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Abstract Consensus algorithms allow multiple robots to achieve agreement on esti-

mates of variables in a distributed manner, hereby coordinating the robots as a team,

and enabling applications such as formation control and cooperative area cover-

age. These algorithms achieve agreement by relying only on local, nearest-neighbor

communication. The problem with distributed consensus, however, is that a single

malicious or faulty robot can control and manipulate the whole network. The objec-

tive of this paper is to propose a formation topology that is resilient to one malicious

node, and that satisfies two important properties for distributed systems: (i) it can be

constructed incrementally by adding one node at a time in such a way that the condi-

tions for attachment can be computed locally, and (ii) its robustness can be verified

through a distributed method by using only neighborhood-based information. Our

topology is characterized by triangular robust graphs, consists of a modular struc-

ture, is fully scalable, and is well suited for applications of large-scale networks.

We describe how our proposed topology can be used to deploy networks of robots.

Results show how triangular robust networks guarantee asymptotic consensus in the

face of a malicious agent.

1 Introduction

Coordination of distributed autonomous systems with nearest neighbor communica-

tion has been widely used in swarms and multi-robot systems [1, 2, 3]. A majority

of these applications build on information diffusion (or consensus) algorithms to

synchronize the network with respect to a specific variable. However, such systems

rely on the fact that all robots in the network are reliable, and contribute only legit-
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imate information. As a consequence, the systems are susceptible to failure when

one or several robots are non-cooperative and share wrong information. This situa-

tion can be due to malicious attacks (e.g., a malicious outsider trying to manipulate

the whole network) or due to platform-level faults (e.g., a robot sharing an incorrect

location due to a defective GPS sensor). Hence, the question of network resilience

is of utmost importance. In this work, we focus on topological properties that guar-

antee resilience to faults and attacks on individual nodes. We build on a distributed

consensus algorithm, termed Weighted-Mean Subsequence-Reduced (W-MSR) al-

gorithm [4], which guarantees resilience if certain topological requirements are met.

Throughout this paper, we use the terms node and agent to refer to a robot in a net-

work.

1.1 Related work

The topic of robustness has received considerable attention, in particular in the do-

main of complex networks [5, 6]. A main result of this body of work states that

robustness can be achieved through sufficiently high connectivity: if the connec-

tivity of the network is 2F or less, then F malicious nodes can prevent some of

the nodes from receiving legitimate information from other nodes in the network.

Conversely, when the network connectivity is 2F + 1 or higher, there are various

algorithms that enable a reliable diffusion of information [7, 8]. However, these al-

gorithms not only depend on high connectivity, but also require non-local informa-

tion in order to compute updates. As a consequence, Zhang et al., and later LeBlanc

et al. [9, 10] introduced an alternative definition of network robustness that can deal

with purely local update rules, and that provides resilient asymptotic consensus. The

strength of the proposed approach is that it can deal with an arbitrary number F of

malicious agents, the identities of which are unknown to the normal nodes in the

network. However, in order to build the required topologies, the method assumes

that any node can be connected to any other node in the network (i.e., in absence

of sophisticated node placement algorithms, the networks must provide full connec-

tivity). Hence, it remains unclear how the approach is practically implemented in

networks where nodes have constrained communication radii. Also, it is notewor-

thy that the prior approach mainly deals with the problem of distributed estimation,

and it remains to be explored how it applies to problems that require robust control

of shapes and distributions, such as for cooperative exploration and coordination

tasks [11, 12]. Finally, the problem of robustness has also been considered in mo-

bile robot systems [13, 14, 15], with a particular focus on rendez-vous (i.e., the ap-

plication of consensus algorithms to induce a gathering of robots in n-dimensional

space). Most similarly to our work, the work in [14] considers the presence of non-

compliant robots, and develops a solution that controls a team of robots so that

rendez-vous can be achieved robustly. However, since their systems are mobile, they

assume that communication radii can be adjusted over time (to ensure connectivity).

