Math 205, Summer II, 2016
Week 3a:

Chapter 4, Sections 2, 3 and 4
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Week 3a:
4.1, 4.2: R™ and Vector Spaces
4.3 Subspaces/Nullspace

4.4 Linear Combinations, Spanning

1. Vector addition; scalar multiplication
in R2. Vectors are & = (x,y), with z,y real numbers.
(T1,91) + (22, 92) = (T1 + T2, 91 + ¥2).
parallelogram law:
(2,1)+ (1,4) = (3,5) (picture!)
k(x,y) = (kx, ky), scaling factor
3(2,1) = (6,3); —2(2,1) = (-1, —3). (sketch)
zero vector: 0 = (0,0). additive inverse: —% = —(x,y) = (—z, —y).

distributive rules (2)

—

standard unit vectors: i = (1,0), j = (0, 1).
Linear combination property: @ = (z,y) = (2,0) + (0,y) = 21 + .
R3: Z+ 4, k-7,

0= (0,0,0); —% = —(
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R": Z49y=(r1,22,...,2n) + (Y1,Y2,- -+, Yn)
= (x1 4+ Y1y T + Yn)-

k-Z=k(xy,zo,...,2,) = (kx1,..., kxy)

0=1(0,0,...,0), —&=—(x1,%2,...,2n)

= (—l’l, —To,..., —$n>.

V any collection, elements v € V'
called vectors.
Formula for vector plus and scalar mult.
Usually scalars are real k € R;
may also have k € C, complex.
(V, +, ) is a Vector Space if the
vector + and scalar mult satisfy 10 rules:
2 closure rules
4 rules for + (including 0; and —7)
2 rules for - (including 1 - ¥ = v))

2 distributive laws. (2444242 = 10 or 2+38.)

Examples: R"; V = Ms,2(R);
F(a,b) = functions: f+g, k-f, 0, -f.

P = polynomials with real coef. degree < k.

Problem
Is P = polynomials of degree exactly 2
a vector space?

Solution. (closure?), zero vector?
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(try p1(2) + p2(z) = (2° + 32) + (—2* - 2).)
Problem Express the solutions of

a subset of R*

as a
-2 1
for A = 3 10 -4 6

-6 -1
Solution:
1 3 -2 1 1 0 -8 -8
A—=10 1 2 3 — 1 0 1 2 3
o -1 -2 -3 0O 0 O 0

= Ap in Reduced Row Echelon Form (RREF).

Last Steps: The bound variables are 1 and x9
(since there are leading 1’s in col 1 and in col 2);
so x3 = s and x4 = t are the free variables.

Use the ith row of A to solve for the ith bound variable:

r1 — 8x3 — 8xy = 0, so x1 = 8s + 8¢, and

To + 223+ 3x4 =0, so x9 = —2s — 3t; so
(21, T2, x3,24) = (85 + 8, —2s — 3t, s, 1), for s,t € R.
Note 1: We reduce A rather than A# = (A|0),

but the equations correspond to the augmented matrix (Ag|0).

Note 2: (Pre-view of 4.4) Using vector addition and scalar mult
in R*, we say that the solutions (“Nullspace”) are “spanned” by the
coefficient vectors (8, —2,1,0) and (8,—3,0,1)

and that these two vectors are a “spanning set”



for the solution space. Properties of the free variables

r3 and x4 will show that these two vectors are
“independent”, so we say that these two vectors

are a “basis” for the solutions.
So in the homogeneous system AZ = 0, with
(r1,x9,x3,74) = (85 + 8, —2s — 3t, s,1), for s,t € R,

we find the coefficient vector of each parameter

T = (8s,—2s,s,0) + (8, —3t,0,1)

= 5(8,-2,1,0) + ¢(8,—3,0,1), which

expresses each solution as a linear

combination of the vectors #; = (8,—2,1,0)

and iy = (8,—3,0,1), so we say that ¢; and us span

the vector space of solutions; or that {u,u>} is a spanning set

for the space.
4.3. Subspaces

Recall that a Vector Space V' may be any collection with
formulas for vector plus and scalar mult, V = (V, + | -) with 10 rules.
In practice, in Math 205, Vector Spaces

will usually be subsets of one of four standard

Examples: R"; V = M,,«,(R);
F(a,b) = functions: f+g, k-f, 0, -f.

P,, = polynomials with real coef. degree < n.



We usually assume the 10 rules for these four vector spaces
(the rules are easier to verify than to remember). If S is a subset
of one of these standard spaces V, and we want S itself to

be a vector space using the same formulas for + and scalar mult as in V,

eight of the rules in S follow from the
corresponding rules in V. For example,
if every vector in S is in V', and
u,v € S, then
U+ U =174 usince u,v € V and this
is one of the 10 rules we’re assuming for our known, standard example V.
So to establish that our collection .S is a vector space
we only need to check the last two rules, in
which case we say that S is a
Subspace of V. The
two subspace conditions are the
closure rules (1) for every
u,v € S, check 4 + v € S (closure under vector +),
and (2) for every 4 € S, and every scalar
c € R, check cu € S (closure under scalar mult).
Checking that S is NOT a subspace is
easy - for example, if S is all (z,y) € R? so that x +y = 1,
we have y = 1 — x, for any real = and

so (1,0),(0,1) € S (taking z = 1,z = 0).



But (1,0) + (0,1) = (1,1) is not in S (why? check sketch of S.).
So this subset is not a subspace of R2.
We don’t need any other reason, but can
also check closure under scalar mult.
Since cu must be in S for every
scalar, we must have, for ¢ = 0,0 @ = 0, with 0 = (0,0) in S.
But (0,0) is not in S (sketch!).

By contrast T= all (z,y) € R? so
that  + y = 0, is a subspace (check).



3. Sect 4.4.

For the formal definition of span and spanning set we take
vectors v1, Us, ..., U, in a vector space V. For the most part,
we think of V' as being (1) R"™; (2) F(a,b); or, (3) a subspace of

either (a) Euclidean n-space or (b) of k-differentiable functions.

A vector v € V is called a
linear combination of the vectors ¥y, U, ..., U} if there are
scalars cq1,ca, ..., ¢ so that U = c1U; + coUs + - -+ + CiUp.
The span of 7,75, ..., U is the collection of all v € V so that
U is a linear combination of vy, U, ..., Uk.
The Span is a subspace of V. If Span = V,

we say that ¥, vo,..., U is a spanning set of V.



Examples: (1) i, span R
(2) {;, 7, /;} is a spanning set for R3;
(3) the coef vectors obtained from the RREF of A span the
solutions of AZ = 0.
Problem
Does the vector ¥ = (3, 3,4) belong
to the subspace Span(#,72) of R?,
for o1 = (1,—1,2), % = (2,1,3)?

Solution
3 1 2
Wehave | 3 | =c1 | -1 ] +c | 1
4 2 3

1 2
— [ -1 1 (21>.
2 3 2

Observe that this is the linear system

1 2 3
with augmented matrix (v703|0) = [ =1 1 3
2 3 4
1 2 3
Row reduction gives | 0 3 \ 6
0 -1 | -2

We see that this is a consistent system

(2=7r=1r% =2),so YES, 7 is in the span.
We are often asked to continue by finding an

explicit linear combination, solving for cq, cs.
For this, we continue to the RREF. We find

co =2,¢1 = —1, and ¥ = —7; + 205.



