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ABSTRACT
This paper presents a comprehensive examination of finite element modeling (FEM) approaches for seismocardiography (SCG), a 
non-invasive method for assessing cardiac function through chest surface vibrations. The paper provides a comparative analysis 
of existing FEM approaches, exploring the strengths and challenges of various modeling choices in the literature. Additionally, 
we introduce a sample framework for developing FEM models of SCG, detailing key methodologies from governing equations 
and meshing techniques to boundary conditions and material property selection. This framework serves as a guide for research-
ers aiming to create accurate models of SCG signal propagation and offers insights into capturing complex cardiac mechanics 
and their transmission to the chest surface. By consolidating the current methodologies, this paper aims to establish a reference 
point for advancing FEM-based SCG modeling, ultimately improving our understanding of SCG waveforms and enhancing their 
reliability and applicability in cardiovascular health assessment.

1   |   Introduction

The 2013–2018 National Health and Nutrition Examination 
Survey and the 2020 U.S. Census predict an increase in the prev-
alence of cardiovascular diseases (CVDs) for the years 2025–
2060. For example, during this period, the projected prevalence 
of ischemic heart disease, heart failure, myocardial infarction, 
and stroke combined will increase by 17.4 million cases [1]. This 
emphasizes the importance of developing more robust and accu-
rate cardiac monitoring methods.

Cardiac monitoring can be done using both invasive and nonin-
vasive methods. The invasive techniques are often performed in 
clinical facilities and are usually expensive and more complex. 

On the other hand, noninvasive approaches, such as electrocar-
diography (ECG), enable remote cardiac monitoring outside of 
clinical settings, making them more accessible [2–4]. While ECG 
provides information about the electrical activity of the heart [5], 
seismocardiography (SCG), another noninvasive method, com-
plements this by opening a window to the mechanical aspects 
of heart function [6] by measuring cardiovascular-induced chest 
vibrations via placing an accelerometer on the chest. Additional 
noninvasive imaging options, such as echocardiography and 
cardiac magnetic resonance imaging (MRI), offer detailed visu-
alizations of cardiac structures and function using ultrasound 
waves and high-resolution anatomical data, respectively. These 
imaging modalities are often considered gold standards but re-
quire specialized equipment and clinical environments. On the 
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other hand, ECG- and SCG-based devices stand out for their 
portability, cost-effectiveness, and suitability for continuous or 
at-home monitoring. Overall, the noninvasive nature of these 
methods enhances patient comfort and safety compared to in-
vasive procedures [7].

SCG involves detecting vibrations on the chest surface, predom-
inantly originating from the mechanical actions of the heart, in-
cluding myocardial movements, valve opening and closure, and 
alterations in blood momentum [7–9]. Figure 1a shows a sample 
SCG signal recorded from a healthy adult subject in right-to-left 
(x), head-to-foot (y), and dorsoventral (z) directions. SCG has 
shown promise for diagnosing and monitoring various cardiac 
conditions and providing complementary information to ECG 
and other well-established cardiac monitoring methods [8]. It 
can be used for continuous monitoring of cardiac activity, which 
is important for patients with chronic heart conditions [7, 8]. 
Continuous data collection helps in the early detection of abnor-
malities and timely intervention [12]. For instance, pulmonary 
artery pressure is a strong predictor of heart failure outcomes, 
particularly in patients with existing heart failure. Determining 
this key indicator of cardiac health in heart failure patients re-
mains challenging because the only FDA-approved implant-
able sensor, CardioMEMS, is costly and invasive implantation 
has limited its use to less than 2% of hospitalized patients [13]. 
Recently, SCG-based technologies, have shown promises to 
overcome these limitations. The SEISMIC-HF I study showed 
that the pulmonary capillary wedge pressure (PCWP) can be 
estimated noninvasively using CardioTag, a wearable device 

that collects ECG, SCG, and photoplethysmography signals 
[14]. In this prospective, multisite study of 1000 patients un-
dergoing right heart catheterization, interim results from the 
first 500 subjects were used to train a machine learning algo-
rithm, demonstrating its potential to accurately identify elevated 
PCWP (> 18 mm Hg) without the need for invasive monitoring. 
Other studies showed how important cardiac metrics such as 
preload and stroke volume affect SCG signals in patients with 
various cardiac diseases [15, 16]. For example, monitoring stroke 
volume in cardiovascular patients is challenging, as current 
clinical methods like thermodilution are invasive. Ganti et  al. 
[16] used a chest-worn wearable sensor to record ECG and SCG 
signals from 45 patients with congenital heart diseases before 
and after cardiovascular MRI and applied ridge regression to es-
timate stroke volume using features such as systolic time. Their 
model achieved a 72% correlation to the gold-standard MRI, sug-
gesting the potential of SCG-based methods in non-invasively 
estimating important cardiac health parameters.

To acquire SCG signals, various types of accelerometers, includ-
ing piezoelectric, capacitive, MEMS, and optical types, can be 
used to convert cardiovascular-induced chest vibrations into 
electrical signals. Proper placement of these sensors on the chest 
surface is an important factor for reliable SCG signal acquisi-
tion. Figure  1b shows a MEMS accelerometer attached to the 
chest to measure heart-induced chest vibrations, and Figure 1c 
represents two types of these accelerometers. Figure 1d shows 
dorsoventral SCG signals of a subject with valvular heart dis-
ease [10] and another subject during the standard right heart 

FIGURE 1    |    (a) SCG signals of a healthy subject in 3 directions: X, Y, and Z are in the right to left, head-to-foot, and dorsoventral directions, respec-
tively [3, 4]. (b) Placement of the sensor on the chest to measure triaxial SCG. The sensor shown in the figure can also measure ECG signals simul-
taneously. (c) Two types of accelerometers used in SCG measurement: Shimmer3 Ebio (ShimmerSensing, Ireland) and 356A32 (PCB Piezotronics, 
Depew, NY). (d) Dorsoventral SCG signals of a subject with valvular heart disease [10] and another subject during standard right heart catheteriza-
tion (RHC) procedure [11] during one cardiac cycle (an ECG P–P interval).
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catheterization procedure [11] during one cardiac cycle (an ECG 
P–P interval).

In general, the motion of the chest is influenced by three pri-
mary factors: the pumping action of the four chambers of the 
heart through the main veins and arteries, the impact of breath-
ing, and any extra movement resulting from voluntary or in-
voluntary actions of the individual. The heart is responsible 
for pumping blood to other organs, and during this process, its 
walls undergo various movements including anterior–posterior 
translation and rotation, superior–inferior translation and rota-
tion, and right–left translation and rotation [17]. These move-
ments are transmitted to the surrounding organs and dampened 
onto the chest surface, where they manifest as visible vibrations 
[18]. These SCG signals carry information that correlates with 
both physiological and pathological cardiac activities [19, 20]. 
However, decoding the morphology of SCG signals and their 
correlation with their pathophysiological sources presents a 
challenge due to the complexity of heart movements, coupled 
with vibrations caused by blood circulation and valve opera-
tions. Each of these movements affects the SCG signal, and this 
highlights the importance of investigating and understanding 
the origin of SCG waveforms.