As a consequence, their method requires a relatively large local neighborhood size:
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for a single malicious robot, the neighborhood size must be at least 5 (cf. assumption

5.1 in their paper).

1.2 Contribution

The main contribution of our work is the definition of a network topology that can be

constructed in a distributed and fully scalable manner, and that guarantees resilient

asymptotic consensus in the face of malicious agents. In addition, our method is also

able to deal with networked robots that have fixed communication radii. We consider

the special case when a network is susceptible to a single fault or malicious node,

and we identify a particular class of networks (which we term triangular robust

graphs) for this case. We derive proofs of all our claims.

2 Preliminaries

Consider a network composed of a set of nodes V = {1, 2, ..., n} that are repre-

sented by points in a planar space vi ∈ R
2, for all i ∈ V . Every node is equipped

with a communication module that allows it to communicate with other nodes.

The ability to communicate with adjacent nodes defines the set of connections

E ⊆ V × V . Therefore, we model the network as an undirected graph G = (V, E).
The neighbors of node i are Ni = {j|(i, j) ∈ E}. For a node subset S ⊂ V , we

denote its complement by S̄ = {i| i 6∈ S, i ∈ V}.

2.1 Consensus

In distributed networked systems, each node is an autonomous entity that can adapt

to changing conditions based on incoming data streams originating from neighbor-

ing nodes. As there is no central master, the nodes need to find an agreement with

respect to the shared information in order to make unified decisions. The question of

how to do this is solved by consensus algorithms [2, 1, 16, 17]. When performing a

consensus algorithm, each node i has a variable of interest xi, e.g., that describes the

locations of the nodes, or that measures local temperatures. Subsequently, the whole

network may want to estimate a global variable, such as the centroid of the network,

or the average temperature of the environment, respectively, based on the distributed

information available to the network as a whole. This goal can be achieved by lo-

cal interaction, where each node i updates its own value at time-step t based on an

update function:

xi[t+ 1] = f(xi[t], {xj [t]|j ∈ Ni}). (1)
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Fig. 1 Consensus in a circular formation with seven robots. Panel (a) shows the network topology.

Panel (b) shows a successful consensus for the variable xc, where all nodes perform the same

averaging update rule. Panel (c) shows an unsuccessful consensus that is manipulated by node 0,

who shares an oscillatory value to avoid convergence for the non-malicious robots.

In [1], the authors show that, given a connected and balanced graph G, every node

i ∈ V reaches consensus on the average of the initial values, xi[t] → x̄[0] =
1
n

∑
i∈V xi[0], when t → ∞ by exchanging messages with the local neighborhood

and applying an averaging function xi[t + 1] = 1
|Ni|+1 (xi[t] +

∑
j∈Ni

xj [t]). We

illustrate an example of consensus in Figure 1 for a circular formation in a bicon-

nected ring topology (Figure 1a). In this context, each robot i moves to the location

(xi, yi), given by xi = x̂c + ρ cos(i 2π/n) and yi = ŷc + ρ sin(i 2π/n), where

(x̂c, ŷc) is the center of the circle, estimated by consensus, and ρ > 0 is the known

radius of the circle. Figure 1b shows how the robots achieve consensus on the av-

erage of the variable x̂c (consensus for the variable ŷc is analogous). This kind of

robotic system works scales well when every node is functional and trustworthy.

However, when a malicious node 1 stops adhering to the consensus update rule due

to a hardware failure or a malicious attack, that robot can affect the behavior of all

other robots in the network. As we observe in Figure 1c, when robot 0 starts to share

an arbitrary oscillatory value, the values of all robots in the network are affected and

consensus is not achieved. We see that a single malicious agent can hinder conver-

gence and manipulate the whole network. For this reason, it is desirable to devise

a resilient strategy. The problem of consensus in the presence of malicious nodes

(such as robot 0 seen above) can be solved by deploying a resilient consensuss al-

gorithm on all nodes. The following section introduces this method.

