

Unique opportunities for new insight in the outer surfaces and interfaces by High Sensitiviy Low Energy Ion Scattering (HS-LEIS)

Hidde Brongersma

ION-TOF GmbH / Eindhoven University of Technology / Imperial College (London)

H.H.Brongersma@tue.nl

March 23, 2011 Lehigh University ION-TOF GmbH Heisenbergstr. 15 D-48149 Münster / Germany www.iontof.com

Outline

Introduction

Principles and features of LEIS

-1st atom, In - depth (0 - 10 nm), quantitative

> Applications

- Organics (surface modific., anti-wetting, SAMs)
- Catalysts (mixed oxides, coke, NP's, oxid. states)
- Ceramics (SOFC, membranes)
- ALD growth (high-k, inter-diffusion)
- and many more

Low Energy Ion Scattering

IONTOF

Analytical Capabilities

- Atomic composition of the outermost atomic layer
- Energy 1 8 keV
- Lateral resolution 0.01 1 mm
- Static in-depth (0 10 nm)
- > Quantitative !!
- No matrix effects

Qtac : Unique new Analyser High – Sensitivity LEIS

HS-LEIS: Principles and Key Features

- > Analysis *before* damage (static)
- > 1st Monolayer
- Quantitative (peak ----> concentration / coverage)
- Sensitivity
- Mass resolution
- ToF-filtered LEIS
- Imaging

> In-depth: Static (0 - 6 nm) or with sputtering

Quantification

Review:

Brongersma et al., Surf. Sci. Reports, 62 (2007) 63 – 109.

ION-TOF GmbH Heisenbergstr. 15 D-48149 Münster / Germany www.iontof.com

Quantification

Bromine adsorption on Tungsten

Bulk Composition Ag₈₀ Al₂₀

Rough silica: 50 – 380 m²/g HS-LEIS: Insensitive to roughness

W.P.A. Jansen et al., SIA 36 (2004) 1469 - 1478.

Monolayer sensitivity

LEIS 1st atom and in-depth; quantitative, sensitive
SIMS not quantitative for near-surface / interface
XPS average over 3 – 10 nm; chemical info

Elemental mapping by LEIS and SE Image Solder bumps

LEIS and Microelectronics

Depth info for

Ultra thin layers and interfaces

Two possibilities:

1. Static LEIS + sputter depth profiling with dual ion beam

(advantage of quantification, depth resolution LEIS)

2. Static LEIS

(analogous to RBS and MEIS, but better depth resolution)

1st atom and Static Depth Profile

ZrO₂ Atomic Layer Deposition on Silicon

- Closure / quantification pinholes (still present after 70 cycles)
- > Thickness distribution ZrO_2 layer (160 eV/nm)
- No matrix effect
- > Example: calibration / quantification for a 2 component system

INFO from LEIS spectra

In LEIS only backscattered ions are detected

- Peaks: Ions backscattered from 1st atom. (*one well-defined* collision)
- Tails:Backscattering in deeper layers + reionization(Scattering by oxygen atoms: efficient reionization)
 - Shape: f (in-depth distribution Zr)
 - Intensity: f (oxygen concentration in 1st atomic layer)

LEIS Technique Features of Low Energy Ion Scattering (LEIS)

LEIS Features

He⁺, Ne⁺, Ar⁺, Kr⁺ 1 - 8 keV

Static depth profiling information (up to 10 nm)

Reliable and straight-forward *quantification*

Detection of all elements > He

Detection limits:

 $Li - O \geq 1\% of 1 ML$

F - CL 1% - 0.05% of 1 ML

K - U 500 ppm - 10 ppm of 1 ML

Sample Treatment

Atom Source for Surface Cleaning

Organics

- Surface segregation
- Dendrimers
- Antiwetting
- Surface modification
- Metal / polymer interface

> SAMs

Polymers, SAMs, ...

Inter - molecular segregation

Segregation impurities, additives (0.1 s - days - ..; up to 10⁸ x !!)