In this context, computational modeling of cardiovascular-
induced chest vibrations can help in understanding and decod-
ing the SCG waveforms. Finite element modeling (FEM) enables 
us to create a digital twin of the patient's thorax and conduct sen-
sitivity analysis to study the impact of different parameters, such 
as anatomical variations, cardiovascular conditions, aging, and 
physical activities, on SCG waveforms. For instance, by chang-
ing the soft tissue thickness on the chest surface, FEM can shed 
light on the effects of obesity on SCG signals [21]. Furthermore, 
age-related changes in muscle properties influence chest muscle 
stiffness. As muscles age, they generally lose elasticity, leading 
to increased stiffness [22, 23]. By appropriately modeling the 
muscles' elasticity in those digital twins, the impact of aging 
on SCG signals can be evaluated. For instance, Figure 2 shows 
SCG signals modeled at the 4th intercostal space with different 
Young's Moduli for the chest soft tissue [24]. In this context, the 
digital twin models can continuously evolve with the individu-
al's physiological state to improve the accuracy of predictions of 
the anatomical and physiological variations on SCG signals and 

potentially guide individualized healthcare recommendations. 
In this review, we explore the current state-of-the-art for com-
putational modeling of SCG signals.

Computational modeling of SCG signals using FEM involves 
simulating the vibrations and mechanical activities of the heart 
as they propagate to the chest surface. These models are instru-
mental in understanding the genesis of SCG signals, enabling 
the simulation of various cardiac conditions and their impacts 
on the SCG waveforms. By replicating the mechanical behavior 
of the heart and the chest wall, FEM predicts how cardiac mo-
tions translate into surface vibrations. In this context, FEM dis-
cretizes the structural domain into meshes of finite dimensions, 
with displacements and forces acting on each element governed 
by the equations of motion or the wave equation [5, 18, 25].

FEM of cardiovascular-generated vibrations has been conducted 
using both 2D and 3D representations. While 2D modeling is 
more computationally efficient and can provide a simplified 
representation of cardiac vibration propagation to the chest, 3D 
models offer a more detailed and accurate picture of these vi-
brations and the cardiac function. For instance, Gamage et al. 
[18] employed a 2D computational model that utilized cardiac 
wall motion extracted from medical images as inlet boundary 
conditions, successfully replicating features of SCG waveforms 
and prompting future exploration into 3D modeling using ECG-
gated cardiac magnetic resonance (MR) or computed tomog-
raphy (CT) scans. Although 2D models may oversimplify the 
intricate three-dimensional dynamics of cardiac motion, 3D 
modeling captures the interactions and spatial motions between 
organs, yielding critical insights for clinical applications.

Gamage [24] further employed medical images and FEM sim-
ulations to model the patient-specific 3D distribution of myo-
cardial motions to the chest surface, establishing a connection 
between cardiac motions and SCG signals. For example, they in-
vestigated how variations in the stiffness of soft tissues, includ-
ing skin, fat, and muscles, affect the modeled SCG signal output. 
Their findings revealed that increasing the Young's modulus 
resulted in a higher amplitude of SCG signal peaks, while the 
timing of these peaks remained unaffected. These 3D computa-
tional models provide a high-resolution map of chest vibrations 
caused by cardiac wall motion (Figure 3), offering significantly 

FIGURE 2    |    The effect of chest soft tissue stiffness on the dorsoventral SCG waveform modeled at the 4th intercostal space [24].
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more detailed information compared to single-location SCG 
measurements. Figure  3a,c show the SCG distribution on the 
chest surface, and Figure  3b,d show the accelerations under 
the chest muscle within the thoracic cavity [24]. Figure  3a,b 
are the SCG contours at the time of the first heart sound, and 
Figure 3c,d are the SCG contours at the time of the second heart 
sound. These simulated vibrations suggest the power of FEMs 
in predicting the propagation of cardiac wall motion from the 
thoracic cavity to the chest surface.

Akhbardeh et al. [5] explored SCG and its relationship with car-
diac events using an electromechanical FEM based on diffusion 
tensor MR data of a canine subject. This approach enabled iden-
tification of key cardiac events such as the opening and closure of 
aortic and mitral valves. They compared and validated the FEM 
results with the actual SCG signals recorded by accelerometers 
from human subjects. For this purpose, they attached acceler-
ometers to the subject's sternum and evaluated the SCG fiducial 
points using the simultaneously recorded echocardiograms. In 
addition, they derived SCG signals from cine-MRI data, showing 
agreement in the timing and shape of the modeled and image-
based acceleration signals, except during the rapid filling phase, 
which was not clearly captured by cine-MRI. The comparison of 
left and right ventricular volume changes with simulated accel-
erations supported the consistency between modeled dynamics 
and imaging-based observations. Their findings indicated that 
FEM accurately simulated key cardiac events, such as isovolumic 
contraction and relaxation periods. A later study by Laurin et al. 
[25] created a physiologically accurate in silico 3D mechanical 
model of the thorax to investigate its capability in reproducing 
SCG-like outputs. Their model incorporated detailed thoracic 
components such as ribs, costal cartilage, and the xiphoid pro-
cess to simulate SCG signals, resulting in outputs that exhibited 
fiducial point analogs, including the mitral valve closure, aortic 
valve opening, and isovolumic moment points. Furthermore, the 
simulated SCG displayed oscillatory behavior at the first reso-
nance frequency of the thorax, suggesting that in vivo fiducial 
points may arise from sudden heart movements followed by reg-
ular damped oscillations.

FEM also allows for investigating the impact of various pa-
rameters, including anatomical variations, material prop-
erties, and blood flow alterations on SCG waveforms. For 
instance, Sandler et al. [21] assessed how increased soft tissue 
thickness affects SCG signals, revealing that a 1-cm increase 
in chest soft tissue thickness decreased SCG vibration ampli-
tude by factors of 2 and 3 during the first and second heart 
sounds, respectively.