2.2 Resilient Consensus

A robust network is defined as a network that can reach consensus, even in the

presence of F malicious nodes. Neither the identity nor the strategy of the ma-

licious nodes is known. A known method that achieves consensus by converging

1 We consider an attack or a failure as the same case, where a node shares a value that does not

adhere to the consensus update rule. We call this kind of node a malicious node.
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to a weighted average is the Weighted Mean-Subsequence-Reduced (W-MSR) algo-

rithm [10, 4, 18]. Yet, for this method to work in the presence of malicious nodes,

the network must satisfy certain topological conditions, which we detail below.

The W-MSR algorithm consists of three steps, executed at time t. First, node

i creates a sorted list, from smallest to largest, with the received values from its

neighbors Ni. Second, the list is compared to xi[t], and if there are more than F
values that are larger than xi[t], the F largest values are removed. The same removal

process is applied to the smaller values. The remaining values in the list are denoted

by Ri[t]. Third, node i updates its value with the following rule:

xi[t+ 1] = wii[t]xi[t] +
∑

j∈Ri[t]

wij [t]xj [t], (2)

where wij > 0, and
∑

j wij [t] = 1. In the remainder of this paper, we consider

all weights wij = 1/(|Ri[t]|+ 1). An extended explanation of this algorithm is

given in [10]. Using this algorithm, it is possible to achieve asymptotic consensus

in a network with at most F malicious nodes, if the communication graph G is

(F + 1, F + 1)-robust.

Definition 1. A graph G = (V, E) is (r,s)-robust, with constants r ∈ Z≥0, and

0 ≤ s ≤ |V|, if for any pair of disjoint subsets S1, S2 ⊂ V , at least one of the

following conditions is satisfied:

1. |X r
S1
| = |S1|;

2. |X r
S2
| = |S2|;

3. |X r
S1
|+ |X r

S2
| ≥ s,

where the r-reachable set X r
Sk

= {i ∈ Sk | Ni\Sk ≥ r}, k ∈ {1, 2} is composed of

the nodes in Sk with at least r neighbors outside Sk.

Based on this definition of the communication topology, LeBlanc et al. [10] stated

the following theorem, which specifies the conditions for asymptotic consensus in

presence of F malicious agents.

Theorem 1 (Th. 1, [10]). Consider a network modeled by a graph G = (V, E)
where each normal node updates its value based on the W-MSR algorithm with an

upper bound of F malicious agents. Then, resilient asymptotic consensus is achieved

if the G is (F + 1, F + 1)-robust.

Although these recent works provide a rigorous study of the topological charac-

teristics that are necessary to provide resilience against a number of malicious agents

[14, 10], they do not consider the physical constraints that real-world systems often

have, such as limited or non-adjustable communication radii. Hence, it is not clear

how the methods are applicable in real settings, and it is still an open question if

their implementations are suitable to distributed actuator/sensor networks.



6 D. Saldaña, A. Prorok, M. F. M. Campos, V. Kumar

2.3 Biconnected Graphs

In the following, we describe a concept that is relevant to the derivations in the

subsequent sections.

Definition 2. A graph G = (V, E) is biconnected if it stays connected after remov-

ing any vertex i ∈ V .

An example of a biconected graph in shown in Figure 1a. Biconnected graphs have

two special properties. First, they have two disjoint paths (no common vertices)

between every pair of vertices (Theorem 2), and second, they can be extended/grown

by adding nodes iteratively, as described by the expansion lemma below (Lemma 1).

Theorem 2 (Th. 4.2.1, [19]). If a graph G=(V , E), with at least three nodes, is

biconnected, then there exist at least two disjoint paths between any pair of nodes

i, j ∈ V .

Lemma 1 (L. 4.2.2, [19]). If G is a biconnected graph, and G′ is obtained from G by

adding a new vertex k adjacent to at least two vertices of G, then G′ is biconnected.

