
Math 205, Summer II, 2016

Week 3a:

Chapter 4, Sections 2, 3 and 4
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Week 3a:

4.1, 4.2: Rn and Vector Spaces

4.3 Subspaces/Nullspace

4.4 Linear Combinations, Spanning

———–
1. Vector addition; scalar multiplication

in R2. Vectors are ~x = (x, y), with x, y real numbers.

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

parallelogram law:

(2, 1) + (1, 4) = (3, 5) (picture!)

k(x, y) = (kx, ky), scaling factor

3(2, 1) = (6, 3); − 1
2 (2, 1) = (−1,− 1

2 ). (sketch)

zero vector: ~0 = (0, 0). additive inverse: −~x = −(x, y) = (−x,−y).

distributive rules (2)

———-
standard unit vectors: ~i = (1, 0), ~j = (0, 1).

Linear combination property: ~x = (x, y) = (x, 0) + (0, y) = x~i + y~j.

R3 : ~x + ~y, k · ~x,
~0 = (0, 0, 0);−~x = −(x, y, z) = (−x,−y,−z).

standard unit vectors ~i,~j,~k.

~x = (x, y, z) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = x~i + y~j + z~k.
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Rn : ~x + ~y = (x1, x2, . . . , xn) + (y1, y2, . . . , yn)

= (x1 + y1, . . . , xn + yn).

k · ~x = k(x1, x2, . . . , xn) = (kx1, . . . , kxn)

~0 = (0, 0, . . . , 0), −~x = −(x1, x2, . . . , xn)

= (−x1,−x2, . . . ,−xn).

———-

V any collection, elements ~v ∈ V

called vectors.

Formula for vector plus and scalar mult.

Usually scalars are real k ∈ R;

may also have k ∈ C, complex.

(V , + , ·) is a Vector Space if the

vector + and scalar mult satisfy 10 rules:

2 closure rules

4 rules for + (including ~0; and −~x)

2 rules for · (including 1 · ~v = ~v)

2 distributive laws. (2+4+2+2 = 10 or 2+8.)

——-
Examples: Rn; V = M2×2(R);

F (a, b) = functions: f+g, k·f, 0, -f.

Pk = polynomials with real coef. degree < k.

Problem

Is P = polynomials of degree exactly 2

a vector space?

Solution. (closure?), zero vector?
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(try p1(x) + p2(x) = (x2 + 3x) + (−x2 − 2).)

Problem Express the solutions of

A~x = ~0 as a subset of R4

for A =

 1 3 −2 1
3 10 −4 6
2 5 −6 −1


Solution:

A→

 1 3 −2 1
0 1 2 3
0 −1 −2 −3

 →
 1 0 −8 −8

0 1 2 3
0 0 0 0


= AR in Reduced Row Echelon Form (RREF).

————-
Last Steps: The bound variables are x1 and x2

(since there are leading 1’s in col 1 and in col 2);

so x3 = s and x4 = t are the free variables.

Use the ith row of AR to solve for the ith bound variable:

x1 − 8x3 − 8x4 = 0, so x1 = 8s + 8t, and

x2 + 2x3 + 3x4 = 0, so x2 = −2s− 3t; so

(x1, x2, x3, x4) = (8s + 8t,−2s− 3t, s, t), for s, t ∈ R.

Note 1: We reduce A rather than A# = (A|~0),

but the equations correspond to the augmented matrix (AR|~0).

Note 2: (Pre-view of 4.4) Using vector addition and scalar mult

in R4, we say that the solutions (“Nullspace”) are “spanned” by the

coefficient vectors (8,−2, 1, 0) and (8,−3, 0, 1)

and that these two vectors are a “spanning set”
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for the solution space. Properties of the free variables

x3 and x4 will show that these two vectors are

“independent”, so we say that these two vectors

are a “basis” for the solutions.

So in the homogeneous system A~x = ~0, with

(x1, x2, x3, x4) = (8s + 8t,−2s− 3t, s, t), for s, t ∈ R,

we find the coefficient vector of each parameter

~x = (8s,−2s, s, 0) + (8t,−3t, 0, t)

= s(8,−2, 1, 0) + t(8,−3, 0, 1), which

expresses each solution as a linear

combination of the vectors ~u1 = (8,−2, 1, 0)

and ~u2 = (8,−3, 0, 1), so we say that ~u1 and ~u2 span

the vector space of solutions; or that {~u1, ~u2} is a spanning set

for the space.