Despite the utility of FEMs in interpreting SCG features in 
the context of CVDs, few studies have developed simplified 
numerical models for SCG signals under such conditions, 
highlighting a notable gap in the literature. Mithani et al. [26] 
created a simplified 3D model of an infant heart with single 
ventricle disease to investigate the relationship between this 
defect and SCG data. While the material properties in their 
simulations were not detailed (only stated as using silicon), 
they concluded that these properties should be adjusted to 
reflect a lower Young's modulus for more accurate modeling 
of left ventricular deformation. However, the reliance on data 
from a single subject may limit the generalizability of their 
findings, as the output acceleration from a constant hydro-
static pressure on the heart wall only produced one peak, fail-
ing to capture the fiducial points observed in the subject's SCG 
graph. Although Mithani et al. developed a simple pipeline for 
modeling the dynamics of a heart affected by single ventricle 
disease, they acknowledged the need for further modifica-
tions, including utilizing materials akin to the myocardium 
and adjusting hydrostatic forces to dynamically represent vol-
ume changes during a cardiac cycle. Similarly, Gurev et  al. 
[27] developed a 3D finite element electromechanical canine 
heart model to simulate SCG signals. The model successfully 
reproduced major SCG peaks and suggested that these signals 
reflect the heart's pressure against the ribs. Results also in-
dicated that SCG peaks associated with aortic valve events 
and blood acceleration stemmed from ventricular contraction 
and changes in ventricular dimensions during blood ejection. 
These simulated SCG signals aligned with experimental find-
ings from human volunteers, establishing a correlation be-
tween the SCG peak and the maximum acceleration of blood 
in the aorta, while the first SCG peak following the ECG R-
peak corresponded to aortic valve opening. Collectively, these 
studies represent pioneering efforts in modeling SCG under 
pathological conditions, underscoring the need for further re-
search to enhance their accuracy and applicability.

In conclusion, while the current studies on computational 
modeling of SCG signals using FEM are among the first in 
this field, there is considerable room for improvement in the 
existing approaches. These studies demonstrate the FEM's 
ability to replicate SCG waveforms and shed light on the rela-
tionship between cardiac dynamics and surface vibrations, of-
fering valuable insights for diagnostic applications. However, 
challenges such as the oversimplification of complex cardiac 
interactions in 2D models and the reliance on limited subject 
datasets may hinder the broader applicability of their findings. 
Figure 4 provides an overview of the studies utilizing FEM for 

FIGURE 3    |    (a) and (c) Modeled SCG distributions on the chest surface. (b) and (d) Accelerations beneath the chest muscle within the thoracic 
cavity [24].
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SCG modeling, highlighting their goals, methodologies, and 
key limitations.

2   |   Governing Equations for SCG Modeling

The mathematical modeling of SCG signals involves the quan-
tification and analysis of mechanical vibrations generated by 
the cardiovascular system, including the heart, and transmitted 
through the thoracic cavity to the chest surface. This approach 
applies principles of biomechanics to characterize the interaction 
of cardiac motion with adjacent tissues. Central to SCG model-
ing are the governing equations, such as the equations of motion 
and the wave equations, which provide a framework for under-
standing the underlying mechanical dynamics. The equations 
of motion express the internal forces and movements within the 
myocardium, capturing the cyclical contraction and relaxation 
of cardiac muscles, hemodynamic blood flow patterns, and the 
interactions between the heart and thoracic structures. On the 
other hand, the wave equations, though not yet applied in SCG-
related studies, offer a promising approach for modeling the 
propagation of mechanical waves induced by cardiac activity 
through the chest wall, accounting for the biomechanical prop-
erties of tissues such as density and elasticity. It should be noted 
that the two approaches mentioned here are often considered in-
dependently when modeling vibration systems. The application 

of these mathematical techniques in SCG modeling facilitates 
the characterization of cardiac mechanics and contributes to a 
better understanding of SCG waveforms.

2.1   |   Equations of Motion

Modeling SCG signals using the equations of motion involves an-
alyzing the mechanical behavior of the chest wall as it responds 
to the heartbeat. The equations of motion, derived from Newton's 
second law, provide a framework to describe how forces affect the 
motion of an object. In modeling SCG, this approach involves set-
ting up differential equations that account for the forces exerted 
by the heartbeats, the damping due to tissue properties, and the 
stiffness of the chest wall. In this context, modeling SCG can be 
framed as a forced vibration problem, where the system oscillates 
in response to an external variable force or displacement, with 
the heart serving as the main source of chest vibrations and the 
cardiac wall motion inducing vibrations in the surrounding or-
gans. For instance, Gamage et al. [18] utilized this approach for 
2D modeling of the SCG signals by simulating the distribution of 
heart wall motion to the chest surface. Mithani et al. [26] also used 
this method to establish the correlation between single ventricle 
disease and SCG signals in neonatal heart models. The equations 
of motion can be expressed in matrix form as:

(1){f (t)} = [M]{q̈} + [C]{q̇} + [K]({q} − {u})

FIGURE 4    |    An overview of the current SCG modeling studies.
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where {u} is a prescribed or reference displacement vector due 
to boundary conditions. This term introduces relative motion 
into the system, e.g., due to the heart motion, affecting the 
response through the stiffness matrix. In (1), f (t) represents 
the vector of applied forces, [M] is the mass matrix, [C] is the 
damping matrix, [K] is the stiffness matrix, {q̈} is the acceler-
ation vector, {q̇} is the velocity vector, and {q} is the displace-
ment vector.

In time-domain analysis under the assumption of a linear time-
invariant system, while system properties such as stiffness and 
damping are not time-dependent, the displacement {q}, velocity 
{q̇}, acceleration {q̈}, and force {f } vectors all vary with time, 
making the analysis time-dependent. This is a common ap-
proach when modeling biological tissues, as their mechanical 
properties, such as stiffness and damping, are generally con-
sidered constant during the short time frames of cardiac cycles. 
However, if capturing more complex behaviors, such as tissue 
viscoelasticity or dynamic changes in tissue properties over 
time (e.g., due to heart rate variability, breathing, or pathologi-
cal changes), is needed, the stiffness [K] or damping [C] can also 
be considered time-dependent. In that context, different types of 
damping can be considered while solving (1):

1.	 Constant damping.

2.	 Material damping, which is defined in the material defi-
nition. This type of damping represents internal friction 
within the material due to molecular interactions.

3.	 Rayleigh damping, which assumes that the damping matrix 
[C] is linearly proportional to the mass and stiffness matrices 
as [C] = �[M] + �[K], where � and � are the mass and stiff-
ness multiplier terms, respectively. Rayleigh damping is suit-
able for dynamic analyses where both mass and stiffness play 
a role in energy dissipation. It is important to note that while 
Rayleigh damping can be used as a simplified approximation 
for modeling heart vibrations, particularly when balanc-
ing computational efficiency and capturing basic damping 
effects, it may not fully represent the complex, nonlinear, 
and frequency-dependent behavior of biological tissues. To 
calculate the acceleration on the chest surface, assuming a 
Rayleigh damping, (1) can be written as follows:

2.2   |   Damped Elastic Wave Propagation Equation

The linear wave equation provides a framework for describing the 
evolution of these vibrations over time and space. While equations 
of motion elucidate the forces acting among thoracic organs, the 
damped elastic wave propagation equation effectively captures the 
mechanics of how heart vibrations are transmitted through var-
ious media, including soft tissues and bone structures. The wave 
characteristics are influenced by the biomechanical properties of 
the surrounding tissues, such as density, elasticity, and intrinsic 
damping characteristics. For example, the vibrations can man-
ifest as longitudinal waves (where particle displacement aligns 
with wave direction) or transverse waves (where particle displace-
ment is perpendicular), with their propagation speed determined 
by the material properties of the chest and surrounding tissues. 

