
Exam 2, Math 205, Spring 2013

Problem 3: Let A be the matrix A =





1 2 2 1
2 5 4 3
0 1 0 1



 .

(a) Find a basis for the nullspace of A.

Solution: A →
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1 2 2 1
0 1 0 1
0 1 0 1



 →


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1 0 2 −1
0 1 0 1
0 0 0 0



 .

The free variables are x3 and x4, and x1 = −2x3 + x4, x2 = −x4.

So
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(b) Find a basis for the column space of A.

Solution: Since the columns of A that have leading 1’s in the reduced matrix are
a basis of the column space of A, we use the first and second columns of A:
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