Intra - molecular segregation (0.1 s - days - ..)
 Aging plasma oxidized PE

Anti - wetting layers

Metal diffusion in polymers

> SAM's

Acrylonitrile-Butadiene-Styrene (ABS)

Surface segregation of additives

Metal - polymer interface in ultra - thin layers PLED: Ba evaporation on PPV

During evaporation of barium on PPV, most of the Ba diffuses into the PPV.

Compare the peakshape of a sub-monolayer of Ba (blue) with the actual peak (red)

Peak shape ↔ depth distribution

PLED: higher light output for narrow depth distribution

High-energy edge of SAMs on Au

Aging of plasma oxidized HDPE

> Aging (LEIS) faster than aging (XPS) !

➤ "Straight line" → diffusion process

HS-LEIS and Catalysis, Ceramics

Selection of examples:

- Pt/Au
- Mixed oxides
- γ-alumina
- Poison (Coke on TWC)
- Poison (oxygen membranes, SOFC)
- Use of probe molecules
- NP's , core/shell
- Oxidation state 1st atom

Important / unique applications for catalysis Mixed oxides and catalysis

The atomic composition of the 1st atom layer controls catalysis.

In a spinel (AB_2O_4) only the B-cations (octahedral site) are catalytically active and visible for LEIS (1st at.).

The A-cations (tetrahedral sites) are in 2nd layer (not active, no LEIS peak).

Fuel Cells and Membranes

Importance of the outer surface

Performance relies on oxygen transport

- Performance: "Hampered by the surface "
- > Why? What is the surface ??

M. de Ridder et al., J. Appl. Phys. 92 (2002) 3056 - 3064M. de Ridder et al., Solid State Ionics 156 (2003) 255 - 262

Yttria stabilized Zirconia (YSZ) after calcination

CaO coverage blocks ¹⁶O –¹⁸O exchange

M. de Ridder et al., Solid State Ionics 156 (2003) 255 - 262

CaO coverage blocks ¹⁶O –¹⁸O exchange

M. de Ridder et al., Solid State Ionics 156 (2003) 255 - 262

Coke Formation on Commercial TWC

Three Way Catalyst (TWC) (Pt, Rh / CeO₂ / γ – Al₂O₃)

Cold start: 50% loss of Pt signal — *sintering or coke formation ?* Room temperature oxidation with atomic oxygen gives complete recovery of Pt signal — *loss is due to coke.*

Detection of C with "any" surface technique. But: WHERE is the coke ??!

LEIS determines which fraction of Pt is covered by coke !

Applications:

Number of Pt atoms available for catalysis.

Quality control of catalysts !

> Detection of nucleation site for coke (active phase, support, binder, ...)

J.M.A. Harmsen, et al., Catal. Lett. 74 (2001) 133 – 137.

Particle Size on Supported Catalysts

Diameter \iff TON; size often related to failure

TEM:

- excellent catalyst characterisation
- detailed info, but local
- contrast required (high Z cluster on low Z support)

Chemisorption:

requires known probe / surface interaction

HS - LEIS:

> new technique; any material; clusters: 1 atom - 10 nm

Comparison: Richard A. P. Smith (J&M), ECASIA 2009

T. Tanabe et al. (Toyota), Appl. Catal. A370 (2009) 108

Important / unique applications for catalysis

4. Nanoclusters

- Average diameter nanoclusters
- Surface segregation in alloy clusters
- Core/shell particles

(verification, closure, thickness shell)

Example: Three-Way catalyst (exhaust) Pt clusters on $CeO_2/..../\gamma$ -alumina Loading = 0.004 g Pt / γ -alumina Cluster diameter: 1.6 nm (average) Accurate for d < 10 nm

The diameter is derived from the ratio of the bulk loading (volume) to the LEIS signal (surface area)

This method is possible where TEM fails ($d \le 2 \text{ nm}$; high Z support)

Oxidation states Cu and Zn in outer surface?