Accurately modeling damping mechanisms, such as viscoelastic 
damping, is critical in biological materials because they account 
for energy dissipation and the amplitude attenuation of the wave as 
vibrations travel from the heart to the chest surface. Additionally, 
the boundaries between different tissues, such as those of the tho-
racic cavity, can result in reflections and refractions that further 
influence wave behavior [28]. The wave equation for a homoge-
neous and isotropic medium can be expressed as follows:

where q is the displacement field, c is the speed of wave 
propagation in the medium, ∇ is the Nabla operator 
(= �2 ∕�x2

1
+ �2 ∕�x2

2
+ �2 ∕�x2

3
), and t  is the time. This equation 

can be utilized, with appropriate boundary and initial conditions 
reflective of physiological scenarios, to simulate how cardiac-
induced vibrations propagate through the chest wall [29]. While 
the wave equation assumes a perfectly elastic medium, realistic 
modeling of heart vibrations necessitates incorporating damp-
ing effects characteristic of biological tissues. The damped elas-
tic wave propagation equation can be formulated as follows:

where:

x =
(

x1, x2, x3
)

: 3D position vector.

q(x, t): Displacement vector at position x and time t .

�(x): Density of the material.

ck(x): Stiffness-proportional damping coefficient.

C(x): Elasticity tensor.

ϵ(q): Strain tensor, defined as:

In (4), the first term on the right-hand side, ∇ ⋅ (C(x)ϵ(q)), ac-
counts for the elastic response of the tissue, while the second term 
introduces the damping effect, proportional to the strain rate. This 
incorporation of damping directly influences how heart vibrations 
are transmitted and perceived at the chest surface, enhancing the 
realism of the model. To investigate the mechanical transmission 
of thoracic vibrations from the heart, Laurin et  al. [25] utilized 
the conventional equations for damped elastic wave propagation. 
This approach highlights the potential utility of the damped elastic 
wave propagation equation in modeling the complex dynamics of 
cardiac vibrations as they propagate through the chest.

3   |   Challenges and Approaches in Defining 
Boundary Conditions

Boundary conditions are crucial in FEM of heart vibrations, 
as they define how the model interacts with its environment 

(2){f (t)} = [M]{q̈} + (�[M] + �[K]){q̇} + [K]({q} − {u})

(3)�2q

�t2
= c2∇2q

(4)�(x)
�2q

�t2
= ∇ ⋅ (C(x)ϵ(q)) + ∇ ⋅

(

ck(x)C(x)ϵ

(

�q

�t

))

ϵ(q) =
1

2

(

∇q + (∇q)T
)

.
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and ensure that simulations accurately replicate physiologi-
cal behaviors. These conditions are vital for capturing the 
mechanical dynamics of the heart and translating them into 
surface vibrations detectable by SCG. However, the implemen-
tation of boundary conditions presents several challenges; 
inaccuracies in defining these parameters can lead to signifi-
cant modeling errors, potentially misrepresenting the heart's 
vibrational characteristics and undermining the reliability of 
SCG simulations.

To simulate the chest vibrations generated during the heart's 
pumping cycle using FEM, various approaches have been uti-
lized for boundary conditions in the literature. A common 
method involves employing patient-specific displacements of 
the heart wall, typically derived from imaging modalities such 
as 4D cardiac MRI or CT scans, as the input boundary condition 
[5, 18, 24]. This approach relies on image processing and mo-
tion tracking techniques, where the accuracy of cardiac motion 
tracking directly impacts the fidelity of the resultant vibrational 
data. Precise mapping of these boundary conditions is crucial 
for accurately capturing the vibrational patterns associated with 
cardiac activity, as any discrepancies can lead to a flawed repre-
sentation of heart-induced vibrations.

Alternatively, some studies adopt a more generalized approach, 
applying force functions to represent the heartbeat [25] or exert-
ing various forces on simplified geometries to approximate de-
formations similar to those of the heart wall [26]. While these 
methodologies can simplify the computational process, they 
often require a trial-and-error approach to fine-tune parameters 
related to cardiac vibrations, which may not consistently yield 
reliable and patient-specific outcomes. This reliance on approx-
imation highlights the importance of balancing model com-
plexity with computational efficiency, as oversimplification can 
obscure essential physiological details critical for interpreting 
SCG signals.

4   |   Meshing Strategies and Considerations

Meshing allows for the discretization of the computational do-
main and enables accurate predictions of structural responses to 
loads and boundary conditions associated with heart vibrations. 
FEM breaks down complex geometries of the thoracic organs 
and tissues into smaller, manageable parts known as mesh el-
ements. These elements can vary in shape and order, including 
linear and quadratic forms, tetrahedral and hexahedral config-
urations, as well as specialized forms like shell elements [26], 
2D elements [18], and 3D solid elements [24, 30]. The choice 
of meshing strategy is critical, particularly when modeling the 
mechanical behavior of the heart and its resultant vibrations. 
Representing a geometry as a shell assumes a predominantly 
two-dimensional behavior, where the thickness is negligible 
compared to the length and width. This approach may be suit-
able for certain aspects of cardiac mechanics; however, it can 
limit the accurate representation of vibrational dynamics that 
are inherently three-dimensional. Conversely, modeling the 
heart as a 3D solid captures the full complexity of its mechan-
ical behavior, including the intricate interactions and spatial 
variations of the cardiac structures [31–33]. The choice between 
these meshing strategies ultimately affects the fidelity of SCG 

simulations, as it influences the accuracy of the predicted vibra-
tions at the chest surface.

