Exam 2, Math 205, Spring 2013

Problem 3: Let *A* be the matrix $A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 5 & 4 & 3 \\ 0 & 1 & 0 & 1 \end{bmatrix}$. (a) Find a basis for the nullspace of *A*.

Solution:
$$A \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The free variables are x_3 and x_4 , and $x_1 = -2x_3 + x_4, x_2 = -x_4$.

So	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$	=	$\begin{bmatrix} -2x_3 + x_4 \\ -x_4 \\ x_3 \\ x_4 \end{bmatrix}$	1 	with basis \langle	$\begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$,	$\begin{bmatrix} 1\\ -1\\ 0\\ 1 \end{bmatrix}$		>.
	Lx_4		L x_4)	

(b) Find a basis for the column space of A.

Solution: Since the columns of A that have leading 1's in the reduced matrix are a basis of the column space of A, we use the first and second columns of A:

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 2\\5\\1 \end{bmatrix} \right\}.$$