Lecture 3 Homework

1) Find the product of \(z_1 = 4 - 2i \) and \(z_2 = 4 + 2i \).

2) Express the number \(z = 4i \) in polar form.

3) Show that \(f(z) = e^{\bar{z}} \) (the exponent is the conjugate of \(z \)) is nowhere analytic.

4) Show using the definition of the inverse Fourier transform that \(I \) is the inverse transform of \(2\pi\delta(x) \).

5) Find the Fourier transform of \(sgn(x) \) using the definition (i.e. by integration).

6) Find the Laplace transform of \(\cos^2(t) \). Hint: First use a half-angle formula, then apply given rules.

7) Find the inverse Laplace transform of \(\frac{4}{(s+1)(s+2)} \). Hint: First write this as a product of transforms.

8) Find the inverse Laplace transform of \(\frac{1}{(s+1)^2} \). Hint: First write this as a derivative of another transform.