5   |   Material Models in SCG Simulation

In SCG modeling, understanding and incorporating realistic 
material properties of the human thorax is important to get 
an accurate output signal. The material properties affect how 
mechanical waves propagate through the body. Table  1 lists 
the material properties utilized in the SCG modeling litera-
ture. Gamage et al. [18, 30] utilized both linear elastic and hy-
perelastic material models in SCG simulations. Linear elastic 
models, commonly employed for soft tissues due to their sim-
plicity and computational efficiency, are defined mathemati-
cally by Hooke's Law, which relates stress to strain in elastic 
materials. In three-dimensional space, this relationship is de-
scribed by the generalized form of Hooke's Law for isotropic 
materials [49], expressed as �ij = Cijklϵkl, where �ij is the stress 
tensor, Cijkl is the fourth-rank stiffness tensor, and ϵkl represents 
the strain tensor. For isotropic materials, the stiffness ten-
sor simplifies using Young's modulus (E) and Poisson's ratio 
(�), yielding the stress–strain relationship: �ij = ��ijϵkk + 2�ϵij. 
Here, � and � are the Lamé constants, which are related to E 
and � by � =

E�

(1+ �)(1− 2�)
 and � =

E

2(1+ �)
, respectively. The term 

�ij is the Kronecker delta, while ϵkk denotes the trace of the 
strain tensor, i.e., the sum of the normal strains. The strain ten-
sor ϵij is related to the displacement field qi through the equation 
ϵij =

1

2

(

�qi
�xj

+
�qj

�xi

)

. The stress components in the stress tensor 

�ij can be explicitly written as �xx = �
(

ϵxx + ϵyy + ϵzz
)

+ 2�ϵxx, 
�yy = �

(

ϵxx + ϵyy + ϵzz
)

+ 2�ϵyy, �zz = �
(

ϵxx + ϵyy + ϵzz
)

+ 2�ϵzz, �xy = 2�ϵxy, 
�xz = 2�ϵxz, and �yz = 2�ϵyz.

Unlike linear elastic models, a viscoelastic model encompasses 
both elastic and viscous properties, indicating that the materi-
al's response to stress involves time-dependent deformation. 
While muscles exhibit viscoelastic behavior, they can often be 
effectively modeled as linear elastic materials under certain as-
sumptions [50]. These assumptions include operating over short 
time scales where viscoelastic effects are negligible, considering 
small strains, assuming isotropic material properties, and ne-
glecting factors such as muscle activation and contraction [51]. 
In simulations of cardiac motion propagation to the chest sur-
face, the relevant time scale is extremely brief (corresponding to 
a single cardiac cycle) during which the chest muscles remain 
in a passive state. These simplifications facilitate a more man-
ageable analysis of the complex behavior of muscles. However, 
when needed, to model the viscoelastic behavior of materials, 
various mathematical frameworks exist, including the Maxwell 
model, the Kelvin–Voigt model, and the standard linear solid 
model [52, 53].

The Maxwell model, which consists of a spring representing 
the elastic element and a dashpot representing the viscous ele-
ment arranged in series, captures the time-dependent response 
of materials under stress. Its constitutive equation is given by 
�(t) = E�(t) + �

d�(t)

dt
, where �(t) represents the stress at time t , E 

is the Young's modulus of the spring, �(t) is the strain at time t , 
� denotes the viscosity of the dashpot, and d�(t)

dt
 is the time deriv-

ative of strain. This arrangement allows the material to exhibit 
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both instantaneous elastic behavior and time-dependent viscous 
behavior [53].

In contrast, the Kelvin–Voigt model consists of a spring and a 
dashpot arranged in parallel, which results in a different stress–
strain relationship. The constitutive equation for the Kelvin–
Voigt model is also �(t) = E�(t) + �

d�(t)

dt
 with the same definitions 

for �(t), E, �(t), �, and d�(t)
dt

. However, in this configuration, the 
model captures the material's resistance to both immediate and 
time-dependent deformation, highlighting its ability to retain 
strain without significant relaxation over time. These distinct 
arrangements and behaviors of the Maxwell and Kelvin–Voigt 
models are crucial for understanding viscoelastic materials in 
various applications [52, 54].

The standard linear solid model, also known as the Zener 
model, combines features from both the Maxwell and 
Kelvin–Voigt models. Its constitutive equation is expressed 
as �(t) + �1

d�(t)

dt
= E1�(t) +

(

E2�2
) d�(t)

dt
, where �1 and �2 are re-

laxation times, and E1 and E2 are the elastic moduli of the 
springs [55].

For a more comprehensive understanding of viscoelastic be-
havior, a general representation employs a convolution inte-
gral involving a relaxation function G(t). The stress–strain 
relationship can be defined as �(t) = ∫ t

0
G(t − �)

d�(�)

d�
d�, where 

G(t) describes how the material relaxes stress over time, and 
�(�) is the strain as a function of past time �. Additionally, the 
differential form of a general linear viscoelastic constitutive 
equation can be expressed as 

∑n
i=0 ai

di�(t)

dti
=
∑m

j=0 bj
dj�(t)

dtj
, where 

ai and bj are material constants, and n m represent the orders 
of the derivatives.

While some research has focused on viscoelastic materials for 
FEM of the lung [56], the complex, nonlinear, and large defor-
mation behavior of lung tissue often necessitates hyperelastic 
models. This is critical for accurately analyzing the stress–
strain response of lung tissue during breathing, disease pro-
gression, or rapid changes in pressure or volume conditions 
[57]. For example, Maghsoudi-Ganjeh et  al. [58] utilized a 
compressible Mooney–Rivlin hyperelastic model to simulate 
lung behavior. The Mooney–Rivlin model is a widely used hy-
perelastic material model that describes the nonlinear stress–
strain behavior of rubber-like materials [59, 60]. This model is 
particularly effective for materials that undergo large elastic 
deformations. The Mooney–Rivlin strain energy density func-
tion W  is expressed as W =

∑

i,jCij
�

I1−3
�i�
I2−3

�j, where Cij 
are material constants, and I1 and I2 are the first and second 
invariants of the deviatoric part of the left Cauchy-Green de-
formation tensor. For the most common first-order Mooney–
Rivlin model, the strain energy density function simplifies to 
W = C10

(

I1 − 3
)

+ C01
(

I2 − 3
)

, where C10 and C01 are material 
constants. In higher-order models, additional terms such as 
(

I1−3
)2, 

(

I2−3
)2, and 

(

I1 − 3
)(

I2 − 3
)

 are included, each asso-
ciated with its own material constant.

Although hyperelastic models are commonly used to describe the 
stress–strain relationship in biological soft tissues, such as mus-
cles, they are not ideal for representing time-dependent processes 
like stress relaxation. This limitation arises because hyperelastic 

models are inherently time-independent, despite being effective 
for capturing the nonlinear behavior of soft tissues [61]. In con-
trast, modeling the mechanical behavior of bones and cartilage, 
such as in the sternum, ribs, and xiphoid process, often is imple-
mented by different approaches. For example, Gamage et al. used 
a linear elastic model [18, 30], while Laurin et al. [25] applied a 
viscoelastic model. Within the SCG modeling framework, com-
parisons of linear elastic and viscoelastic models for chest bones 
indicate that linear elastic models, though computationally sim-
pler, are often sufficient. However, viscoelastic models, while 
more complex, are better suited to capturing the time-dependent 
behavior of bones under dynamic and long-term loading. Despite 
various material choices, there are currently no published stud-
ies directly comparing different constitutive models (e.g., hyper-
elastic vs. viscoelastic) in SCG simulations. Only Gamage [24] 
(Figure 2) investigated how varying the Young's modulus of chest 
wall muscles at the 4th intercostal space affects SCG signals. Such 
comparisons can shed light on the impact of these parameters in 
accurate SCG modeling using FEM.

