Math 205, Summer I 2016

Week 1b (continued):

An $m \times n$ matrix A is an array

with m horizontal rows; n vertical columns

i, jth entry $a_{i,j}$ in the *i*th row, and

jth column.

row vector or row *n*-vector, \vec{a} , is a $1 \times n$

matrix, just one row.

column vector or column *n*-vector, \vec{b} , is a

 $n \times 1$ matrix, just one column.

Example 1. Give the rows and columns of

$$A = \begin{pmatrix} 2 & 10 & 6 \\ 5 & -1 & 3 \end{pmatrix}.$$

What are the entries $a_{1,2}, a_{2,1}, a_{3,1}, a_{1,3}$?

The matrix sum, A + B, is defined only when A and B have the same shape; and then the *i*, *j*th entry of A + Bis $a_{i,j} + b_{i,j}$, the sum of the *i*, *j*th entries of A and B.

The scalar multiple of the matrix A by the scalar (number!) c is the matrix with the same shape as A, but with i, jth entry of $ca_{i,j}$.

Matrix multiplication: 1. row *n*-vector by column *m*-vector, only when n = m, is the number $a_1b_1 + a_2b_2 + \cdots + a_nb_n$, where the a_i are the entries of \vec{a} and the b_i are the entries of \vec{b} .

2. $m \times n$ matrix A by p-column vector \vec{b} , only when n = p, is the m-column vector with ith entry (ith row of A) $\cdot \vec{b}$.

4

Problem 2. Multiply
$$A = \begin{pmatrix} -1 & 2 \\ 4 & 7 \\ 5 & -4 \end{pmatrix}$$
 by $c = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$.

Solution:

$$Ac = \begin{pmatrix} -1 & 2\\ 4 & 7\\ 5 & -4 \end{pmatrix} \begin{pmatrix} 5\\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} (-1)(5) + 2(-1)\\ 4(5) + 7(-1)\\ 5(5) + (-4)(-1) \end{pmatrix} = \begin{pmatrix} -7\\ 13\\ 29 \end{pmatrix}.$$

Linear Systems

If A is an $m \times n$ matrix with entries $a_{i,j}$,

 \vec{x} is the *n*-column vector with entries $x_1, \ldots x_n$, and \vec{b} is the *m*-column vector with entries $b_1, \ldots b_m$, the matrix equation $A\vec{x} = \vec{b}$ gives *m* equations, each of the form (*i*th row of *A*) $\cdot \vec{x} = b_i$, which is called a **linear system of** *m* **equations in** *n* **variables.**

In the equation $A\vec{x} = \vec{b}$, the matrix A is called the **coefficient matrix** of the system, and \vec{x} and \vec{b} are called the vector of unknowns and the right-hand side vector, respectively.

6

Our method of solution involves one more matrix associated with the system of equations,

the Augmented Matrix

$$A^{\#} = (A|\vec{b}).$$

Problem 3. Find the augmented matrix of the following system of equations.

$$2x_1 + 2x_2 - 3x_4 = 0$$

-x_1 - x_2 + x_3 + x_4 - x_5 = 2
$$x_1 + x_2 + x_3 - 2x_4 - x_5 = 2$$