Math 205, Summer I, 2016
Week 4b:

Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus)

5.6 Eigenvalues and Eigenvectors
5.7 Eigenspaces, nondefective matrices

5.8 Diagonalization [*** See next slide ***]

A vector 7 # 0 in R™ (or in C")

is an eigenvector with eigenvalue \ of
an n-by-n matrix A if Av = \v.

We re-write the vector equation as (A — \,,)% = 0,
which is a homogeneous system with coef
matrix (A — AI), and we want A
so that the system has a non-trivial solution.

We see that the eigenvalues are the roots

of the characteristic polynomial P(\) = 0,
where P(\) = det(A — AI).

To find the eigenvectors we find the distinct
roots A = \;, and for each i

solve (A — \;1)7 = 0.

Problem 1. Find the eigenvalues and eigenvectors

3 -1
of A= <_5 _1>



2

Solution.

P(X) =det(A— \p) =

3—\ -1
5 —1-2A

=(-1-XM)B-XN)-5=X-21-3-5
:)\2—2>\—8: ()\—4)(>\+2), SO )\1 :4,>\2 = —2.
For \; = 4, we reduce the coef matrix of the system (A — 41)& = 0,
3—4 —1 -1 -1 1 1
‘4_4I_<:—5 —1—4)“(—5 —5>_*<0 0)’
so for x9 = a we get 1 = —a, and the eigenvectors for A\ = 4 are the

vectors (x1,22) = a(—1,1) with a # 0, from the space with basis (—1,1).

For Ay = —2, we start over with coef
‘4+2I::<3jgz —;i2) _’<8 }f)'

To find a spanning set without fractions, we
anticipate that finding x; will use division

by 5, and take zo = 5b. Then 5x1 — x5 = 0 gives
bx1 = bb, so x1 = b, and (x1,x2) = b(1,5),
spanned by (1,5) [or, if you must, (3,1)].

Problem 2.

Find the eigenvalues and eigenvectors

10 —-12 8
of A= 0 2 0
-8 12 -6

Solution.
Since A is 3-by-3, the characteristic polynomial P()) is cubic,
and we think strategically: How should P(X) be given?



For example, do we need the coef of A\2? We’re looking for the roots, so
we need the factors (A — A;). For that objective
there is only one good method of computing the determinant;

expansion on the 2nd row. Look why the 2nd row exp is best:

10 — A 3
—8 —6 — A\

— (2= A)[(10 = A) (=6 — A) +64] = (2 — A)[A% — 4\ — 60 + 64] — —(\ — 2)3.
Can we agree that P(\) = —A3 + 12)% — 24\ + 8,

we get P(A\) = (2 —X)

[which we would have gotten from the other methods]
is not as useful as having a factor [since the other factors only

need a quadratic; not solving a cubic]?

Anyway, this matrix only has one distinct
eigenvalue, \; = 2. To find the eigenvectors,

we reduce the coef matrix A — 21

10-2 —12 8 2 =3 2
= 0 2—2 0 — 10 0 O
—8 12 —-6-2 0O 0 O

We see that x5 and x3 will be free variables,
and anticipating that finding x; will involve
division by 2, take xo = 2s and z3 = t, so
x1 =3s—t; and (z1,x2,x3) = (3s — t,2s,t)
=5(3,2,0) +¢(—1,0,1), has LI spanning vectors
(3,2,0) and (—1,0,1), giving eigenvectors except when s =t = 0.

Problem 3. Find the eigenvalues and eigenvectors of A = (i :? )
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Solution.

3—A —2

P()\):| .

>\|:[(3—)\)(—1—)\)+8]:)\2—2)\—3+8

= \? — 2\ + 5, with roots A = 1 4+ 2i. So there are no real A for which
there is a non-trivial real solution £ € R?, but there is a complex solution

0 # & € C2. We solve for Z by reducing the coef matrix as usual.

An n-by-n matrix A is defined to be nondefective
if A has n linearly independent eigenvectors. A related
term is diagonalizable. The matrix A is diagonalizable
if there is an invertible n-by-n matrix P so that
P~1AP = D is a diagonal matrix. We will see that A is diagonalizable

if and only if A has n linearly independent eigenvectors.



Problem 4.

For each eigenvalue, find the multiplicity and a basis for the

4 1 6
eigenspace and determine whether A= | —4 0 —7 | is nondefective.
0 0 -3
Solution.
Expanding det(A — AI) on the 3rd row,
we have P(\) = (=3 — ) ‘ 4_‘3 _& :

= —B+N[-4N+ XN +4] = -3+ A (X —2)?,
so A1 = 2 is an eigenvalue with multiplicity 2,

and Ao = —3 is a simple root (multiplicity 1).

