
Week 2a:

1. Homework 5:

Chapter 2, Section 4, first half of Sect. 5

2. Homework 6:

Chapter 2, second half of 5; Section 6
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Week 2a (continued): A~x = ~0, homog.; Matrix Inverse.

The Rank of a matrix is defined to be

the number of non-zero rows in the RREF of

the matrix. We do not necessarily need the

RREF or even a REF to find the rank; for

example, a (square) upper-triagular matrix

that is n× n with non-zero diagonal entries

always has rank n. (why?)

We will discuss the results of the qualitative

theory more later on the text; but the first main

result is that when A~x = ~b, with A an

m× n matrix, has rank(A) = rank(A#) = n,

the system has a unique solution.

(We’re using A# = (A|~b) for the augmented matrix.)

———–

Next, whenever rank(A) = rank(A#) we may

read-off a particular solution ~xp, so

that the system is consistent; while

rank(A) 6= rank(A#) occurs only

when rank(A#) = rank(A) +1, in which

case the last equation reads 0 = 1, which

is inconsistent, so the system has no solution.
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Finally, if r = rank(A) = rank(A#) < n, there are infinitely

many solutions; and with r leading 1’s; so r bound variables,

there are d = n− r free varibles and d linearly

independent solutions to the homog. equation.

We have one more case for matrix multiplication,

3. (a) m× n matrix A by q × p-matrix B,

only when n = q, is the m× p matrix with columns

AB = A
(
~b1, . . . ,~bp

)
=
(
A~b1, . . . , A~bp

)
.

3. (b) An alternate descrition giving the i, jth entry

of AB : ((ith row of A) · (jth column of B))

Linear Combination property of matrix mult:

we have another version of the 2nd case, above.

If ~c is the column vector with entries c1, c2, . . . , cn,

we can also write the matrix product using columns of

A as A~c = (~a1,~a2, . . . ,~an)~c

= c1~a1 + c2~a2 + · · ·+ cn~an. (why?)

Any sum of scalar multiples x1~a1 + · · ·+ xn~an

is called a linear combination of the vectors

~a1,~a2, . . . ,~an.

A square matrix is said to be a diagonal

matrix if the only non-zero entries are

on the main diagonal (top-left to lower-right).
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The n-by-n identity matrix I = In

is the diagonal matrix with all diagonal

entries 1’s.

———–

If A is any n-by-n matrix,

we have A · I = I ·A = A, so I

behaves like the number 1 under multiplication

(that is, 1a = a1 = a, for all real a.).

Finally, A is called invertible or

non-singular if the matrix equation

AX = XA = I, has an n-by-n solution X, in

which case we write X = A−1, and call X

the inverse of A.

An essential property of the inverse is that

when it exists, it is unique. If we translate

the matrix equation AX = I into n systems

of equations for the columns of X = (~x1 . . . ~xn),

we get AX = A(~x1 . . . ~xn) = (A~x1 . . . A~xn) = (~e1, . . . ~en),

[(A~x1 . . . A~xn) = (~e1, . . . ~en),] where ~ej is the jth column

of the identity matrix, so A~xj = ~ej .

———–

Since the inverse is unique, the system for each column

has a unique solution, so A has rank n and the RREF of A is I.

Applying row reduction to the “augmented” matrix (A|I),

we get (I|X), with X = A−1.
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For an example of a 3-by-3 inverse, we compute the inverse

of the matrix in Example A =

 1 −1 2
2 −3 3
1 −1 1

 .

Solution:

(A|I) =

 1 −1 2 | 1 0 0
2 −3 3 | 0 1 0
1 −1 1 | 0 0 1


→

 1 −1 2 | 1 0 0
0 −1 −1 | −2 1 0
0 0 −1 | −1 0 1

 (r2 → r2 − 2r1, r3 → r3 − r1)

———–

→

 1 −1 2 | 1 0 0
0 −1 −1 | −2 1 0
0 0 1 | 1 0 −1

 (r3 → −r3)

→

 1 −1 0 | −1 0 2
0 −1 0 | −1 1 −1
0 0 1 | 1 0 −1

 (r2 → r2 + r3, r1 → r1 − 2r3)

→

 1 −1 0 | −1 0 2
0 1 0 | 1 −1 1
0 0 1 | 1 0 −1

 (r2 → −r2)

→

 1 0 0 | 0 −1 3
0 1 0 | 1 −1 1
0 0 1 | 1 0 −1

 (r1 → r1 + r2), so A−1 =

 0 −1 3
1 −1 1
1 0 −1

.