3 Triangular Robust Graphs

The creation of robust and (r, s)-robust networks is challenged by three main items:

(i) high connectivity is required; (ii) verifying if a graph is (r, s)-robust is an NP-

hard problem [20]; (iii) default algorithms for creating robust networks are not de-

signed for physically embedded systems, which potentially have hard constraints

on edge lengths. In this section, we propose a particular network topology, termed

triangular robust graph, that is resilient to one malicious node (i.e., F = 1) whose

identity is unknown to the rest of the nodes. Our proposed network topology has the

following convenient properties: it is (2, 2)-robust; it is incrementally expandable;

and it can be verified in polynomial time and in a distributed manner. Furthermore,

due to the inherent geometric properties of triangles, the topology is well suited to

networked robotic systems with agents that have homogeneous, constrained com-

munication radii. As a consequence, triangular robust graphs are well-suited to dis-

tributed robotic systems.

Definition 3. A graph G = (V, E) is triangular robust if it has at least three nodes

and satisfies the following conditions:

1. The graph G is biconnected.

2. The neighbors of node i form a connected sub-graph, Gi = (Ni, E), for all i ∈ V .

Property 1. Based on Condition 1, the minimum degree of any node is two, Deg(i) ≥
2 for all i ∈ V .
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Fig. 2 In the whole set of

connected graphs, this Venn

diagram represents the set of

the triangular robust graphs

and its relationship with bi-

connected graphs and (2, 2)-
robust graphs.

In Figure 2, we show a Venn diagram that represents in the whole set of connected

graphs, our proposed topology is a subset of the Biconnected graphs and also a

subset of the (2, 2)-robust graphs. We highlight that not all the (2, 2)-robust graphs

have the properties that we describe along this section.

Theorem 3. Consider a network modeled by the graph G = (V, E). If G is triangu-

lar robust, then it is (2,2)-robust.

Proof. We show that the triangular robust graph G is (2,2)-robust, as it satisfies the

conditions of Definition 1. Given any pair of disjoint subsets S1, S2 ⊂ V , by Defini-

tion 3, and Theorem 2, the graph G is biconnected and there exist two disjoint paths

between any source node s ∈ S1 and any target node g ∈ S2. It implies that there

are also two edges, e1 = (i, j) and e2 = (o, p), for each path respectively, such that

i, o ∈ S1 and j, p ∈ S̄1. Figure 3 illustrates both paths and their intermediate edges

e1 and e2. The conditions of robustness are satisfied by checking the neighbors of

j. There are only the following two cases:

1. If the node j does not have any neighbors outside S1, i.e. |Nj ∩ S̄1| = 0. It

implies that the node j is the target node, j = p = g, and S2 = {j}. Then, the

condition of robustness |X r
S2
| = |S2| = 1 is satisfied for any S1 (Definition 1,

Condition 2). Figure 4a illustrates this case.

2. Otherwise, the node j has at least one neighbor outside S1, i.e., |Nj ∩ S̄1| ≥ 1.

By Definition 3, Condition 2, since the neighbors of j are connected, there exists

an edge (k, l) ∈ E such that k ∈ Nj ∩ S1, and l ∈ Nj ∩ S̄1. Then the node k
has two neighbors (j and l) outside S1, and the 2-reachable set of S1 contains at

least one element |X 2
S1
| ≥ 1. Figure 4b illustrates this case.

Applying the same sequence of statements for S2, there exist at least one node

with two neighbors outside S2, then |X 2
S2
| ≥ 1. In this way, we show that the

condition of robustness |X 2
S1
|+ |X 2

S2
| ≥ 2 is satisfied.

Fig. 3 A graph with two

partitions S1 and S2 and two

disjoint paths between the

nodes s ∈ S1 and g ∈ S2.
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(a) |Nj ∩ S1| = 0. Node j is g. (b) |Nj ∩ S̄1| ≥ 1.

Fig. 4 Possible cases based on the neighbors of node j.