2 1 6 2 1 0 2 1 0
For\y=2A-2I=| -4 -2 7] —-|-4 -2 0] —-10 0 1
0 0 =5 0O 0 1 0 0 0
We already have sufficient info to determine
that A is not diagonalizable: Rank(A — 21)=2, so
the dimension of the eigenspace (nullspace!) is 3-2 =1,
less than the multiplicity. We still need bases of the eigenspaces;
and see that 77 = (—1,2,0) is a basis for A\; = 2.
7 1 6 -1 7 =8
For \o=-3, A—(-3)=A+3[=| -4 3 -7 —| 0 —-25 25
0O 0 O 0 0 0
(we use Ry — Ry + 2Rs; update, then use Ry — Ry — 4Ry)
1 0 1
-0 1 —-1] (R — —Ry,Rs — —2—15R2; update, then Ry — Ry + 7TR3.)
0O 0 O

So a basis is Us = (—1,1,1), dim(E_3)=3-2=1.
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Problem 5.
1 -3 1

Determine whether A= | —1 —1 1 | is diagonalizable or not,
-1 -3 3

given P(\) = (A —2)2(A +1).

Solution.
Since Ay = —1 is a simple root it is non-defective;
-1 -3 1
and we only need to check \y =2. We have A -2 = -1 -3 1
-1 -3 1
1 3 -1
— |0 0 0 ],sodim(Ey)=3—1=2,and A is diagonalizable.
0O 0 O

We’re not asked for a basis here, but for practice,
r9 =a,x3 =band x1 + 3x9 — x3 = 0 gives xr1 = —3a + b,
(21, x2,23) = (—3a+ b,a,b) = (—3a,a,0) + (b,0,b) = a(—3,1,0) + (1,0, 1),
so a basis is (—3,1,0) and (1,0,1).



We collect the terminology and results used. If P(\) written

in factored form is P(A) = (A — A1)™* ... (A — A\;)™~, where the \;
are the distinct roots, we say that A\; has (algebraic) multiplicity m;,
or that A, is a simple root (multiplicity 1) if m; = 1.

Let d; = dim(E);) be the dimension of the eigenspace (sometimes called
the geometric multiplicity), then the main facts are

1. 1 <d; <my;

2. A is non-diagonalizable exactly when there is some eigenvalue (which
must be a repeated root) that is defective, d; < my;

3. A is diagonalizable exactly when every eigenvalue is non-defective,
dj =mj, for j=1,...,m;

4. In particular, if P(\) has distinct roots then A is always diagonalizable
(1<d; <m,;=1).

We recall that m; - the algebraic multiplicity - is the number of times
the jth distinct eigenvalue is a root of the characteristic polynomial;
and d; - the geometric multiplicity - is the dimension of the

Ajth eigenspace (that is, the nullspace of A — A, I).



[*Starting 5.8*%] First, we have a new definition, matrices
A and B are similar if there is an n-by-n
matrix P so that P has an inverse and B = P~ 1AP.
We also recall that a diagonal matrix D = diag(dy,...,d,)
is a square matrix with all entries 0 except (possibly) on the
main diagonal, where the entries are dy,...,d, (in that order).
Finally, a matrix A is diagonalizable if there is a matrix
P so that P~'AP = D is a diagonal matrix.
Theorem. The matrix A is diagonalizable exactly when
A has n linearly independent eigenvectors.
Further, (1) the diagonal entries in the diagonalization are the eigenvalues,

each occurring as many times on the diagonal as the multiplicity m;

(2) the columns of the matrix P that diagonalizes A
are n LI eigenvectors of A; and,
(3) the j-th column of P has eigenvalue that is the j-th

entry on the diagonal.



Finally,

Problem 6. Compare eigenspaces and the defective condition

4 0 0 4 0 1
forA=10 2 —-3]landA;=|0 2 -3
0o -2 1 0o —2 1

Solution. Both matrices have char polyn P(\) = —(A —4)?(A + 1).

Since A = —1 a simple root (not repeated), it is non-defective.
0 0 2 3
We have A —41 = | 0 —2 —3 — |10 0 0] and
0 -2 -3 0 0 O
0 0 1 0 1 0
A —4I=|10 -2 3] —-(0 0 1
0 —2 -3 0 0 O

These matrices test our eigenvector-finding-skills. For the 2nd,
the equations say xo = x3 = 0; while we must have a nontrivial solution.
Do you see one? Don’t Think! Our reflex is x5, z3 bound; x; = a free,
so (x1,x2,x3) = (a,0,0) = a(1,0,0). We also have v; = (1,0,0)
an eigenvector for the first matrix, but there’s also a 2nd LI solution,
= (0, —3,2). So the roots and multiplicities are the same, only one

entry is changed, but A is diagonalizable; while A; is non-diagonalizable.



