1. Small factors: (a) trial division in fast arith

$$
\left(p<10^{4}, p<2^{31}\right)
$$

(b) Pollard rho (best algorithm):

Finds small prime factor factor p of large number n using

$$
x_{0}=2, x_{j+1}=x_{j}^{2}+1 \quad \bmod n
$$

Values of polyn $x^{2}+1 \bmod p($ for unknown p$)$
randomly distributed, by "birthday paradox" expect
a match $x_{2 J}=x_{J} \bmod p$, so a factor

$$
p=\operatorname{gcd}\left(x_{2 J}-x_{J}, n\right),
$$

after \sqrt{p} steps.
(c) ECM (best method for medium-sized factors)

Look for an elliptic curve $\mathrm{E} \bmod p$ with an easy
discrete \log problem. Need order(E) with
STEP 1: only small prime factors p_{i}, or,
STEP 2: only one large prime factor q
(current practice: $p_{i}<8000000, q<10^{11}$)