With the two cases above, we show that the conditions of robustness are satisfied

for any pair of sets in a triangular robust network. ⊓⊔

Remark 1. The converse of the Theorem 3 does not hold, i.e., not all (2, 2)-robust

graphs are triangular robust (see Figure 6 in [10]).

3.1 Determining Triangular Robustness

Checking if a graph is (r,s)-robust is an NP-hard problem [20], but we can check

if a graph is triangular robust in polynomial time, based on the two conditions of

Definition 3.

Condition 1: A simple centralized algorithm to check if G is biconnected can also

be done in polynomial time. For each node i ∈ N , we check if the graph main-

tains connectivity after removing i. It is possible to check connectivity based on

breadth-first-search (BFS) with time complexity O(|V|+ |E|). Then, the result of

checking connectivity |V| times is O(|V|2 + |V||E|). It is also possible to check

it in distributed way by using the algorithm presented in [21].

Condition 2: Checking if the neighbors are connected can be compute in linear

time and in a distributed way. First, every node i ∈ V only needs to know the

neighbors of its neighbors to create the sub-graph Gi = (Ni, E). The worse case

is the complete graph, for which the time complexity to check connectivity for

the neighbors of node i is O(|V|+ |E|). For the complete network it is O(|V|2 +
|V||E|).

Since Conditions 1 and 2 are checked independently, we conclude that it is possible

to check triangular robustness in polinomial time O(|V|2 + |V||E|).
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3.2 Inductive Construction

In the following, we show a simple method that expands a (2, 2)-robust network,

starting from an initial network configuration. Our starting point is a strongly con-

nected graph with three nodes, which is the most basic form of a triangular robust

graph. This configuration is then extended by adding one node at a time, while

maintaining the (2, 2)-robust property at all times, by ensuring that each new node

is connected to two or more nodes (that are also connected among themselves). The

following theorem shows that a triangular robust graph is expandable.

Theorem 4. If G is a triangular robust graph, and G′ is obtained from G by adding

a node k, which is connected to a subset of nodes S ⊂ V , |S| ≥ 2 that are connected

among themselves. Then G′ is also a triangular robust graph.

Proof. We check that the conditions of Definition 3 are satisfied by G′.

Condition 1: By the Expansion Lemma (1), G′ is biconnected as it is an expansion

of G by adding the node k, which is adjacent to two nodes.

Condition 2: As node k is connected to a set of connected nodes, its neighbors are

also connected.

It follows that G′ satisfies the conditions of a triangular robust graph. ⊓⊔

Property 2. By constructing a triangular graph iteratively, we have that the minimum

number of edges of a triangular robust graph is 2n − 3, n ≥ 3. This is the same

minimum number of edges for a (2, 2)-robust graph [20].

Using our inductive construction method, we guarantee that the resulting graph

has the minimum number of edges, which is in constrast to the construction method

proposed in [10] 2. Also, Theorem 4 leads to the particularly practical property

that triangular robust graphs can be constructed incrementally, in a fully distributed

manner. In fact, triangles are geometric configurations that can be easily formed

during the deployment of networked robot teams, where each agent has a com-

munication module that is constrained by a fixed radius R > 0. These robotic

networks determine the set of connections based on the Euclidean distance E =
{(i, j)| ‖vj − vi‖ ≤ R, ∀i, j ∈ V}. For example, a simple formation with three

robots maximizes its connectivity and its covered area by positioning the robots at

the extremes of a regular triangle. Figure 5 shows a basic example of how an ini-

tial formation can be incrementally extended in order to cover a certain area with a

triangular robust network.

2 In the specific case of (2, 2)-robustness, the algorithm of LeBlanc et al. requires three new edges

for every new node (cf. Th. 5), whereas our algorithm requires only two new edges.
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(a) (b) (c)

Fig. 5 Incremental expansion of a triangular robust network. Panel (a) shows the initial triangular

robust network. By placing a subsequent node in the shaded area, the conditions for inductive

construction are satisfied. Panels (b) and (c) depict how the network is grown to cover a given area

iteratively, for n = 12 and n = 20, respectively.

