Unique opportunities for new insight in the outer surfaces and interfaces by High Sensitivity Low Energy Ion Scattering (HS-LEIS)

Hidde Brongersma

ION-TOF GmbH / Eindhoven University of Technology / Imperial College (London)

H.H.Brongersma@tue.nl

March 23, 2011
Lehigh University
Outline

- **Introduction**

- **Principles and features of LEIS**
 - 1st atom, In – depth (0 – 10 nm), quantitative

- **Applications**
 - Organics (surface modification, anti-wetting, SAMs)
 - Catalysts (mixed oxides, coke, NP’s, oxid. states)
 - Ceramics (SOFC, membranes)
 - ALD growth (high-k, inter-diffusion)
 - and many more
Why High-Sensitivity LEIS?

CONTROL at the ATOMIC LEVEL

requires

QUANTITATIVE ANALYSIS at the ATOMIC LEVEL
Low Energy Ion Scattering

Analytical Capabilities

\[E_f = f(M_0, M_1, M_2, \theta) \times E_i \]

- Atomic composition of the outermost atomic layer
- Energy 1 – 8 keV
- Lateral resolution 0.01 – 1 mm
- Static in-depth (0 – 10 nm)
- Quantitative !!
- No matrix effects

\begin{itemize}
 \item \(^3\text{He}^+, \ ^4\text{He}^+, \text{Ne}^+, \text{Ar}^+ \)
 \item \(E_f \) vs. Energy spectrum of an alloy
 \item \(\text{Energy } 1 – 8 \text{ keV} \)
 \item \(\text{Lateral resolution } 0.01 – 1 \text{ mm} \)
 \item \(\text{Static in-depth } (0 – 10 \text{ nm}) \)
 \item \(\text{Quantitative !!} \)
 \item \(\text{No matrix effects} \)
\end{itemize}
Conventional LEIS vs HS - LEIS

Pd / Pt-C (1000 m²/g)

Conventional

4He 10,000 nC

High-Sensitivity LEIS

4He 5.4 nC

Promoters visible, but removed
Qtac : Unique new Analyser
High – Sensitivity LEIS

Energy image:
- parallel energy detection
- only low dose needed

STATIC LEIS

“ Analysis before Damage ”
(Molecular Dynamics simulation)

“ Hit same place only once “

ToF filtering eliminates SIMS ions
HS-LEIS: Principles and Key Features

- Analysis before damage (static)
- 1st Monolayer
- Quantitative (peak concentration / coverage)
- Sensitivity
- Mass resolution
- ToF-filtered LEIS
- Imaging

In-depth: Static (0 – 6 nm) or with sputtering
LEIS and SIMS

Time resolved: LEIS analysis *before* damage!
Quantification

Review:
Quantification

Bromine adsorption on Tungsten

\[\theta_W + \theta_{Br} = 1 \]

No matrix effect!

1st atom

Simple interpretation!!

\[\theta = \text{fraction 1st atom layer} \]

\[\theta_W = 1 \]

\[\theta_{Br} = 1 \]
Bulk Composition $\text{Ag}_{80}\text{Al}_{20}$

Surface Composition $\text{Ag}_{66}\text{Al}_{34}$

(independent of primary energy)

NO matrix effects
Rough silica: 50 – 380 m2/g

HS-LEIS: Insensitive to roughness

LEIS Signals:
rough silica about 77%
of flat silica (quartz)

Monolayer sensitivity

LEIS 1st atom and in-depth; quantitative, sensitive

SIMS not quantitative for near-surface / interface

XPS average over 3 – 10 nm; chemical info
Elemental mapping by LEIS and SE Image
Solder bumps

SE image

100 µm

Ti

Sn

Pb
Depth info for

Ultra thin layers and interfaces
Two possibilities:

1. Static LEIS + sputter depth profiling with dual ion beam
 (advantage of quantification, depth resolution LEIS)

2. Static LEIS
 (analogous to RBS and MEIS, but better depth resolution)
3 keV He$^+$

$\Delta E \approx 160$ eV/nm

Depth resolution better for lower primary E!
1st atom and Static Depth Profile

ZrO$_2$ Atomic Layer Deposition on Silicon

- Closure / quantification pinholes (still present after 70 cycles)
- Thickness distribution ZrO$_2$ layer (160 eV/nm)
- No matrix effect
- Example: calibration / quantification for a 2 component system
In LEIS only backscattered ions are detected

Peaks: Ions backscattered from 1st atom.
(*one well-defined collision*)

Tails: Backscattering in deeper layers + reionization
(Scattering by oxygen atoms: efficient reionization)

Shape: f (in-depth distribution Zr)

