Math 205, Summer I, 2016
Week 3a (continued):

Chapter 4, Sections 5 and 6.

Week 3b

Chapter 4, [Sections 7], 8 and 9

4.5 Linear Dependence, Linear Independence

4.6 Bases and Dimension

4.7 Change of Basis,
4.8 Row and Column Space
4.9 Rank-Nullity Theorem

Recall that a Vector Space V may be any collection with
formulas for vector plus and scalar mult, V' = (V, + | -) with 10 rules.
In practice, in Math 205, Vector Spaces

will usually be subsets of one of four standard
Examples: R"; V = M,,«x.»(R);

C*(a,b) = functions: f+g, k-, 0, -f with k derivatives

P,, = polynomials with real coef. degree < n.



We usually assume the 10 rules for these four vector spaces
(the rules are easier to verify than to remember).
So to establish that a subset S of one of these spaces is a vector space
we only need to check the last two rules, in
which case we say that S is a
Subspace of V. The
two subspace conditions are the
closure rules (1) for every
u,v € S, check 4+ v € S (closure under vector +),
and (2) for every @ € S, and every scalar

c € R, check cti € S (closure under scalar mult).

For the formal definition of span and spanning set we take
vectors v1, ¥Us, ..., U in a vector space V. For the most part,
we think of V as being (1) R"; (2) C*(a,b); or, (3) a subspace of

either (a) Euclidean n-space or (b) of k-differentiable functions.

A vector v € V is called a
linear combination of the vectors v7, U, ..., v} if there are
scalars ci,ca, ..., ¢ so that ¥ = cqUy + cotio + -+ - + ¢ Ug.
The span of v, 75, ..., U is the collection of all v € V' so that
U is a linear combination of vy, v, ..., Uk.

The Span is a subspace of V. If Span = V,

we say that o1, vUs,..., U, is a spanning set of V.



Examples: (1) i,7 span R2:
(2) {i,7,k} is a spanning set for R3;
(3) the coef vectors obtained from the RREF of A span the

solutions of A% = 0.



Linear Independence

Vectors v, 7s,...,U; in a
vector space V are linearly dependent if there are
scalars c¢1,c¢a,...,CL SO 0= 10y + Colly + -+ + Cr Uk,
with at least one c¢; # 0. Such a vector equation
is said to be a relation of linear dependence among the
U1, U2, ...,Uk. A collection of vectors for which the only solution of
the vector equation is the trivial solution, ¢y =0,...,¢; =0

is said to be linearly independent.

Examples: (1) 7,7 in R?; and

(2) {7, ], k} in R3; are linearly independent.
Verification: cﬁ—l— Czj + 03/2

=¢1(1,0,0) + c2(0,1,0) + ¢3(0,0,1) = (¢1, o, c3)

= (0,0,0) = 0, only when ¢; = 0,¢5 = 0,¢3 = 0.

We start with verifications of linear
independence in subspaces of R"
Problem
Determine whether the vectors (1,2, 3),
(1,—1,2) and (1,—4,1) are LI or LD in R?.
If they are LD find a relation of linear dependence.

Solution [again; same method!]



Write the equation as an equation in column vectors,

0 1 1 1
0 =C 2 + C2 —1 + c3 —4
0 3 2 1

1 1 1 c1
— 2 —1 —4 Co
3 2 1 C3
Observe that this is the homog linear system
- = — )‘

with coef matrix A = (U503

For n-by-n systems the system has a

unique solution exactly when the determinant is non-zero.

1 1 1 1 1 1
We have |2 -1 —4|=|0 -3 —-6|=0
3 2 1 0O —1 =2

so the system has nontrivial solutions
and the vectors are LD. To find a

relation we continue the reduction

1 0 —1
A—lo 1 2],
00 O

so a spanning vector is (1,—2,1),
and 6:’(71 —2172 —|—63

is a nontrivial relation of LD.

Linear Independence of functions: we use

the Wronskian.



Bases and Dimension

Our main objective is the definition of basis.
Vectors v, ¥s, ..., U in a vector space

V that are are both (1) a spanning set

for V and (2) linearly independent

are called a basis for V. So

(1) 7,7 are a basis of R?; and

(2) {7,7,k} is a basis of R®.

A vector space has many bases, but the
main fact is that if v, 0o, ..., Uk

is a basis of V' and i, ws, ..., w;

is a second basis of V, then the number of

vectors is the same: £ = j. The number

of vectors in a basis of V is called the dimension of V.



We start with verifications of linear
independence in subspaces of R"
Example: Show that the vectors v; = (1,1)
U = (1,—1) are a basis of R2.
Solution. We know that 7, j are a basis

of R?; so that the dimension of R? is . ...



We check that v; = (1,1) and v, = (1, —1)

1

are linearly independent (LI) since } 1

= —2 # 0. Checking that #} and ¥, span R?
by expressing each 7 = (x,y) € R? as a
linear combination (as we did for 7, )

takes a little bit of effort, and involves fractions.
Checking that each vector equation
U = c17U71 + coUs has a

solution (without finding ¢y, c) is easier. (why?)
But the main fact has a practical version
that saves any computation, or even very much
further thought. If ¢, and v
did not span R? there would be a 3rd vector
U3 not in the span of v7, Us.

But that would make ¥y, Uy, U3
linearly independent. We could consider

adding further vectors, each new one giving a



larger collection of indep vectors; but
we already have too many, as we’ve shown
dim(R?) > 3. So ¥, ¥» have to span
(for free, given the main fact),
so ¥, Ts is a basis for R2.
This is the use of the text’s
Theorem 4.6.10. If the dim(V) = n for
a vector space V, then any LI set of n vectors
is a basis of V.
Problem
Let S be the subspace of M3(R)
consisting of all 2 X 2 matrices with
trace 0. Find a basis for S and use
that to determine the dimension of S.

Solution

We first describe S. We recall that when

A= (‘é Z) Tr(A) = a+d.

So S consists of matrices with d = —a. Think



10

of the entries as parameters, then

(6 %) (o 0)+ (2 o)
“efo )@ o)+ (8 o)
expresses each matrix in S as a
linear combination of the three matrices

(1 0> <0 1> <0 0>

0O —-1/)’\0 0/°\1 0)’
so they’re a spanning set. But if
a combination with coef a, b, c as
above gave A = 0, the zero matrix,
then a = 0,b = 0,c = 0, so this spanning
set is indep, therefore a basis, and

the dimension of S is three.