4 Consensus in Triangular Robust Networks

In this section, we compare three different formations, and show how consensus is

affected by their differing topologies. The formations consist of seven nodes. The

nodes’ initial values are x[0] = [60, 75, 2, 85, 66, 83, 20]. We consider a malicious

node that shares an arbitrary (oscillatory) value, attempting to hinder convergence.

Figure 6 shows the three different topologies, and demonstrates how the values

of the nodes behave after applying the W-MSR algorithm (see Eq. (2)). Panel 6a

shows a biconnnected, rigid and pseudo-triangular graph, which is known as Laman

graph [22]. Although the Laman graph has similar properties, as well as the same

number of edges 2n−3, it is neither (2, 2)-robust 3, nor triangular robust (the neigh-

bors of node 3 are not connected among themselves). We can see in Figure 6d that

the node values do not reach consensus, with two different values among the nor-

mal nodes that remain unchanged as time progresses. A triangular robust network

is shown in Figure 6b. It is a simple variation of the previous Laman graph, where

the edge (0, 6) is replaced by the edge (2, 4). As we stated earlier in Section 3, a

successful convergence will reach consensus to a value within the range of initial

values, i.e., a weighted average. This is demonstrated in Figure 6e. Finally, in Fig-

ure 6c, we show a triangular robust graph that is not planar (with intersecting edges),

and that has two fully connected nodes. This topology represents the worst possible

case, since one of the fully connected nodes is the malicious node (node 6 in the

graph), with maximal influence over the other nodes in the graph. Also in this case,

we see that the nodes reach consensus to a weighted average, as shown in Figure 6f.

This particular example shows how the maximum value of the normal nodes does

not change when the malicious node’s value is the greatest value; instead, we see

3 Consider the sets S1 = {0, 1, 2} and S2 = {4, 5, 6}, since there are not 2-reachable nodes, the

conditions for (2, 2)-robustness are not satisfied.
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Fig. 6 Results of the resilient convergence method for different network topologies in the presence

of a malicious agent. The network topologies are shown in (a)-(c), with the malicious agent shown

in red, encircled by the dashed line. Panel (a) shows a Laman graph, panel (b) shows a planar trian-

gular robust graph, and panel (c) shows a triangular robust graph with two fully-connected nodes.

All normal nodes in the network perform the W-MSR update rule. The corresponding convergence

behavior is shown in graphs (d)-(f), respectively. The average of the initial values is represented

by the green dotted line, and the minimum and maximum of the initial values are depicted by the

blue dotted lines. The malicious agent does not follow the update policy by sharing an arbitrary

oscillatory value, denoted by the red dashed line.

that the minimum value of the normal nodes increases. An analogous behavior is

observed when the malicious node’s value the smallest value. As a consequence, the

difference between the maximum and the minimum values of the normal nodes is

continuously reduced, and the network achieves asymptotic convergence.

5 Conclusions and Future Work

In this paper, we proposed a particular network topology that is resilient to a mali-

cious member node. We showed that this topology provides robustness, and guar-

antees asymptotic consensus in the presence of illegitimate information originating

from one of the nodes. Especially, we showed that it satisfies two important prop-

erties for distributed systems: (i) it can be constructed incrementally by adding one

node at a time such that the conditions for attachment can be computed locally,

and (ii) its robustness can be verified through a distributed method by using only

neighborhood-based information. The topology is fully scalable, and its robust-
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ness property can be validated in polynomial time. Also, its geometric properties

lend themselves elegantly to applications of coverage and formation control for net-

worked robot teams. In future work, we intend to study how our current method can

be extended to withstand more than one malicious agent, i.e., (F +1, F +1)-robust

graphs for F > 1. This is challenging because prior approaches assume unbounded

communication radii (i.e., unlimited edge lengths between nodes that are being de-

ployed in physical space). Furthermore, we will investigate the applicability of our

methods to mobile problem settings, such as robust formation control.
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