Week 2a:

Chapter 2, Sections 4, 5, 6

Section 2.4: Row Reduction

2.5: Gaussian Elimination

2.6 Inverses

Linear Systems

If A is an $m \times n$ matrix with entries $a_{i,j}$, \vec{x} is the n-column vector with entries $x_1, \ldots x_n$, and \vec{b} is the m-column vector with entries $b_1, \ldots b_m$, the matrix equation $A\vec{x} = \vec{b}$ gives m equations, each of the form (ith row of A) $\cdot \vec{x} = b_i$, which is called a **linear system of** m **equations** in n variables.

In the equation $A\vec{x} = \vec{b}$, the matrix A is called the **coefficient matrix** of the system, and \vec{x} and \vec{b} are called the vector of unknowns and the right-hand side vector, respectively.

Our preliminary qualitative description of the solutions of these systems (in 2-space and 3-space) suggests three cases: (1) just one unique solution;

(2) no solutions; or (3) infinitely many solns.

We say that the system of equations is **consistent**if there is at least one solution; and **inconsistent**if there are no solutions.

Two systems with the same solutions are called equivalent.

Our objective is to replace a given system by the simplest possible equivalent system. For the calculations - we don't use the equations, but instead one more matrix $A^{\#}=(A|\vec{b})$, which is called the **augmented matrix** of the system.

Problem 3.

For the system

$$x + y + z - w = 3,$$

 $2x + 4y - 3z + 7w = 2$

determine the coef. matrix A, the right-hand side vector \vec{b} and the augmented matrix $A^{\#}$.

Solve the system using elemenary row operations, and write the solution in vector form.

Solution:

$$A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 2 & 4 & -3 & 7 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$A^{\#} = \begin{pmatrix} 1 & 1 & 1 & -1 & | & 3 \\ 2 & 4 & -3 & 7 & | & 2 \end{pmatrix}.$$

$$(A|\vec{b}) \to \begin{pmatrix} 1 & 1 & 1 & -1 & | & 3 \\ 0 & 2 & -5 & 9 & | & -4 \end{pmatrix} \quad (r_2 \to r_2 - 2(r_1))$$

$$\to \begin{pmatrix} 1 & 1 & 1 & -1 & | & 3 \\ 0 & 1 & -\frac{5}{2} & \frac{9}{2} & | & -2 \end{pmatrix} \quad (r_2 \to \frac{1}{2}r_2)$$

$$\to \begin{pmatrix} 1 & 0 & \frac{7}{2} & -\frac{11}{2} & | & 5 \\ 0 & 1 & -\frac{5}{2} & \frac{9}{2} & | & -2 \end{pmatrix} \quad (r_1 \to r_1 - r_2)$$

The augmented matrix has been "reduced" to

Reduced Row Echelon Form (RREF). For the last
step, we notice "leading 1's" in column 1 and 2,
so we call the variables corresponding to those
columns bound variables - x and y are bound. The
other variables are free variables, and we use each
row to solve for one bound variable.

$$x + \frac{7}{2}z - \frac{11}{2}w = 5$$
, so $x = 5 - \frac{7}{2}z + \frac{11}{2}w$ and

$$y - \frac{5}{2}z + \frac{9}{2}w = -2$$
, so $y = -2 + \frac{5}{2}z - \frac{9}{2}w$.

Finally, we replace the free variables by parameters,

$$z = r, w = s, \text{ then } (x, y, z, w) =$$

$$(5 - \frac{7}{2}r + \frac{11}{2}s, -2 + \frac{5}{2}r - \frac{9}{2}s, r, s)$$

$$= (5, -2, 0, 0) + r(-\frac{7}{2}, \frac{5}{2}, 1, 0) + s(\frac{11}{2}, -\frac{9}{2}, 0, 1).$$

1.1 Gauss-Jordan Elimination

We simplify the information in a matrix by using Elementary Row Operations (ERO's). There are 3:

- 1. $P_{ij}: r_i \leftrightarrow r_j$ means switch rows i and j.
- 2. $M_i(k): r_i \to kr_i$ means multiply row i by $k \neq 0$.
- 3. $A_{i,j}(k): r_i \to r_i, r_j \to (r_j + kr_i)$ means replace (row j) by the (linear) combination (row j) + k(row i), leaving row i unchanged.

We say that matrices A and B are **row equivalent** if there is a sequence of ERO's that starts with A and ends with B.

We say that a matrix is (row) reduced to simplest form if we have a matrix in reduced row echelon form (RREF) that is row equivalent. We may record the specific row operations, in the order used, that give the row reduction. The **Rank** of a matrix is the number of non-zero rows in a row echelon form of the matrix.

Problem 4. Use Gauss-Jordan Elimination to solve

$$2x_1 - x_2 + 3x_3 - x_4 = 3$$
$$3x_1 + 2x_2 + x_3 - 5x_4 = -6$$
$$x_1 - 2x_2 + 3x_3 + x_4 = 6$$

Solution: We use the augmented matrix $A^{\#}$,

with
$$A^{\#} = (A|\vec{b}) \rightarrow \begin{pmatrix} 1 & -2 & 3 & 1 & | & 6 \\ 3 & 2 & 1 & -5 & | & -6 \\ 2 & -1 & 3 & -1 & | & 3 \end{pmatrix}$$
,

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & 1 & | & 6 \\ 0 & 8 & -8 & -8 & | & -24 \\ 0 & 3 & -3 & -3 & | & -9 \end{pmatrix},$$

$$\rightarrow \begin{pmatrix} 1 & -2 & 3 & 1 & | & 6 \\ 0 & 1 & -1 & -1 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ (REF)},$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & -1 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \text{ (RREF)}.$$
[to be continued . . .]

Note 1: the matrix in the next-to-last step is in

Row Echelon Form (REF), but not reduced. In

Gaussian elimination we may stop at a REF and
continue solving using back-substitution. For

Gauss-Jordan elimination, the back-substitution steps
are also done as row operations on the augmented
matrix. Small systems with a unique solution may be
done by Gaussian elimination without confusion, since
the objective is to find numbers; Gauss-Jordan
elimination will be the method-of-choice for finding
generators when there are infinitely many solutions,
and can always be used.

Last step in Gauss-Jordan: From the REF we identify free variables and bound variables. Again x_1 and x_2 , are bound, the other variables are free variables, and

recalling

$$(A|\vec{b})_R = \begin{pmatrix} 1 & 0 & 1 & -1 & | & 0 \\ 0 & 1 & -1 & -1 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{pmatrix},$$

the 1st row corresponds to the equation

$$x_1 + x_3 - x_4 = 0$$
, which we solve for

$$x_1 = -x_3 + x_4$$
 and the 2nd row gives

$$x_2 - x_3 - x_4 = -3$$
, so $x_2 = -3 + x_3 + x_4$,

and
$$(x_1, x_2, x_3, x_4) = (-x_3 + x_4, -3 + x_3 + x_4, x_3, x_4).$$