Intensity: f (oxygen concentration in 1st atomic layer)
LEIS Technique
Features of Low Energy Ion Scattering (LEIS)

LEIS Features

Ultra-high surface sensitivity, top atomic layer analysis

Static depth profiling information (up to 10 nm)

Reliable and straight-forward quantification

Detection of all elements > He

Detection limits:

- Li - O ≥ 1 % of 1 ML
- F - Cl 1 % - 0.05 % of 1 ML
- K - U 500 ppm - 10 ppm of 1 ML

He\(^+\), Ne\(^+\), Ar\(^+\), Kr\(^+\)
1 - 8 keV
Sample Treatment
Atom Source for Surface Cleaning

O₂ or H₂

- O atoms remove organics, coke
- Chemical energy: no sputtering

CₓHᵧOᵢ

Sample
Organics

- Surface segregation
 - Dendrimers
- Antiwetting
- Surface modification
- Metal / polymer interface
- SAMs
Polymers, SAMs, ...

- Inter - molecular segregation
 - Segregation impurities, additives (0.1 s - days - ..; up to 10^8 x !!)

- Intra - molecular segregation (0.1 s - days - ..)
 - Aging plasma oxidized PE

- Anti - wetting layers

- Metal diffusion in polymers

- SAM’s
Acrylonitrile-Butadiene-Styrene (ABS)

Surface segregation of additives
During evaporation of barium on PPV, most of the Ba diffuses into the PPV.

Compare the peak shape of a sub-monolayer of Ba (blue) with the actual peak (red).

Peak shape ↔ depth distribution

PLED: higher light output for narrow depth distribution
High-energy edge of SAMs on Au

Fluorinated thiol on dirty Au surface

Fluorinated thiol on clean Au surface

Overlayer thickness

Energy (eV)

Normalised intensity (Cts/nC)
Aging of plasma oxidized HDPE

- Aging (LEIS) faster than aging (XPS)!
- “Straight line” → diffusion process
Selection of examples:

- Pt/Au
- Mixed oxides
- γ-alumina
- Poison (Coke on TWC)
- Poison (oxygen membranes, SOFC)
- Use of probe molecules
- NP’s, core/shell
- Oxidation state 1st atom
The atomic composition of the 1st atom layer controls catalysis.

In a spinel (\(AB_2O_4\)) only the B-cations (octahedral site) are \textit{catalytically active and visible} for LEIS (1st at.).

The A-cations (tetrahedral sites) are in 2nd layer (not active, no LEIS peak).

\[Co_3O_4 = CoCo_2O_4\]

Test reaction:
only Co catalytically active

\[Co \text{ signals:}\]
\[\text{XPS: } 1:2:3\]
\[\text{LEIS: } 0.3:1.9:2.0\]
Fuel Cells and Membranes

Importance of the outer surface

- Performance relies on oxygen transport
- Performance: “Hampered by the surface”
- Why? What is the surface??

For $T > 700 \, ^\circ C$: No Y, Zr in 1st atom!

XPS: Ca not visible (↔ Zr)

Calcination for 5 hours at 1000$^\circ$C in an oxygen flow of 1.5 bar.

Segregation of monolayer of impurities
Fuel Cells

CaO coverage blocks 16O – 18O exchange

Fuel Cells

CaO coverage blocks $^{16}\text{O} - ^{18}\text{O}$ exchange

Cold start: 50% loss of Pt signal — sintering or coke formation?
Room temperature oxidation with atomic oxygen gives complete recovery of Pt signal loss is due to coke.

Detection of C with “any” surface technique.
But: WHERE is the coke?!

LEIS determines which fraction of Pt is covered by coke!

Applications:
- Number of Pt atoms available for catalysis.
 Quality control of catalysts!
- Detection of nucleation site for coke (active phase, support, binder, ...)

TEM:
- excellent catalyst characterisation
- detailed info, but local
- contrast required (high Z cluster on low Z support)

Chemisorption:
- requires known probe / surface interaction

HS - LEIS:
- new technique; any material; clusters: 1 atom - 10 nm

Comparison: Richard A. P. Smith (J&M), ECASIA 2009
Important / unique applications for catalysis

4. Nanoclusters

- Average diameter nanoclusters
- Surface segregation in alloy clusters
- Core/shell particles
 (verification, closure, thickness shell)

Example: Three-Way catalyst (exhaust)

Pt clusters on CeO$_2$/ …../ γ-alumina

Loading = 0.004 g Pt / γ-alumina

Cluster diameter: 1.6 nm (average)

Accurate for d < 10 nm

The diameter is derived from the ratio of the bulk loading (volume) to the LEIS signal (surface area)

This method is possible where TEM fails (d ≤ 2 nm; high Z support)
Strong Zn(O) segregation
Zn(O) on top of Cu is thermodynamically favorable
Oxidation states Cu and Zn in outer surface?
LEIS + chemical titration!

