Factoring methods (numbers from nature, not RSA)

1. Small factors: (a) trial division in fast arith $(p < 10^4, p < 2^{31})$

(b) Pollard rho (best algorithm):

Finds small prime factor factor p of large number n using

 $x_0 = 2, \ x_{j+1} = x_j^2 + 1 \mod n$

Values of polyn $x^2 + 1 \mod p$ (for unknown p) randomly distributed, by "birthday paradox" expect a match $x_{2J} = x_J \mod p$, so a factor

$$p = gcd(x_{2J} - x_J, n),$$

after \sqrt{p} steps.

(c) ECM (best method for medium-sized factors) Look for an elliptic curve $E \mod p$ with an easy discrete log problem. Need order(E) with

STEP 1: only small prime factors p_i , or,

STEP 2: only one large prime factor q(current practice: $p_i < 8000000, q < 10^{11}$)

RUNTIME: to find a factor p of a number n

$$\left(e^{\sqrt{\log p \log(\log p)}}\right)^{\sqrt{2}+o(1)} M(\log n)$$

[worst case: $p = \sqrt{n}$ asymptotic with Quadratic Sieve runtime]