LEIS + chemical titration !

XPS:

Oxidation states, BUT averaged over 10 – 20 atomic layers.

LEIS:

Elemental composition outer atomic layer, BUT no chemical info Oxidation of metallic Cu, Zn gives shielding by oxygen. Signal decrease: factor 5 resp. 3.7.

Chemical titration:

Information on oxidation states, BUT not only the outer surface (?)

Oxidation states Cu and Zn in outer surface?

LEIS + chemical titration !

XPS:

Oxidation states, BUT averaged over 10 – 20 atomic layers.

LEIS:

Elemental composition outer atomic layer, **BUT** no chemical info Oxidation of metallic Cu, Zn gives shielding by oxygen. Signal decrease: factor 5 resp. 3.7.

Chemical titration:

Information on oxidation states, BUT not only the outer surface (?)

\triangleright N₂O for oxidation

LEIS for detection increase in shielding after N₂O treatment

Cu / ZnO / SiO2 - Catalyst

Determination of cluster size and oxidation states by LEIS

IONTOF

Atomic Layer Deposition (ALD)

"Growth with Digital Accuracy

ALD cartoons:

(often) show closed layer after 1 cycle **In practice:** closure after a few up to > 100 cycles !

Typical examples (depending on ALD conditions !):

- 6 cycles $CrOx / Al_2O_3$ \bigcirc
- \circ 6-9 cycles HfO₂ / Si
- \circ ~ 15 cycles ALN / SiO₂
- \circ ~ 40 cycles Al₂O₃ / Si
- \circ ~ 70 cycles Fe₂O₃ / ZrO₂

 \circ ~ 150 cycles TiN / SiO₂

Layer thickness versus cycle

The transient regime determines closure and uniformity

Characterization of MOCVD vs. ALD HfO₂ layer closure and growth mode on Silicon: a new model for preferential deposition

M.J.P. Hopstaken¹, M.S. Gordon¹, J. Schaeffer², H. Jagannathan¹, T. Grehl³, H.H. Brongersma^{3,4}, M. Copel¹, M.M. Frank¹, V. Narayanan¹, K. Choi², M. Fartmann⁴, D. Breitenstein⁴

¹IBM Research, ²GLOBALFOUNDRIES, ³ION -TOF, ⁴Tascon

ALD 2010, June 21 – 23, 2010 Seoul, Korea

HfO₂ layer closure: MOCVD vs ALD Surface fractions (LEIS) as function of coverage

- Earlier layer closure for ALD-HfO₂

LEIS and Growth

- Initial growth; growth mode
- > Poisoning, activation
- > Closure, pinholes
- Thickness distribution

Conclusion IBM / Global Foundries / ION-TOF / Tascon study:

Origin of the superior quality of the ALD grown layers revealed by HS-LEIS

(other analytic tools have insufficient depth resolution)

Summary: Why do you need LEIS ?? !!

- Any material, any T
- Quantitative
- > 1st atom and high-resolution in-depth !!

Unique applications of High Sensitivity LEIS (NOT's)

- Segregation, Anti-wetting
- > Adhesion: " 5% vs 100% "
- Follow ultrathin growth
- > Pinholes in ultrathin; Nano pinholes
- Metal / polymer in-depth diffusion
- > Catalysis: poison, promoter, probe molecules, core-shell,
- Nanoclusters (diameter; outer atoms)
- Inorganics: oxidation states
- Improve cleaning strategies

Complementarity to XPS, ToF-SIMS,

Miscellaneous applications

Microelectronics, polymers, ceramics, catalysis, sensors,

But also:

- Pinholes in coatings
- Candy wrappers
- Gold mining
- F 16 Dome
- Bone tissue, implants, stents,
- > Ageing of Linoleum (" Linowonder")
- > Anti-wetting (watches,)

Floor wax

Complementary Cutting Edge techniques

Otac¹⁰⁰ Thank you for your attention.