6   |   Output SCG Signal

SCG signal varies depending on the specific measurement 
location on the chest surface [6, 8]. In this context, FEM 
of cardiovascular-induced chest vibrations offers a high-
resolution, time-varying map of SCG signals, allowing for 
the analysis of both temporal and spatial variations. Such an 
analysis could enhance the current understanding of how 
SCG signals and the cardiovascular information they provide 
are influenced by the measurement location on the chest. 
Moreover, since patient-specific SCG modeling requires 4D 
imaging data, such as 4D cardiac CT or MR, simulated SCG 
signals can be synchronized with these images to identify 
key cardiac events and intervals, including valve opening and 
closure, rapid ejection and filling, and isovolumic contraction 
and relaxation. For example, Figure  5 shows how the chest 
accelerations vary during a cardiac cycle at specific fiducial 
points [24]. These computational models can also be adjusted 
to simulate various cardiac conditions (e.g., by introducing a 
septal defect or increasing the thickness of the cardiac wall), 
offering insights into how SCG waveforms and fiducial points 
change under pathological conditions. Acceleration, displace-
ment, and velocity on the chest surface are key outputs derived 
from FEM modeling of SCG signals. By calculating, validat-
ing, and evaluating these signals, experts can assess patient-
specific results tailored to individual physiological profiles.

7   |   Validation Methods

While several studies have made valuable contributions to 
modeling SCG signals, comprehensive validation remains 
limited. Some studies did not report validation of their FEM 
[21]. In other cases, the modeled SCG signals derived from im-
aging data, such as CT scans, of one subject were compared 
to SCG signals recorded by accelerometers from different 
human subjects, with validation based primarily on general 
morphological similarities [24, 25, 27]. Additionally, one study 
evaluated SCG signals generated from an electromechanical 
model of a canine heart by comparing them to SCG signals 
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estimated from cine-MRI data of human subjects [5]. In ad-
dition to direct validation approaches, several studies have 
explored complementary strategies that can help assess the 
physiological plausibility of modeled SCG signals. While these 
methods do not provide direct validation of the SCG waveform 
itself, they can confirm the accuracy of physiological informa-
tion extracted from the models. For example, morphological 
features and fiducial points identified in simulated SCG sig-
nals have been compared with known cardiac events derived 
from ECG or cardiac imaging [5, 24]. Left ventricular volume 
curves obtained from 4D CT or MRI have been used to inter-
pret the modeled SCG-derived parameters such as AO and MC 
[18]. Similarly, simultaneously recorded ECG signals enable 
temporal alignment of SCG features with electrical events like 
the R-peak, helping to confirm the physiological consistency 
of the modeled signals [24].

These limitations highlight the need for more rigorous and subject-
specific validation approaches. Validation of computational simu-
lations in SCG modeling is essential to ensure the accuracy and 
reliability of the modeled SCG signals. Various methods, including 
accelerometer measurements, advanced motion tracking systems 
using medical imaging, and laser Doppler vibrometry, can be em-
ployed, each with distinct strengths and limitations.

Using accelerometers is a standard method for directly measur-
ing mechanical vibrations or accelerations on the chest surface, 
which makes it an effective validation tool for SCG modeling. By 
placing single or arrays of accelerometers on specific locations of 
the chest, such as the sternum or ribs, SCG signals can be cap-
tured in multiple directions (e.g., dorsoventral, right-to-left, and 
head-to-foot). These signals serve as a gold standard for valida-
tion because they represent real physical responses that can be 
compared to simulated data. However, this validation approach 
has limitations. It requires precise sensor placement and care-
ful calibration, which can be logistically challenging. Moreover, 
capturing SCG signals with uniaxial or triaxial accelerometers 
may not fully account for all mechanical changes across the 

chest surface [62]. Sensor arrays also measure SCG signals from 
limited chest locations, while useful for validating modeled SCG 
signals at those specific sites, may not provide sufficient data to 
validate the entire modeled chest vibration map.

Another potential validation approach involves using computer 
vision-based SCG to estimate SCG maps from chest videos [63, 64]. 
This new non-contact approach may offer a significant advantage 
over conventional techniques by capturing SCG signals from a 
much larger number of chest locations. However, a key limitation 
is its current inability to capture signals in the dorsoventral direc-
tion, as it only provides data for right-to-left and top-to-bottom vi-
brations. This restriction limits its effectiveness in fully validating 
SCG maps. Performing either this approach or the accelerometer-
based method concurrently with 4D medical imaging, used for 
geometry segmentation and boundary condition evaluation, is 
challenging. One potential solution is to capture validation data 
immediately before or after the 4D MRI or CT scans, assuming 
that the SCG signals remain relatively stable within the short time 
frame between tests. While this assumption is reasonable, it is 
important to note that the modeled SCG signals derived from the 
medical images may differ slightly from the validation signals due 
to inter-subject variability in SCG beats, meaning that SCG wave-
forms can vary from one beat to the next.

In addition to these validation methods, computer vision tech-
niques can be used to track chest surface motions derived di-
rectly from the same medical imaging data used for extracting 
geometry and boundary conditions. In this case, the image 
data such as MR, CT, or ultrasound images serves a dual pur-
pose: providing anatomical details and boundary condition 
information as well as validation data. To extract validation 
data from these images, motion-tracking techniques can be 
used to monitor the displacement, velocity, and accelera-
tion of specific anatomical points on the chest. For instance, 
motion-tracking algorithms could target the xiphoid process 
or other key regions of interest. The motion profiles of these 
points can be directly compared with the outputs of the SCG 

FIGURE 5    |    Computationally modeled dorsoventral SCG maps at the timing of key fiducial points. (a) Mitral valve closure, MC. (b) Isovolumic 
contraction, IC. (c) Aortic valve opening, AO. (d) Aortic valve closure, AC. (e) Mitral valve opening, MO. (f) These fiducial points are labeled on the 
dorsoventral SCG signal measured at the 5th intercostal space. All measurements are in mm∕ s2 [24].
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computational model, providing a robust means of assessing 
model accuracy. One notable advantage of this approach is its 
ability to generate validation data that is temporally aligned 
with the modeled SCG signals, facilitating a direct “apples-
to-apples” comparison. Unlike the computer vision approach 
based on chest videos, this approach inherently captures chest 
motion in all spatial directions, including the dorsoventral 
axis, offering a more comprehensive dataset for validation. 
However, this method has its own limitations. High-quality 
imaging systems necessary for precise motion capture can 
be cost-prohibitive and may not be readily available in all re-
search or clinical environments. Additionally, imaging proce-
dures often require significant technical expertise, and patient 
movement during scanning can introduce noise or artifacts, 
potentially affecting the accuracy of the extracted motion 
data. Despite these challenges, this technique holds promise 
for providing high-fidelity validation data, particularly in con-
trolled settings where imaging resources are accessible.