XPS:
Oxidation states, **BUT** averaged over 10 – 20 atomic layers.

LEIS:
Elemental composition outer atomic layer, **BUT** no chemical info
Oxidation of metallic Cu, Zn gives shielding by oxygen.
Signal decrease: factor 5 resp. 3.7.

Chemical titration:
Information on oxidation states, **BUT** not only the outer surface (?)
Oxidation states Cu and Zn in outer surface?

LEIS + chemical titration!

XPS:
Oxidation states, **BUT** averaged over 10 – 20 atomic layers.

LEIS:
Elemental composition outer atomic layer, **BUT** no chemical info
Oxidation of metallic Cu, Zn gives shielding by oxygen.
Signal decrease: factor 5 resp. 3.7.

Chemical titration:
Information on oxidation states, **BUT** not only the outer surface (?)

LEIS + Chemical titration: oxidation states in the outer surface!

- **N₂O** for oxidation
- LEIS for detection increase in shielding after N₂O treatment
Cu / ZnO / SiO₂ - Catalyst

Determination of cluster size and oxidation states by LEIS

Cu/Zn/SiO₂ reduced at 473 K

Outermost atomic layer:
ZnO 0.42
Cu²⁺ 0.54
Zn⁰ 0.02
Cu⁰ 0.02

Subsurface: Cu: Zn = 9

Cu/Zn/SiO₂ reduced at 673 K

Outermost atomic layer:
ZnO 0.77
Cu²⁺ 0.03
Zn⁰ 0.19
Cu⁰ 0.01

Subsurface: Cu: Zn = 9
Atomic Layer Deposition (ALD)

“Growth with Digital Accuracy“
How many cycles for Closure?

ALD cartoons: (often) show closed layer after 1 cycle
In practice: closure after a few up to > 100 cycles!

Typical examples (depending on ALD conditions!):

- 6 cycles CrOx / Al₂O₃
- 6-9 cycles HfO₂ / Si
- ~ 15 cycles ALN / SiO₂
- ~ 40 cycles Al₂O₃ / Si
- ~ 70 cycles Fe₂O₃ / ZrO₂
- ~ 150 cycles TiN / SiO₂
The transient regime determines closure and uniformity.
Characterization of MOCVD vs. ALD HfO$_2$ layer closure and growth mode on Silicon: a new model for preferential deposition

M.J.P. Hopstaken1, M.S. Gordon1, J. Schaeffer2, H. Jagannathan1, T. Grehl3, H.H. Brongersma3,4, M. Copel1, M.M. Frank1, V. Narayanan1, K. Choi2, M. Fartmann4, D. Breitenstein4

1IBM Research, 2GLOBALFOUNDRIES, 3ION -TOF, 4Tascon

ALD 2010, June 21 – 23, 2010 Seoul, Korea
HfO₂ layer closure: MOCVD vs ALD

Surface fractions (LEIS) as function of coverage

Earlier layer closure for ALD-HfO₂
LEIS and Growth

- Initial growth; growth mode
- Poisoning, activation
- Closure, pinholes
- Thickness distribution

Conclusion IBM / Global Foundries / ION-TOF / Tascon study:

- Origin of the superior quality of the ALD grown layers revealed by HS-LEIS

(other analytic tools have insufficient depth resolution)
Summary: Why do you need LEIS ?? !!

- Any material, any T
- Quantitative
- 1st atom and high-resolution in-depth !!

Unique applications of High Sensitivity LEIS (NOT’s)

- Segregation, Anti-wetting
- Adhesion: “5% vs 100%“
- Follow ultrathin growth
- Pinholes in ultrathin; Nano pinholes
- Metal / polymer in-depth diffusion
- Catalysis: poison, promoter, probe molecules, core-shell, …..
- Nanoclusters (diameter; outer atoms)
- Inorganics: oxidation states
- Improve cleaning strategies

Complementarity to XPS, ToF-SIMS, ….
Miscellaneous applications

- Microelectronics, polymers, ceramics, catalysis, sensors,

But also:

- Pinholes in coatings
- Candy wrappers
- Gold mining
- F 16 Dome
- Bone tissue, implants, stents,
- Ageing of Linoleum (“Linowonder”)
- Anti-wetting (watches,)
- Floor wax
Complementary Cutting Edge techniques

HS-LEIS + HR-XPS
Qtac¹⁰⁰ Scienta ESCA 300

Lehigh University
Thank you for your attention.