4.3. Subspaces

Recall that a Vector Space V may be any collection with

formulas for vector plus and scalar mult, V = (V , + , ·) with 10 rules.

In practice, in Math 205, Vector Spaces

will usually be subsets of one of four standard

Examples: Rn; V = Mm×n(R);

F (a, b) = functions: f+g, k·f, 0, -f.

Pn = polynomials with real coef. degree < n.
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We usually assume the 10 rules for these four vector spaces

(the rules are easier to verify than to remember). If S is a subset

of one of these standard spaces V, and we want S itself to

be a vector space using the same formulas for + and scalar mult as in V,

———-
eight of the rules in S follow from the

corresponding rules in V . For example,

if every vector in S is in V , and

~u,~v ∈ S, then

~u + ~v = ~v + ~u since ~u,~v ∈ V and this

is one of the 10 rules we’re assuming for our known, standard example V .

So to establish that our collection S is a vector space

we only need to check the last two rules, in

which case we say that S is a

Subspace of V. The

two subspace conditions are the

closure rules (1) for every

~u,~v ∈ S, check ~u + ~v ∈ S (closure under vector +),

and (2) for every ~u ∈ S, and every scalar

c ∈ R, check c~u ∈ S (closure under scalar mult).

Checking that S is NOT a subspace is

easy - for example, if S is all (x, y) ∈ R2 so that x + y = 1,

we have y = 1− x, for any real x and

so (1, 0), (0, 1) ∈ S (taking x = 1, x = 0).
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But (1, 0) + (0, 1) = (1, 1) is not in S (why? check sketch of S.).

So this subset is not a subspace of R2.

We don’t need any other reason, but can

also check closure under scalar mult.

Since c~u must be in S for every

scalar, we must have, for c = 0, 0 · ~u = ~0, with ~0 = (0, 0) in S.

But (0, 0) is not in S (sketch!).

———-

By contrast T= all (x, y) ∈ R2 so

that x + y = 0, is a subspace (check).
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———

3. Sect 4.4.

For the formal definition of span and spanning set we take

vectors ~v1, ~v2, . . . , ~vk in a vector space V. For the most part,

we think of V as being (1) Rn; (2) F (a, b); or, (3) a subspace of

either (a) Euclidean n-space or (b) of k-differentiable functions.

A vector ~v ∈ V is called a

linear combination of the vectors ~v1, ~v2, . . . , ~vk if there are

scalars c1, c2, . . . , ck so that ~v = c1~v1 + c2~v2 + · · ·+ ck~vk.

The span of ~v1, ~v2, . . . , ~vk is the collection of all ~v ∈ V so that

~v is a linear combination of ~v1, ~v2, . . . , ~vk.

The Span is a subspace of V. If Span = V,

we say that ~v1, ~v2, . . . , ~vk is a spanning set of V.
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Examples: (1) ~i,~j span R2;

(2) {~i,~j,~k} is a spanning set for R3;

(3) the coef vectors obtained from the RREF of A span the

solutions of A~x = ~0.

Problem

Does the vector ~v = (3, 3, 4) belong

to the subspace Span(~v1, ~v2) of R3,

for ~v1 = (1,−1, 2), ~v2 = (2, 1, 3)?

Solution

We have

 3
3
4

 = c1

 1
−1
2

+ c2

 2
1
3


=

 1 2
−1 1
2 3

( c1
c2

)
.

Observe that this is the linear system

with augmented matrix (~v1~v2|~v) =

 1 2 | 3
−1 1 | 3
2 3 | 4

 .

Row reduction gives

 1 2 | 3
0 3 | 6
0 −1 | −2

 .

We see that this is a consistent system

(2 = r = r# = 2), so YES, ~v is in the span.

We are often asked to continue by finding an

explicit linear combination, solving for c1, c2.

For this, we continue to the RREF. We find

c2 = 2, c1 = −1, and ~v = −~v1 + 2~v2.


