where
i = n+ 1 = 1.

We can show that the graph Gc[t] is 2r-vertex-connected,
since it is necessary to remove two subsets of r nodes in
order to separate the graph into independent subgraphs. By
Theorem 4 in [7], if a ring (or line) graph G is k-vertex-
connected then it is at least bk/2c-robust. Therefore, the
graph Gc[t] is r-robust with period T = (k + 1)I .

Combining PCM and SW-MSR, given a set of ordered
robots on a closed curve, we obtain a (T, 2F + 1)-robust
graph that achieves asymptotic consensus even in the pres-
ence of at most F non-cooperative robots.

B. Simulations
In our simulations we use a circular curve, where the

robots try to reach consensus on the parameters of the curve.
For the circle, the radius for robot i is denoted by ρi > 0,
and the curve that it follows is

γi(s) = ρi

[
cos(2πs)
sin(2πs)

]
.

The robots start in a ring topology, where each robot i ∈ V
has two neighbors Ni[0] = {i − 1, i + 1} (as depicted in
Fig. 1(a)). After applying PCM, we extend the neighborhood
in the time interval to N T

i [t] = {i−r, ..., i−1, i+1, ..., i+r},
t ≥ T . All cooperative agents apply the SW-MSR algorithm.
In Fig. 1 we present some snapshots of the execution of
PCM, where, at any given time-step, the nodes have zero or
three neighbors, but over the whole time interval T , they have
six neighbors. As a result, we have a ring topology with six
neighbors, which is a (T, 3)-robust graph that can deal with
F = 1 non-cooperative agents. The non-cooperative agent
has an oscillatory behavior that tries to avoid convergence
of the network.

Initially, the robots are deployed with random estimates of
ρi (see Fig. 1(a)). If the robots start to move with constant
velocity, in the absence of non-cooperative agents, in the
same ring topology, they achieve asymptotic consensus as
presented in Fig. 2(a). However, a single non-cooperative
agent can manipulate the system, as presented in Fig. 2(b),
where the non-cooperative robot shares a sinusoidal signal
and avoids the convergence. Also, we note that two robots
are more affected that the others: they actually correspond
the neighbors of the non-cooperative agent.

Our method provides asymptotic consensus by using SW-
MSR. Fig. (2(c)) demonstrates convergence. We observe
the effect of the sliding window approach, as every node
converges to a value that lies within the maximum and
minimum of the current time interval. As time progresses,
the values converge to a weighted average. We highlight that
in spite of the robots’ limited communication radii, PCM
increases the robustness of the network to the desired level
by controlling the robots’ dynamics.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a solution to providing resilience
for networks of agents that have time-varying communication
graphs. First, we demonstrate that if the agents are linked
together across a time interval T by a (2F + 1)-robust

network topology, namely a (T, 2F+1)-robust topology, then
resilient consensus can be achieved. Second, we propose a
sliding window approach to the W-MSR algorithm, namely
the SW-MSR algorithm, that enables agents to compute
resilient consensus updates locally, given that their commu-
nication graphs are (T, 2F + 1)-robust. Finally, we propose
a clustering strategy that generates (T, r)-robust topologies
for networked mobile agents engaged in encirclement tasks.
We demonstrate the usage of our framework on an example
of decentralized encirclement with robots that have limited
communication radii.

In future work, we plan to extend the periodic clustering
method to any type of topology, not only for ring topologies,
in order to expand the number of applications in robotics and
mobile communication networks.
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