8   |   Sample Fem Framework for SCG Simulation

This section provides a sample framework for FEM-based SCG 
modeling, offering guidance for future studies aiming to advance 
the field. Figure 6 outlines this framework, beginning with the 
acquisition of MRI or CT scan images. Many of the studies ref-
erenced earlier employ common techniques such as geometry 
generation from medical images. Using image processing, the 
3D geometry of the heart and surrounding thoracic structures 
is reconstructed from these scans. To model the propagation of 
cardiac wall motion to the chest surface, the equations of motion 
can be employed. This process involves translating known heart 
wall motions from 4D cardiac CT scans into dynamic bound-
ary conditions, which are then used to simulate the mechanical 
response of the surrounding thoracic tissues. The methodology 
consists of several key steps: defining the equations of motion 
for continuous media, converting these to a discrete matrix form 
suitable for FEM, and applying boundary conditions derived 

from 4D CT data. By following this process, the propagation of 
cardiac vibrations through the thoracic structures to the chest 
surface can be simulated. In the Subsections  8.1 through 8.5, 
alongside a detailed discussion of the fundamental concepts, the 
sample framework illustrated in Figure 6 is explained for read-
ers seeking a deeper understanding of the methodology.

8.1   |   Equations of Motion for Continuous Media

The equations of motion for continuous media are derived from 
Newton's second law and are expressed in terms of stress, strain, 
and body forces. The primary form is given by � �2q

�t2
= ∇ ⋅ � + b, 

where � is the density of the material, q is the displacement vector, 
� is the stress tensor, b represents body forces (e.g., gravity), and 
∇ ⋅ � denotes the divergence of the stress tensor. The stress tensor 
� is related to the strain tensor � through the material's constitutive 
law. For linear elastic materials, this relationship is described by 
Hooke's law: �ij = Cijklϵkl, where Cijkl is the elasticity tensor, and ϵkl 
is the strain tensor defined as ϵkl =

1

2

(

�qk
�xl

+
�ql
�xk

)

. For non-linear 
materials, hyperelastic models like the Mooney–Rivlin or Ogden 
models can be used. In the context of finite element analysis, the 
continuous domain is discretized into finite elements, and the 
equations of motion are expressed in a matrix form suitable for 
numerical solution as described by (1). Figure  6 highlights how 
the reconstructed 3D geometry is used to apply the equations of 
motion. By discretizing the thoracic structures slice by slice, the 
FEM framework incorporates the anatomical details necessary for 
accurate simulation of SCG signal propagation.

8.2   |   Applying Boundary Conditions From 4D 
CT Data

Displacement boundary conditions are extracted from 4D CT 
scans and applied to the finite element model. These time-
dependent conditions are specified at the nodes on the heart's 
surface, reflecting the dynamic motion observed in the CT 

FIGURE 6    |    Overview of a sample image-based patient-specific FEM of SCG signals. The framework begins with the processing of MRI or CT 
scan images to reconstruct the 3D geometry of the heart and surrounding thoracic structures. Cardiac wall motion is then extracted using motion 
tracking algorithms like the Lucas–Kanade method [65–67]. This motion data is applied as input boundary conditions to the 3D geometry within the 
FEM solver. The final steps involve mesh generation and setting up the analysis parameters, ultimately allowing for the computation and analysis 
of chest surface acceleration.
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data: q(x, t) = qdata(x, t), where qdata(x, t) represents the dis-
placement data obtained from the 4D CT scans. These bound-
ary conditions ensure that the model accurately reflects the 
dynamic behavior of the heart as captured in the imaging 
data. Figure  6 illustrates the extraction of cardiac wall mo-
tion from 4D imaging data using optical flow methods. This 
extracted motion, shown as displacement fields over time, 
forms the dynamic boundary conditions applied to the FEM 
model, ensuring that the heart's motion drives the mechanical 
response of surrounding tissues.

8.3   |   Finite Element Discretization and Solution

The continuous domain is discretized into finite elements, and the 
weak form of the equations of motion is derived and solved nu-
merically. The weak form is obtained by multiplying the equations 
of motion by a test function v and integrating over the domain Ω: 
∫
Ω
�
�2q

�t2
⋅ vdΩ = ∫

Ω
(∇ ⋅ �) ⋅ vdΩ + ∫

Ω
b ⋅ vdΩ. Using the divergence theorem, 

this can be rewritten as ∫
Ω
�
�2q

�t2
⋅ vdΩ = ∫

Ω
�: ∇vdΩ + ∫

Ω
b ⋅ vdΩ − ∫

�Ω
t ⋅ vdΓ, 

where t  is the traction vector on the boundary �Ω. The weak form 
provides the foundation for numerically solving the system of 
equations by discretizing the model into finite elements. The mesh 
generation step in Figure 6 demonstrates how the reconstructed 
3D geometry is discretized into finite elements. This discretization 
enhances the accuracy of the simulation by ensuring the mechan-
ical response of the tissues is captured with sufficient detail.

8.4   |   Time Integration

For dynamic analysis, time integration schemes like the 
Newmark-beta method are used to solve the equations of mo-
tion. The Newmark-beta method updates the displacement and 
velocity at each time step n + 1 based on the current values at 
time step n: qn+1 = qn + Δtvn +

Δt2

2

(

(1 − 2�)an + 2�an+1
)

 and 
vn+1 = vn + Δt

(

(1 − �)an + �an+1
)

, where Δt is the time step, and 
� and � are parameters that determine the stability and accuracy 
of the method. Common choices are � = 1∕4 and � = 1∕2, which 
correspond to the average acceleration method. This selection en-
sures that the Newmark-beta method is unconditionally stable for 
linear problems, providing second-order accuracy and sufficient 
numerical damping to control high-frequency oscillations. Using 
medical images and optical flow methods, the cardiac motion data 
is translated into time-dependent inputs, which are applied to the 
heart cavity as boundary conditions. The sampling frequency of 
these inputs plays a critical role in the accuracy of the results. By 
increasing the sampling frequency of the input data, the simula-
tion can capture hidden peaks and reveal more detailed patterns 
in the simulated SCG graph and potentially enhance the analysis 
of cardiac events.

8.5   |   Solving the Equations

The global system of equations is assembled from the finite ele-
ment discretization and solved iteratively at each time step using 
numerical solvers software. The solution involves calculating 
the displacement, velocity, and acceleration fields throughout 
the thoracic cavity and on the chest surface. The computational 
models enable the capture of SCG signals and displacement at 

any point on the chest surface in three directions, a task that 
is challenging in experimental settings. FEM also provides the 
flexibility to modify input boundary conditions, such as those 
specific to an individual with a particular heart defect, allowing 
for the study of patient-specific SCG signals.

9   |   Limitations and Future Work

The field of SCG is relatively young but holds great potential for 
growth and impact. In recent years, SCG signals have garnered 
increasing attention, especially with the promising results from 
the SEISMIC-HF I trial, which highlighted the potential of SCG 
in managing heart failure patients [14]. As the field evolves, the 
integration of FEM and digital twins based on SCG signals will 
play a crucial role in advancing our understanding of these signals 
under various anatomical, physiological, and pathological condi-
tions. Despite the significant progress made, several limitations 
remain that need to be addressed to improve model accuracy and 
applicability. Key limitations include the following:

1.	 Simplified geometry: Although some of the prior studies 
have relied on 2D geometries to simplify SCG simulation, 
such an approach limits the ability to capture the inherently 
three-dimensional propagation of cardiac-induced vibra-
tions. SCG signals arise in three directions (i.e., dorsoven-
tral, right-to-left, and head-to-foot), and because the thorax 
is asymmetric (e.g., the heart sits to the left and has intri-
cate anatomical structures), any 2D cross-section inevitably 
misses vital geometric details. Moreover, SCG waveforms 
reflect subtle events (e.g., valve movements and chamber 
deformations) whose wave propagation cannot be fully rep-
resented in just 2D modelings. This often yields imprecise 
vibrational patterns and energy distributions on the chest 
surface. Consequently, 2D models cannot replicate the 
full SCG waveform, and transitioning to 3D geometries is 
strongly recommended for more accurate wave propagation 
modeling and closer alignment with clinical observations.

2.	 Incomplete organ modeling: There is a lack of comprehen-
sive 3D models in the current literature that incorporate 
not only the heart but also surrounding organs and tissues. 
Such models are essential for accurately simulating the 
complex interactions within the thoracic cavity, including 
wave reflections and absorptions by neighboring struc-
tures. Future studies should aim to construct detailed 3D 
models that capture the full anatomical and mechanical 
context in which SCG signals propagate.

3.	 Material property realism: Another significant limitation 
is the assumption of simplified or idealized material prop-
erties for thoracic structures. Current studies often do not 
use material properties that fully reflect the heterogeneous, 
viscoelastic, and anisotropic nature of human tissue, which 
affects how cardiac vibrations propagate. Research focused 
on characterizing realistic, heterogeneous material proper-
ties and incorporating these into FEM models would en-
hance the models' predictive power.

4.	 Patient-specific image-based modeling for SCG variability: 
Developing image-based, patient-specific simulations can 
pave the way toward creating digital twin models that allow 
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detailed investigation of SCG signals across different phys-
iological and pathological conditions for the same individ-
ual. For instance, by first modeling a healthy subject's SCG 
signal, we could then simulate various conditions by al-
tering the geometry (e.g., incorporating aortic coarctation, 
septal defects, or varying cardiac wall thickness), material 
properties (e.g., adjusting valve characteristics for valvular 
disease), and boundary conditions. This approach would 
enable predictions of how a subject's SCG signal might ap-
pear under specific disease states, providing critical insights 
into SCG signal variability both within and across individ-
uals. By systematically simulating these changes, patient-
specific models could deepen our understanding of SCG 
signal variations, enhancing diagnostic and monitoring ac-
curacy for diverse cardiac conditions.

5.	 Potential SCG biomarkers for disease detection: An im-
portant extension of FEM-based SCG modeling is the 
identification of specific biomarkers related to diseases. 
For example, the amplitude, timing, and morphology of 
SCG signals can be affected by factors like the contractil-
ity of heart muscle [68]. For example, a study on 45 heart 
failure patients suggested that SCG waveform structure 
changes less in decompensated heart failure patients than 
in compensated ones after exercise, and therefore, such in-
formation can be utilized to track the clinical status of the 
patients [69]. Other studies suggested that a decrease in AO 
and AC amplitudes reflects a loss of mechanical strength in 
the heart, while shortened left ventricular ejection time and 
decreased pulse transit time are associated with reduced 
cardiac performance and increased arterial stiffness due 
to fluid shifts associated with the prolonged bed rest [70]. 
SCG signals have patterns that are associated with elevated 
peak systolic velocity, which is a key indicator of aortic 
valve stenosis [71]. By systematically introducing patho-
logical geometries (for instance, septal defect) or modifying 
boundary conditions like reduced myocardial contractility, 
within numerical simulations, FEMs can predict how SCG 
features (i.e., potential biomarkers) such as signal ampli-
tudes, fiducial point timings, and frequency contents might 
change. These modeled scenarios can help in developing 
disease-specific SCG signals and in developing clinical 
strategies for diagnosing or monitoring heart diseases.

6.	 Including dynamic heart models in SCG signal modeling: 
While using medical imaging-derived boundary condi-
tions as discussed in this review can replicate SCG signals, 
a fully coupled electromechanical heart model, including 
myocardial activation, blood flow, and valve dynamics, is 
important for exploring how structural heart diseases, such 
as valve stenosis or myocardial infarction, alter SCG wave-
forms. Such integrated modeling would allow researchers 
to predict SCG changes when heart function (e.g., myocar-
dial contractility or valve function) is compromised.

10   |   Conclusions

In conclusion, this review highlights the current advancements 
and limitations in FEM of seismocardiogram signals. FEM ap-
proaches provide valuable insights into the relationship between 
cardiac motion and chest surface vibrations, facilitating the 

non-invasive assessment of cardiovascular function. However, 
limitations such as simplified 2D models, incomplete 3D anatom-
ical representations, and inadequate material property character-
izations underscore the need for further refinement. Addressing 
these challenges with advanced, patient-specific models holds 
promise for improving diagnostic accuracy and personalized mon-
itoring of cardiovascular health. Future efforts should focus on de-
veloping personalized, 3D FEM models that incorporate realistic 
anatomical and material properties, as well as adaptable digital 
twin models, to enhance the predictive power and clinical utility 
of SCG-based assessments.

Nomenclature

Equation Terms
x	 3D position vector [m]
f (t)	 force [N]
C(x)	 elasticity tensor [Pa]
M	 mass matrix [kg]
C	 damping matrix [kg s−1]
K	 stiffness matrix [N m−1]
q(x, t)	 displacement vector [m]
q̇(x, t)	 velocity vector [m/s].
q̈(x, t)	 acceleration vector [m/s2].
�(x)	 density [kg/m3]
�	 stress tensor [Pa]
ϵ	 strain tensor
u	 prescribed displacement vector [m]
c	 wave propagation speed [m s−1]
E	 Young's modulus [Pa]
v	 Poisson's ratio
�, �	 Rayleigh damping coefficients

Medical Terms
SCG	 seismocardiography
ECG	 electrocardiography
FEM	 finite element model(ing)
CT	 computed tomography
AC	 aortic valve closure
AO	 aortic valve opening
MC	 mitral valve closure
MO	 mitral valve opening
CVD	 cardiovascular disease
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